EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2011/12
DAT270 Dependable Computer Systems

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Welcome to Lecture 14

Byzantine failures
Layered fault tolerance
Error detection

Outline

» Characterization of Failure Modes
* Byzantine failures

» Layered fault tolerance

» Error detection techniques

» Self-checking nodes

Dept. of Computer Science and Engineering
Chalmers University of Technology 1

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Failure modes
(from lecture 3)

» A failure mode describes the nature of a failure, i.e., the way in which a
service provider (a system, subsystem, or module) can fail

e Aservice provider can have many failure modes
» Examples of failure modes:
= Value failure — a service provider delivers an erroneous result
= Timing failure — a service provider delivers a result too late, or too early
= Silent failure — a service provider delivers no result
= Signaled failure — a service provider sends a failure signal

e A service provider must have internal mechanisms for error detection
to enforce silent or signaled failures

Note: A value failure is the same as a content failure. Both terms are used in the literature.

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

Characterization of Failure Modes

* Failure domain
= Content (Value)
= Timing
» Detectability of failures
e Consistency of failures
» Consequences of failures on the environment

See “Basic Concepts and Taxonomy of Dependable and Secure Computing”, pp.
18-19.

EDA122/DIT061 Fault ant Computer Systems / DAT270 Dependable Computer Syster

Dept. of Computer Science and Engineering
Chalmers University of Technology

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Failure domain

» Content failures. The content of the information delivered at the
service interface deviates from implementing the system function.

» Timing failures. The time of arrival or the duration of the information
delivered at the service interface (i.e., the timing of service delivery)
deviates from implementing the system function.

» Failure for which both content and timing are incorrect

Halt failure, or simply halt, when the service is halted; a special
case of halt is silent failure, or simply silence, when no service at
all is delivered at the service interface.

Erratic failure, when a service is delivered (not halted), but is erratic
(e.g., babbling)

Failure Domain
Content Timing Content and Timing
(Correct (Correct
timing) content)
Early Late Halted Erratic
service service service service
I | I I
Content Early Timing Late timing Halt Erratic
Failures Failures Failures Failures Failures

Dept. of Computer Science and Engineering
Chalmers University of Technology

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2011/12
DAT270 Dependable Computer Systems

Failure Detectability

» Signaled failures — the system signals service failures to the user(s).
e Unsignaled failures — no warning from the system is given

» Signaling at the service interface originates from detection
mechanisms checking the correctness of the service.

* The detection mechanisms have themselves two failure modes:
1. Signaling a failure when no failure has actually occurred; a false alarm
2. Not signaling a service failure; an unsignaled failure

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

Failure Consistency

e Consistent failures. The incorrect service is perceived identically
by all system users.

* Inconsistent failures (or Byzantine failures). Some or all system
users perceive the incorrect service differently. Some users may
perceive a correct service.

EDA122/DIT061 Fault ant Computer Systems / DAT270 Dependable Computer Syster

Dept. of Computer Science and Engineering
Chalmers University of Technology 4

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

2.
3.
4

Consequence of Failures on the

Environment

» Grading the consequences of the failures upon the system
environment involves a definition of failure severities

* The definition of the severity levels depends on the application

» Examples of criteria for determining the classes of failure severities
include:

1.

the outage duration (for availability)
the possibility of human lives being endangered (for safety)
the type of information that may be unduly disclosed (for confidentiality)

the extent of the corruption of data and the ability to recover from these
corruptions (for integrity)

Summary of taxonomy of failure modes

—— Content failures
——— Early timing failures
—— Late timing failures
——— Hait failures
—— Erratic failures

i Signaled failures
— Detectabilit
¥ _E Unsignaled failures

— Domain

Failures —

, Consistent failures
— Consistenc ; .
y _: Inconsistent failures

Minor failures
L]
— Consequences { :
Catastrophic failures

Dept. of Computer Science and Engineering
Chalmers University of Technology

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2011/12
DAT270 Dependable Computer Systems

Reading Instructions:

