
EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 1

Combitech Systems

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Welcome to Lecture 16

Error detection techniques
Wrap-up

Outline

• Error detection techniques
 (slides from lecture 13, some modified)

• Fault containment regions

• Wrap-up and summary

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 2Lecture 16

Outline
(from lecture 13)

• Characterization of Failure Modes

• Byzantine failures

• Layered fault tolerance

• Error detection techniques

• Self-checking nodes

Lecture 16 3EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

Fault Detection and Error Detection

• Terminology
 Both the terms fault detection and error detection are used in the literature Both the terms fault detection and error detection are used in the literature,

see discussion in the beginning of Chapter 6.4 in the course book

• We distinguish between
 Concurrent (on-line) error detection

– Detection of errors during operation
– Purpose is to mask or minimize adverse effects of errors

 Non-concurrent (off-line) fault detection
Testing to find physical hardware faults while the system is off line

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 4Lecture 16

– Testing to find physical hardware faults while the system is off-line
– Purpose is to identify faulty hardware units

• We will focus on techniques for concurrent error detection

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 2

Off-line fault detection techniques

• Functionality checking
 Examples:

– Test of random access memory (RAM) by writing and reading back test
patterns to all memory words

– Test of CPU by running special test programs

• Loop back testing
 Example: “echo” testing of communication paths

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 5Lecture 16

On-line error detection techniques
mentioned in the course book (1)

• Duplication and comparison
C i f d d t i l Comparison of redundant signals

 Self-checking pair
• Consistency checking

 Uses a priori knowledge about information.
 Examples:

– Hardware exceptions in CPUs, e.g., division by zero, memory access to odd
addresses.

– Range checking in software of constrained program variables.

• Information redundancy
 Use of error detecting and error correcting codes

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 6Lecture 16

On-line error detection techniques
mentioned in the course book (2)

• Bus monitoring
 Checking the range of addresses generated by a CPU Checking the range of addresses generated by a CPU
 Examples

– Checking that the CPU use an even address when reading a 32-bit or 64-bit
word.

– Checking CPU memory access using a Memory Management Unit.

• Power supply monitoring
 Often connected to a non-maskable interrupt to enable a safe shut-down.
 Allows a CPU to store context in stable storage before power disappears.

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 7Lecture 16

Allows a CPU to store context in stable storage before power disappears.
 Context read from stable storage to restore system state when power

returns

• Watchdog timer
 See next slide

Watchdog timer (1)

• Principle:
A h d ti i t t d h b i it ti A hardware timer is started when a program begins its execution

 The timer is initiated (programmed) to time out after a certain time
(deadline)

 Special instructions in the program restarts the timer periodically
 The timer sends an interrupt signal to the CPU if the program fails to reset

the timer within the given deadline
 The interrupt indicates that an error has occurred

• Detects slow programs and programs that hang in infinite loops
(program hangs)

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 8Lecture 16

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 3

Watchdog timer (2)

• Selection of the timeout value (deadline)
R i l i t t bli h b d f th ’ Requires an analysis to establish an upper bound of the program’s
execution time

 Finding a tight upper bound on the worst-case execution time (WCET) of
program is a difficult problem.

 The timeout value must include a safety margin to avoid false alarms.

• Errors that cause programs to hang or run slowly are common

• Both development faults and physical faults can cause such errors

• Watch-dog timers are common in embedded real-time systems

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 9Lecture 16

Watchdog Timer as a
Node Restart Mechanism

• Watchdog timer is often used to restart a node that has failed

• This simplifies error handling:
 Whenever an error is detected by some error detection mechanism, the

node will simply stop executing programs and wait until it is restarted by the
interrupt signal from the watchdog timer.

• Restarting a node in a distributed system involves an elaborate set of
actions including:

i th d ’ i f th t t t recovering the node’s view of the system state
 reintegrating the node into the set of operational nodes through a node

membership service.

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 10Lecture 16

End-to-end Checksums

• An end-to-end checksum protects the result of a computation from the
producer to the consumersproducer to the consumers

• It is appended to the result by its producer and is checked by any
consumer of that result

• It protects a result while it is being transferred from the producer to the
consumers

• The producers and consumers are often application programsThe producers and consumers are often application programs

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 11Lecture 16

CPU Exceptions

• Modern central processing units (CPUs) are equipped with hardware
implemented error detection mechanisms called hardware exceptionsimplemented error detection mechanisms called hardware exceptions

• The number and type of hardware exceptions varies depending on the
CPU design

• When a hardware exception is raised, the CPU stops the program
execution and jumps to an exception routine

• The handling of exceptions is very similar to how a CPU responds to
interrupt signalsinterrupt signals

• Some examples of common hardware exceptions is given in the next
two slides

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 12Lecture 16

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 4

Examples of CPU exceptions (1)

Bus error: detects errors during read and write accesses to the main memory.
This exception is raised (triggered) when the CPU attempts to access an addressThis exception is raised (triggered) when the CPU attempts to access an address
to which no memory or any I/O device is connected.

Address error: detects when the CPU makes an attempt to access memory using
an odd numbered address; only even numbered addresses are allowed in many
CPUs.

Illegal opcode: detects if the CPU during an instruction fetch reads a value from g p g
memory (or the instruction cache) that doesn’t correspond to a valid instruction.
This error can occur if the program counter is erroneously loaded with an address
pointing to a data area rather than a program code area.

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 13Lecture 16

Examples of CPU exceptions (2)

Privilege violation: detects if a user program attempts to execute an instruction
which is allowed only for programs that execute in the superuser mode (privilegedwhich is allowed only for programs that execute in the superuser mode (privileged
mode), such as the operating system or device drivers. User programs normally
executes in user mode (normal mode).

