Blackboard example, lecture 4

We use a Markov chain model to calculate the reliability for a hot stand-by system with one spare module. We obtain the following state diagram:

The state labelling shows the number of working modules. Thus, in state 2 both modules are working, while one module is working in state 1 . The reliability of the system is $R(t)=P_{2}(t)+P_{1}(t)$

The state probabilities $P_{2}(t)$ och $P_{1}(t)$ are determined by the following system of differential equations:

$$
\mathbf{P}^{\prime}(\mathbf{t})=\mathbf{P}(\mathbf{t}) \cdot \mathbf{Q}
$$

where

$$
\begin{aligned}
\mathbf{P}(\mathbf{t}) & =\left[\begin{array}{lll}
P_{2}(t) & P_{1}(t) & P_{0}(t)
\end{array}\right] \\
\mathbf{P}^{\prime}(\mathbf{t}) & =\left[\begin{array}{lll}
P^{\prime}(t) & P_{1}^{\prime}(t) & P_{0}^{\prime}(t)
\end{array}\right] \\
\mathbf{Q} & =\left[\begin{array}{ccc}
-2 \lambda & 2 \lambda & 0 \\
0 & -\lambda & \lambda \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

The equation system thus consists of the following equations:

$$
\begin{aligned}
P_{2}^{\prime}(t) & =-2 \lambda \cdot P_{2}(t) \\
P_{1}^{\prime}(t) & =2 \lambda \cdot P_{2}(t)-\lambda \cdot P_{1}(t) \\
P_{0}^{\prime}(t) & =\lambda \cdot P_{1}(t)
\end{aligned}
$$

EDA122/DIT061 Fault-tolerant Computer Systems
DAT270 Dependable Computer Systems

We can solve the equation system using the following Laplace transform:
$f^{\prime}(t) \propto \tilde{s}(s)-f(0)$. The system of differential equations is then transformed into an algebraic equation system, which can be written in matrix form as follows: .

$$
s \cdot \tilde{\mathbf{P}}(\mathbf{s})-\mathbf{P}(\mathbf{0})=\tilde{\mathbf{P}}(\mathbf{s}) \cdot \mathbf{Q}
$$

where

$$
\mathbf{P}(\mathbf{0})=\left[P_{2}(0) P_{1}(0) P_{0}(0)\right]=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]
$$

is a row vector of the initial probabilities for the different states. We assume that the system is in state 2 at the time $t=0$, hence $P_{2}(0)=1$ and
$P_{1}(0)=P_{0}(0)=0$
We then obtain the following equation system:

$$
\begin{aligned}
& s \cdot \tilde{P}_{2}(s)-1=-2 \lambda \cdot \tilde{P}_{2}(s) \\
& s \cdot \tilde{P}_{1}(s)-0=2 \lambda \cdot \tilde{P}_{2}(s)-\lambda \cdot \tilde{P}_{1}(s) \\
& s \cdot \tilde{P}_{0}(s)-0=\lambda \cdot \tilde{P}_{1}(s)
\end{aligned}
$$

For $\tilde{P}_{2}(s)$ we obtain:

$$
\tilde{P}_{2}(s)=\frac{1}{s+2 \lambda}
$$

which give us the following time function

$$
P_{2}(t)=e^{-2 \lambda \cdot t}
$$

EDA122/DIT061 Fault-olerant computer system
DAT270 Dependable Computer Systems

We then calculate $\tilde{P}_{1}(s)$:

$$
\begin{aligned}
\tilde{P}_{1}(s) & =\frac{2 \lambda \cdot \tilde{P}_{2}(s)}{(s+\lambda)}=\frac{2 \lambda}{(s+\lambda)(s+2 \lambda)} \\
& =2 \lambda\left[\frac{A}{s+\lambda}+\frac{B}{s+2 \lambda}\right] \\
& =\left\{A=\frac{1}{\lambda}, B=-\frac{1}{\lambda}\right\} \\
& =2 \lambda\left[\frac{1}{\lambda} \cdot \frac{1}{s+\lambda}-\frac{1}{\lambda} \cdot \frac{1}{s+2 \lambda}\right] \\
& =\frac{2}{s+\lambda}-\frac{2}{s+2 \lambda} \\
P_{1}(t) & =2 e^{-\lambda \cdot t}-2 e^{-2 \lambda \cdot t}
\end{aligned}
$$

The reliability of the system is

$$
R(t)=P_{2}(t)+P_{1}(t)=e^{-2 \lambda \cdot t}+2 e^{-\lambda \cdot t}-2 e^{-2 \lambda \cdot t}=2 e^{-\lambda \cdot t}-e^{-2 \lambda \cdot t}
$$

Note that this is the same result we obtain using a reliability block diagram

$$
R(t)=1-(1-R)^{2}=2 R-R^{2}=2 e^{-\lambda \cdot t}-e^{-2 \lambda \cdot t}
$$

where $R=e^{-\lambda \cdot t}$ is the reliability for one module.