“Basic Concepts and Taxonomy of Dependable and Secure Computing”
(Careful reading)

The following sections shall be read carefully:

2. The Basic Concepts

3.2.1 The Taxonomy of Faults

3.3.1 Service Failures

3.4 Errors

3.5 The Pathology of Failure: Relationship between Faults, Errors, and Failures
4.1 The Definitions of Dependability and Security
5.1 Fault Prevention

5.2 Fault Tolerance

5.3 Fault Removal

5.4 Fault Forecasting

Check out the reading instructions about parts designated as “Normal reading”.

ecture 14 EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

Outline

» Characterization of Failure Modes
* Byzantine failures

» Layered fault tolerance

» Error detection techniques

» Self-checking nodes

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

Dept. of Computer Science and Engineering
Chalmers University of Technology 6

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2011/12
DAT270 Dependable Computer Systems

Agreement in presence of
Byzantine failures

* A Byzantine failure is an inconsistent, non-detectable,
content failure.

» The Byzantine generals problem:

= How do replicated units reach agreement on a non-replicated value
in the presence of inconsistent content failures?

» This problem is also known as the interactive consistency
problem

Impossibility of Reaching Agreement on
Clock Value

Inconsistent content failure

Voting algorithm: Use median value to resynchronize local clock
Node C sends Clock C = 9 to Node A and Clock C =12 to Node B
Node A uses median{9,10,11} = 10, Node B uses median{10,11,12} = 11

Node C is said to be maliciously faulty, since it fools the non-faulty nodes
to set their clocks to different values.

Dept. of Computer Science and Engineering
Chalmers University of Technology 7

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2011/12
DAT270 Dependable Computer Systems

Byzantine Generals Problem
Scenario

Several armies are camped outside a city which they plan to attack.

Each army is led by a commander. One of the commanders is a general
that will issue the order attack or retreat.

One or several commanders, including the general, may be traitors.
To win the battle all loyal commanders must attack at the same time.

The traitors will attempt to fool the loyal commanders so that not all of
them attack at the same time.

To stop the traitors’ malicious plan, all commanders exchange messages
directly with each other.

Algorithm ICA(m)

» Tolerates m byzantine failures using oral messages (oral message =
unprotected message)

» Objectives of the algorithm

O1: All fault-free commanders (subordinates) agree on the same
command.

02: If the general (the sender) is fault-free, then all the fault-free
commanders agree on the command issued by the general.

Dept. of Computer Science and Engineering
Chalmers University of Technology 8

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2011/12
DAT270 Dependable Computer Systems

Algorithm ICA(m)

* Requirements
R1: Atleast 3m+17 units must participate
R2: At least m+1 rounds of communication must take place
R3: All units must be synchronized within a known skew of each other

e Assumptions about the message passing system

Al: Every message that is sent by a node is delivered correctly by the
message passing system to the receiver.

A2: The receiver of a message knows which node has sent the
message

A3: The absence of a message can be detected.

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

Algorithm ICA(m) (cont’d)

Algorithm ICA(0O)
1. The value from the general is sent to every subordinate
2. Each subordinate uses the value received from the general or uses the
value RETREAT.
Algorithm ICA(t>0)
1. The value from the general is sent to every subordinate.
2. For each j, let v; be the value that subordinate i received from the general,
or else be RETREAT if none received. Subordinate / acts as the general

in Algorithm ICA(t-1) to send the value v; to each of the other (n-2)
subordinates.