Division by zero: detects if a program tries to divide a number with zero.

Spurious interrupt: detects if an interrupt is signalled but no interrupt vector is
provided by the interrupting device. (The interrupt vector tells the CPU which p y p g (p
device it was that raised the interrupt signal and thereby indicates which interrupt
service routine that the CPU shall execute.)

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 14Lecture 16

Layered fault tolerance in distributed
systems

Catastrophic
failure

Benign
failure

Safe
Shutdown

Detected
Error

Undetected
Error

Software-layer mechanisms

System-layer mechanisms

Error
removed

Interference
failure

Timing
failure

Content
failure

Fail
signal

Fail
silent

Fault
removed

C
os

t b
al

an
ci

ng

3rdline of defence

2nd line of defence

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer SystemsLecture 16

Error
removedHardware-layer mechanisms

15

HW Design
Fault

SW Design
Fault

Physical
Fault

ErrorErrorError

1stline of defence

Examples of error detection mechanisms
at different layers

Hardware layer
• CPU hardware exceptions: Bus error Address error Illegal opcode Privilege violation• CPU hardware exceptions: Bus error, Address error, Illegal opcode, Privilege violation,

Division by zero, Spurious interrupt, etc.
• Error detecting and correcting codes in main memory, caches, internal buffers
• Special hardware circuits (often connected to the non-maskable interrupt signal of

a CPU): Power supply monitor, Network (bus) guardian.

• Watchdog timer (sometimes implemented as combination of HW and SW)

Software layer
• Compiler: Type checking of constrained variables, Value range overflow, Loop iteration

bound overflow

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 16Lecture 16

• OS: Processing time overflow, consistency checks on OS data,
• Application: time-redundant execution of tasks, application specific consistency checks

System layer
• End-to-end checksums
• Comparison of results produced by two nodes
• Voting on results produced by three or more nodes

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 5

Outline

• Characterization of Failure Modes

• Byzantine failures

• Layered fault tolerance

• Error detection techniques

• Self-checking nodes

Lecture 16 17EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

Self-checking node supporting software
implemented message comparison

• The processors executes the same
programs and exchange copies of programs and exchange copies of
outgoing messages via the inter
processor links

• They compare the message copies and
stops execution if the copies do not
match.

• An error counter stores the number of
mismatches that has occurred.

• The node is restarted after a mismatch
l if th l f th t ionly if the value of the error counter is

below a predefined threshold
• The bus guardian protects the bus from

erratic behavior (e.g., babbling idiot) of
the network interfaces

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 18Lecture 16

Self-checking node with message
comparison in hardware

• Processor failures are detected byProcessor failures are detected by
duplication and comparison

• The processors produce replicated
messages that are compared by the
comparator.

• The network interfaces receive
messages from the comparator and
send them to other nodes via two
redundant real-time busses.

• The payload in the messages are
protected by end-to-end checksums
added by the processors.

• End-to-end checksums can be used to
ensure that faults in the comparator and
network interfaces are detectable by the
service users (other nodes).

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 19Lecture 16

Fundamental Concepts
Fault/Error Containment

F lt/E t i t i t ti f lt /

• A fault-tolerant system consist of several
fault/error containment regions

Fault/Error containment aims at preventing faults/errors
from affecting other (redundant) units in the system.

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 20Lecture 1

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 6

Fault Containment Regions in a TMR
System

Fault Containment Regions

Module 1

Module 2
Input Voting

element
Output

g

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 21Lecture 1

Module 3

The designer must prevent that a fault in one module causes faults in the other
modules, or the voting element.

Fault Containment Region in a
Distributed TMR system

Node 1 Node 2 Node 3

Voter

Task A
Task B

Voter

Task A
Task B

Voter

Task A
Task B

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 22Lecture 1

Fault containment region

Masking Redundancy
TMR with triple voting and triple inputs

Module 1Input 1

Module 2

Voter

Voter

Output 1

Output 2Input 2

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 23Lecture 1

Module 3 Voter Output 3Input 3

Masking Redundancy
Multi-stage TMR

Module

Module

Voter

Voter

Input 1
Module

Module

Voter

Voter
Input 2

Output 1

Output 2

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 24Lecture 1

Module Voter Module Voter
Input 3 Output 3

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 7

Final remarks (I)

• No system is perfect – single points of failures (lack of fault
containment) are more or less impossible to avoid completely (c fcontainment) are more or less impossible to avoid completely (c.f
Fukushima disaster early this year.)

• Redundancy is no panacea – it may prevent system failures, but
increases cost, failure rate, and energy consumption

• IT systems are physical artifacts – the quality of their service depends
on both software and hardware

V ti l thi ki i d d f t i t t i t f Vertical thinking is needed – from transistors to user interfaces

• IT-systems cannot be fully understood – they are too complex
 Billions of transistors, millions of lines of code lead to almost infinite

numbers of fault, error and failure scenarios

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 25Lecture 16

Final remarks (II)

• Development of dependable IT systems requires holistic thinking• Development of dependable IT systems requires holistic thinking
• We need to consider of different how parts of a system interact:

 Hardware, software, users, environment, organization, management …

Holism (from holos, a Greek word meaning all, entire, total) is the idea that
all the properties of a given system (physical, biological, chemical, social,

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 26Lecture 16

p p g y (p y , g , , ,
economic, mental, linguistic, etc.) cannot be determined or explained by its
component parts alone. Instead, the system as a whole determines how the
parts behave.

Questions?

Lecture 16 27EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

Thank You!

Good Luck with The Exam!

Lecture 16 28EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

