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Welcome to Lecture 4

Markov chain models
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Markov chain models

• Basic theory

• Hot stand-by system

• Cold stand-by system

• Coverage factor

• Dormancy factor
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Markov property

 Let X denote the lifetime for a component. 

The Markov property is defined as follows:

The probability that a component fails in the small interval h is proportional to 
the length of the interval.

  is the proportional constant.

The probability above does not depend on the time t.

P X t h+ X t   h o h +=
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State diagram for one component

1 01-h + o(h) h + o(h) 1
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The reliability for one component
(reliability = function probability)

The probability that the component is working at the time t+h is

We divide with h

Let , and we get

P1 t h+  1  h o h +–  P1 t =

P1 t h+  P1 t –
h

-----------------------------------------  h
h

---------- P1 t – o h 
h

-----------+=

h 0

P'1 t   P1 t –=
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Reliability for one component (cont’d)

The solution to this differential equation is

Assuming that the component works at the time t = 0, we get 

The reliability of the component is: 

P'1 t   P1 t –=

P1 t  C1 e t–   ,  where C1 1,  since P1 0  1= = =

P1 0  1=

P1 t  e t–=
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The failure probability for one component

The probability that the component is faulty at the time t+h is 

Rearranging the expression yields

If we let , we get

P0 t h+  h o h + P1 t  P0 t +=

P0 t h+  P0 t –
h

-----------------------------------------  P1 t  o h 
h

----------- P1 t +=

h 0

P'0 t   P1 t =
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Failure probability for one component (cont’d.)

Solving the differential equation yields

P'0 t   P1 t =

P0 t  e t– td C0+=

P0 t  e t– C0 ,  C0+– 1 since P0 0  0= = =

P0 t  1 e t––=
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State diagram with simplified notation

1 0
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Markov chain model

The Markov chain model is defined by the following equation system

P'1 t   P1 t –=

P'0 t   P1 t =
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Markov chain model (cont’d.)

The equation system can be written using matrices: 

where

and

Q is called the transition rate matrix.

P' t  P t  Q t =

P t  P1 t  P0 t =

P' t  P'1 t  P'0 t =

Q – 
0 0

=
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Hot stand-by system with one spare

State diagram

State labelling:

2 Both modules work

1 One module works

0 No module works, system failure

We calculate the reliability on the blackboard!

1 02 
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The Laplace transform

But first we need to introduce the Laplace transform, which is defined as 

Using the Laplace transform, we can transform the system of ordinary differential equa-
tions into a system of algebraic equations. 

L f t    f̃ s  e st– f t  td   for   s 0
0



==
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Useful Laplace transforms

L e at–  f̃ s  e st– e at– td
0



 e s a+ t– td
0



= = =

1
s a+ 

---------------- e s a+ t––

0

= 1
s a+
----------- , s a=

L f ´ t   e st– f ´ t  td
0



 e st–
f t  



0
se st– f t  td

0



+= =

f 0 – sf̃ s += sf̃ s  f 0 –=
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Cold stand-by system with one spare

State diagram

State labelling:

2 Both modules work

1 One module works

0 No module works, system failure

Assumption: The failure rate for the spare is zero.

1 02 
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Cold stand-by system with one spare (cont’d.)

We calculate the reliability of the system by solving the equation system: 

where

P' t  P t  Q t =

P t  P2 t  P1 t  P0 t =

P' t  P'2 t  P'1 t  P'0 t =

Q
–  0
0 – 
0 0 0

=
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Identifying the Q-matrix

The state diagram

The Q-matrix

1 02 

Q
–  0
0 – 
0 0 0

=
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The equation system

We solve this by applying the Laplace transform using the following relation

P'2 t   P2 t –=

P'1 t   P2 t   P1 t –=

P'0 t   P1 t =





f ´ t  sf ~ s  f 0 –=
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Solving the equation system

The Laplace transform get 

where

which give us

s P̃ s  P 0 – P̃ s  Q=

P 0  1 0 0=

s P̃2 s  1–  P̃2 s –=

s P̃1 s  0–  P̃2 s   P̃1 s –=

s P̃0 s  0–  P̃1 s =
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Laplace transforms

Time function    Laplace transform

e  t– 1
s +
------------

t e  t– 1
s + 2

-------------------
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Solving the equation system (cont’d.)

We first solve 

which gives the following time function

P̃2 s 

P̃2 s  1
s +
------------=

P2 t  e  t–=
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Solving the equation system (cont’d.)