3. Foreachiand each j#i, let v be the value subordinate j received from
subordinate j in step 2 (using Algorithm ICA(t-1)), or else RETREAT if
none is received. Subordinate i uses the value majority(v,,v,, ..., V1)

EDA122/DIT061 Fault ant Computer Systems / DAT270 Dependable Computer Syster

Dept. of Computer Science and Engineering
Chalmers University of Technology 9

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2011/12
DAT270 Dependable Computer Systems

Tolerating one Byzantine failure

Q)
Vi A
/ V11 \Vﬂ

o N ?
OO0,

\

Va1/ *V21 V31f ~31 V41 "\V41

/i\ ™ r’\/‘\ 2\ (3
\/(‘U \2/ 4 \%\)

Example: Unit 2 uses v’1 = majority{v1, v31, v41}
Number of messages for agreement on one value is: 3 + 2:3 = 9 messages

A majority decision involving 4 units (e.g. 4 sensor values) requires: 9-4 = 36
messages

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

Tolerating two Byzantine failures

7N
| 2\ ! [@
AN CEN RN ST
3) & E)

Example: Unit 2 uses v’'1 = majority{v1, v’31, v'41, v’561, v’61,v'71}
v'41 = majority{v41, v341,v541,v641, v741}

Number of messages for agreement on one value is 6 + 6(5 +5-4) = 156
messages

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Syster

Dept. of Computer Science and Engineering
Chalmers University of Technology 10

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Mid-level voters in the JAS Gripen
Flight Control System

Concept of redundancy, triplex EFCS
oM Drigital Elekironses Anakeg Elekiromics
Primary/BU

AEmﬂ mim . \ 1
‘ H ﬂ- ot —_:| MLV }—O/ch—[;/\/

1
l || I
B |Sensar MLV O jﬂ—’ﬁ,ﬁ-{— ';':E{,"__—
1
Lo
G e 50 00

2000 10-12

Tolerating Byzantine Failures Using
Multiple Voting Planes

e Lars Holmlund mentioned in his guest lecture that the JAS
Gripen flight control system can tolerate Byzantine failures

* How is this possible for a three channel system?

* We will look at Byzantine failures in a multi-stage TMR
system

Dept. of Computer Science and Engineering
Chalmers University of Technology

11

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2011/12
DAT270 Dependable Computer Systems

Inconsistent Content Failure in a
TMR system

‘ Voter selects median value ‘

Input values /
N\

10 10l 1eci 11

Input 1 — Module 1 \E \;ﬁfrn — Output 1
11 10) 11

Input 2 —— Module 2 5 M\z‘:frn — Output 2

Inconsistent

12 output

% 10 Median 10

Input 3 — | Module 3 é-)l)\,oter — Output 3

‘ Inconsistent content (value) failure ‘

Masking Inconsistent Content
Failures with Two Voting Planes
‘ A second round of voting achieves consistent outputs
Input 1 10 Median [11 Median |11
—| Module 1 g Voter Voter
Input 2 10 Median | 11 Median || 11
—| Module 2 1, Voter Voter
Input 3 <1 {9Median | 10 Median || 11
—| Module 3 191 Voter \ Voter
/ —/
Faulty input from Module 3 ‘ ‘ Voter selects 10 instead of 11

Dept. of Computer Science and Engineering
Chalmers University of Technology 12

EDA122/DIT061 Fault-Tolerant Computer Systems

DAT270 Dependable Computer Systems

Academic year 2011/12

Masking Inconsistent Content
Failures with Two Voting Planes

‘ A second round of voting achieves consistent outputs [

~

//V 1o Voter

—

AN

S)

Input 1 10 Median {|10 Median || 11
— Module 1 tz Voter Voter

Input 2 L0 Median |]11 Median |[11
—| Module 2 1 Voter Voter

Input 3 10Median ({12 Median || 11
—— Module Voter

e/

Inconsistent faulty inputs from Module 2 ‘ ‘ Voters produce different outputs

Input 1
—

‘ Consistent outputs \

Module 1

Input 2
— Module 2

Masking Inconsistent Content
Failures with Two Voting Planes

|
npui Module 3

\

SRR
10 Median 11 11 Median 11
ho Voter 11 Voter
10 Mediary | ? 1& Median || 11
L Vot Vot
ho Voter 11 Voter
L0 Median | 11 1 Median || 11
iz Voter hp Voter

—/

System is resilient to inconsistent failures in the output from Voter 2 since the other
two voters deliver identical results. X, Y and Z can assume any values.

Dept. of Computer Science and Engineering
Chalmers University of Technology

13

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

The US space shuttle’s computer
system

Control

Boosters
paneis

Memary Sensors

Displays Telemetry Payloads Telecomms

"~ 23serial
data buses
P

W

CPU CPU CPU CPU CPU
4

e

T T T s s
T T | b

B buses

Figure 6.20 Architecture of the space shuitle’s computer systems.

ecture 14 EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

Main features of the Space Shuttle
Computer

¢ Consist of five “off-the-shelf” computers with identical hardware
« Four computer executes critical functions in 4AMR*

» The computers exchange results via special inter-processor buses and vote on
the results in software

* One computer is a backup equipped with an independently developed**,
stripped-down version of the critical flight control software

» The fifth computer performs non-critical functions under fault-free
circumstances

¢ The computers send independent commands to actuators, which use
hardware voting the mask errors in the commands

*4AMR = NMR, with N=4.
** Design diversity

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

Dept. of Computer Science and Engineering
Chalmers University of Technology

14

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2011/12
DAT270 Dependable Computer Systems

Cracked diode in US Space Shuttle

Figure 1. Two views (90 degrees apaﬁ) of a fissure that -appears fo go through the silicon dice - Red arrows

A crack (fissure) through a diode appeared in a Space Shuttle while on the launch pad
preparing for mission STS-124. At 12 minutes and 38 seconds past noon May 13, 2008 this
caused a 3-1 split of the four computers that control the Shuttle. Three seconds later, the
split became 2-1-1. But, none of the processors or their intercommunications were faulty.
The fault was in a box that sends messages to the computers.

Source and text: Kevin R. Driscoll, Honeywell Aerospace, USA

Normal messages

Dept. of Computer Science and Engineering
Chalmers University of Technology 15

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2011/12
DAT270 Dependable Computer Systems

Outline

» Characterization of Failure Modes
e Byzantine failures

» Layered fault tolerance

» Error detection techniques

» Self-checking nodes

Dept. of Computer Science and Engineering
Chalmers University of Technology 16

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Layered fault tolerance

Fault-tolerance is typical achieved by combining several mechanisms
for error detection, error masking and system recovery located at
different abstraction layers in a computer system

The division of a system into layers can be done in different ways. We
will use a simple model with three layers:
= Hardware layer — mechanisms implemented in hardware either within an
integrated circuit or by replication of integrated circuits within a node.
= Software layer — mechanisms implemented in software dealing with errors
occurring within a node

= System layer — mechanisms implemented in software dealing with errors
occurring in other nodes in the system, or in the system’s communication
network

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

Layered fault tolerance in distributed
systems

f/—_(;_t trophi Beni Saf N .
(TR tawe smudown _€—— System failure modes

B e s A

3rline of defence Systearayer-meehanisms — removed

'\ Interference Content Timing Fail Fail ,\' € NOde fallure mOdeS

failure failure failure signal silent

—————————————— Error

2" line of defence Software-layer mechanisms — removed

Detected Undetected’y €— Errors escaping detection by HW

Error ‘.. _Error__.7

Error

1stline of defence Hardware-layer mechanisms — emoved

Cost balancing

<

Error Error Error

HW Design SW Design Physical
Fault Fault Fault

Undesirable and severe failure modes are marked in red!

EDA122/DIT061 Fault ant Computer Systems / DAT270 Dependable Computer Syster

Dept. of Computer Scie
Chalmers University of

nce and Engineering
Technology

17

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2011/12
DAT270 Dependable Computer Systems

Purpose of different layers

» Hardware layer — serves as a first line of defense that should
= Correct as many errors as is economically feasible
= Detect most other errors

» Software layer — serves as a second line of defense that should
= Correct most errors detected, but not corrected by the hardware layer.
= Detect most errors that are not detected or corrected by the hardware layer
= Ensure appropriate failure semantics for the node for any error that cannot
be corrected. (Failure semantics is the same as failure mode assumptions.)
e System layer — serves as a third line of defense that should

= Detect and correct any errors that are not detected or corrected by the
software and hardware layers