We the compute 

The reliability of the system can be written as

P̃1 s 

P̃1 s 
 P̃2 s 

s + 
--------------------- 

s + 2
-------------------= =

P1 t  te  t–=

R t  P2 t  P1 t + e  t– te  t–+ 1 t+  e  t–= = =
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Calculating the MTTF

Let  and  denote the time spent in state 2 and state 1, respectively.

MTTF for the system can then be written as 

Alternatively, the MTTF can be computed as

X2 X1

MTTF E X2 X1+  E X2  E X1 + 1

--- 1


---+ 2


---= = = =

MTTF R t  td
0



 1 t+ e  t– td
0



 e  t– td
0



 te  t– td
0



+= = =

1

--- 1


---+= 2


---=
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The reliability
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Coverage

Designing a fault-tolerant system that will correctly detect, mask or recover 
from every conceivable fault, or error, is not possible in practice.

Even if a system can be designed to tolerate a very large number of faults, or 
errors, there are for most systems a non-zero probability that a single fault will 
cause the system to fail. 

Such faults are known as “non-covered” faults.

The probability that a fault is covered (i.e., correctly handled by the fault-toler-
ance mechanisms) is known as the coverage factor, and denoted c. 

The probability that a fault is non-covered can then be written as 1 - c.
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Cold stand-by system with coverage factor

State diagram

We can write-up the Q-matrix directly by inspecting the state diagram.

c
 





(1-c)

Q
– c  1 c–  
0 – 
0 0 0

=
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Solving the equation system (cont’d.)

We have the following equation system

 After applying the Laplace transform, we get

P'2 t   P2 t –=

P'1 t  c P2 t   P1 t –=

P'0 t  1 c–  P 2 t  + P1 t =

s P̃2 s  1–  P̃2 s –=

s P̃1 s  0– c P̃2 s   P̃1 s –=

s P̃0 s  0– 1 c–  P̃2 s  + P̃1 s =
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Solving the equation system (cont’d.)

 can we compute directly from the first equation

We then compute 

Reliability for the system is

P̃2 s 

P̃2 s  1
s +
------------= P2 t  e  t–=

P̃1 s 

P̃1 s 
c P̃2 s 

s + 
------------------------ c

s + 2
-------------------= = P1 t  cte  t–=

R t  P2 t  P1 t + e  t– cte  t–+ 1 ct+  e  t–= = =
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The reliability with coverage factor
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MTTF for cold stand-by system with coverage factor

MTTF R t  td
0



 1 ct+ e  t– td
0



 e  t– td
0



 c te  t– td
0



+= = =

1

--- c


---+= 1 c+


------------=
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Cold stand-by system with dormancy factor

State diagram

Dormancy factor







 

 



 k =
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Cold stand-by system with dormancy factor (cont’d)

Simplified state diagram

 


 





Q
 + –  +  0

0 – 
0 0 0

=
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Cold stand-by system with dormancy factor (cont’d)

We have the following equations

Applying the Laplace transform, we get

P'2 t   +  P2 t –=

P'1 t   +  P2 t   P1 t –=

P'0 t   P1 t =

s P̃2 s  1–  +  P̃2 s –=

s P̃1 s  0–  +  P̃2 s   P̃1 s –=

s P̃0 s  0–  P̃1 s =
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Cold stand-by system with dormancy factor (cont’d)

We get

Decomposition into partial fractions give us

P̃2 s  1
s  + +
--------------------------= P2 t  e  +  t–=

P̃1 s   + 
s + 

------------------ P̃2 s   + 
s +  s  + + 

------------------------------------------------= =

P̃1 s   + 
 s + 
--------------------  + 

 s  + + 
-----------------------------------–= P1 t   +


------------- e  t– e  +  t–– =
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Cold stand-by system with dormancy factor (cont’d)

The reliability is

R t  P2 t  P1 t + e  u+  t–  +


------------- e  t– e  +  t–– += =

 +


-------------e  t– 

---e  +  t––=
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Reliability with dormancy factor
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Overview of Lecture 5

• Availability modeling
• Safety modeling

Preparations:

• Course book:

- Availability (pages 20, 21, 25,167),

- Safety (Section 1.1 - 1.3, pages 1 - 14)

- Section 5.6 Maintainability (pages 101-103)

- Section 7.2 Markov models (pages 183 – 186)

• Lecture slides