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

Outline

» Characterization of Failure Modes
e Byzantine failures

» Layered fault tolerance

» Error detection techniques

» Self-checking nodes

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Syster

Dept. of Computer Science and Engineering
Chalmers University of Technology 18

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2011/12
DAT270 Dependable Computer Systems

Fault Detection and Error Detection

Terminology

= Both the terms fault detection and error detection are used in the
literature, see discussion in the beginning of Chapter 6.4 in the
course book

We distinguish between
= Concurrent (on-line) error detection

— Detection of errors during operation
— Purpose is to mask or minimize adverse effects of errors

= Non-concurrent (off-line) fault detection
— Testing to find physical hardware faults while the system is off-line
— Purpose is to identify faulty hardware units

We will focus on techniques for concurrent error detection

Off-line fault detection techniques

Functionality checking

= Examples:

— Test of random access memory (RAM) by writing and reading
back test patterns to all memory words

— Test of CPU by running special test programs
Loop back testing
= Example: “echo” testing of communication paths

Dept. of Computer Science and Engineering
Chalmers University of Technology 19

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2011/12
DAT270 Dependable Computer Systems

On-line error detection techniques
mentioned in the course book (1)

Duplication and comparison

= Comparison of redundant signals

= Self-checking pair

Consistency checking

= Uses a priori knowledge about information.

= Examples:

— Hardware exceptions in CPUs, e.g., division by zero, memory access to
odd addresses.

— Range checking in software of constrained program variables.
Information redundancy
= Use of error detecting and error correcting codes

On-line error detection techniques
mentioned in the course book (2)

Watchdog timer

Bus monitoring
= Checking the range of addresses generated by a CPU

= Examples

— Checking that CPU use an even address when reading a 32 or 64-bit
word.

— Checking CPU memory access using a memory management unit.

Power supply monitoring

Dept. of Computer Science and Engineering
Chalmers University of Technology 20

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2011/12
DAT270 Dependable Computer Systems

Watchdog timer

* Principle:

= When a program starts to execute it initiates a hardware timer
which is periodically reset by special instructions inserted into the
program

= If the program fails to reset the timer within a prescribed deadline,
the timer generates an interrupt to the CPU to signal an error

» Detects slow programs and programs that hang in infinite
loops.

* Very common in embedded real-time systems

Watchdog Timer as a
Node Restart Mechanism

e Watchdog timer is often used to restart a node that has failed

» This simplifies error handling: whenever an error is detected by some
mechanisms, the node will simply stop executing until it is restarted by
the interrupt signal from the watchdog timer

» Restarting a node involves an elaborate set of actions, including
recovering the node’s view of the system state and reintegrating the
node into the set of operational nodes through a node membership
service. These actions are usually handle by system-layer
mechanisms

Dept. of Computer Science and Engineering
Chalmers University of Technology 21

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

End-to-end Checksums

* An end-to-end checksum protects the result of a computation from the
producer to the consumers

e Itis appended to the result by its producer and is checked by any
consumer of that result

» It protects a result while it is being transferred from the producer to the
consumers

e The producers and consumers are often application programs

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 43

Examples of error detection mechanisms
at different layers

Hardware layer
. CPU hardware exceptions: Bus error, Address error, lllegal opcode, Privilege violation,

Division by zero, Spurious interrupt, etc.
Error detecting and correcting codes in main memory, caches, internal buffers

Special hardware circuits (often connected to the non-maskable interrupt signal of
a CPU): Power supply monitor, Network (bus) guardian.

Watchdog timer (sometimes implemented as combination of HW and SW)

Software layer

Compiler: Type checking of constrained variables, Value range overflow, Loop iteration
bound overflow

OS: Processing time overflow, consistency checks on OS data,

-

Iﬁ' A * Application: time-redundant execution of tasks, application specific consistency checks

System layer
End-to-end checksums

9

Comparison of results produced by two nodes
Voting on results produced by three or more nodes

EDA122/DIT061 Fault Computer Syste DAT270 Dependable Computer Syster 14

Dept. of Computer Science and Engineering
Chalmers University of Technology

Academic year 2011/12

22

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2011/12
DAT270 Dependable Computer Systems

Exceptions in CPU:s

* Modern central processing units (CPUs) are equipped with hardware
implemented error detection mechanisms called hardware exceptions

* The number and type of hardware exceptions varies depending on the
CPU design

* When a hardware exception is raised, the CPU stops the program
execution and jumps to an exception routine

» The handling of exceptions is very similar to how a CPU responds to
interrupt signals

» Some examples of common hardware exceptions is given in the next
two slides

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 2

Examples of CPU exceptions (1)

Bus error: detects errors during read and write accesses to the main
memory. This exception is raised (triggered) when the CPU attempts to
access an address to which no memory or any 1/O device is connected.

Address error: detects when the CPU makes an attempt to access
memory using an odd numbered address; only even numbered addresses
are allowed in many CPUs.

lllegal opcode: detects if the CPU during an instruction fetch reads a
value from memory (or the instruction cache) that doesn’t correspond to a
valid instruction. This error can occur if the program counter is erroneously
loaded with an address pointing to a data area rather than a program code
area.

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Syster

Dept. of Computer Science and Engineering
Chalmers University of Technology 23

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2011/12
DAT270 Dependable Computer Systems

Examples of CPU exceptions (2)

Privilege violation: detects if a user program attempts to execute an
instruction which is allowed only for programs that execute in the
superuser mode (privileged mode), such as the operating system or
device drivers. User programs normally executes in user mode (normal
mode).

Division by zero: detects if a program tries to divide a number with zero.

Spurious interrupt: detects if an interrupt is signalled but no interrupt
vector is provided by the interrupting device. (The interrupt vector tells the
CPU which device it was that raised the interrupt signal and thereby
indicates which interrupt service routine that the CPU shall execute.)

Outline

» Characterization of Failure Modes
e Byzantine failures

» Layered fault tolerance

» Error detection techniques

» Self-checking nodes

Dept. of Computer Science and Engineering
Chalmers University of Technology 24

EDA122/DIT061 Fault-Tolerant Computer Systems

DAT270 Dependable Computer Systems

Academic year 2011/12

Connection to
real-time bus

Processor Inter processor Processor
T T
L Optional Pl
~ e
~ cross-links -

~
~ e
~ e
~N ~
N
b ~

Connection to
real-time bus

Self-checking node supporting software
Implemented message comparison

The processors executes the same
programs and exchange copies of
outgoing messages via the inter
processor links

They compare the message copies and
stops execution if the copies do not
match.

An error counter stores the number of
mismatches that has occurred.

The node is restarted after a mismatch
only if the value of the error counter is
below a predefined threshold

The bus guardian protects the bus from
erratic behavior (e.g., babbling idiot) of
the network interfaces

Processor

Processor

4@;

IS

Comparator

‘ Network Interface ‘ ‘ Network Interface ‘

Bus
Guardian

Connection to
real-time bus

Bus
Guardian

Connection to
real-time bus

22/DITO61 Fault-Tolerant Computer System:

Self-checking node with message
comparison in hardware

Processor failures are detected by
duplication and comparison

The processors produce replicated
messages that are compared by the
comparator.

The network interfaces receive
messages from the comparator and
send them to other nodes via two
redundant real-time busses.

The payload in the messages are
protected by end-to-end checksums
added by the processors.

End-to-end checksums can be used to
ensure that faults in the comparator and
network interfaces are detectable by the
service users (other nodes).

DAT270 Dependable Computer Syster

Dept. of Computer Science and Engineering

Chalmers University of Technology

25

EDA122/DIT061 Fault-Tolerant Computer Systems Academic year 2011/12
DAT270 Dependable Computer Systems

Overview of Lecture 15

» Time-Triggered Systems
* Preparations:

= |Lecture slides

» The Time-Triggered Architecture (see reading
instructions)

Dept. of Computer Science and Engineering
Chalmers University of Technology 26

