
EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 1

Combitech Systems

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Welcome to Lecture 14

Byzantine failures
Layered fault tolerance

Error detection

Outline

• Characterization of Failure Modes

• Byzantine failures

• Layered fault tolerance

• Error detection techniques

• Self-checking nodes

Lecture 14 2EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 2

Failure modes
(from lecture 3)

• A failure mode describes the nature of a failure, i.e., the way in which a
service provider (a system subsystem or module) can failservice provider (a system, subsystem, or module) can fail

• A service provider can have many failure modes

• Examples of failure modes:

 Value failure – a service provider delivers an erroneous result

 Timing failure – a service provider delivers a result too late, or too early

 Silent failure – a service provider delivers no result

 Signaled failure – a service provider sends a failure signal g p g

• A service provider must have internal mechanisms for error detection
to enforce silent or signaled failures

Note: A value failure is the same as a content failure. Both terms are used in the literature.

Lecture 14 3EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

Characterization of Failure Modes

• Failure domain

C t t (V l) Content (Value)

 Timing

• Detectability of failures

• Consistency of failures

• Consequences of failures on the environment

See “Basic Concepts and Taxonomy of Dependable and Secure Computing”, pp.
18-19.

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 4Lecture 14

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 3

Failure domain

• Content failures. The content of the information delivered at the
service interface deviates from implementing the system functionservice interface deviates from implementing the system function.

• Timing failures. The time of arrival or the duration of the information
delivered at the service interface (i.e., the timing of service delivery)
deviates from implementing the system function.

• Failure for which both content and timing are incorrect

 Halt failure, or simply halt, when the service is halted; a special
case of halt is silent failure, or simply silence, when no service atcase of halt is silent failure, or simply silence, when no service at
all is delivered at the service interface.

 Erratic failure, when a service is delivered (not halted), but is erratic
(e.g., babbling)

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 5Lecture 14

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer SystemsLecture 14 6

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 4

Failure Detectability

• Signaled failures – the system signals service failures to the user(s).

• Unsignaled failures – no warning from the system is given

• Signaling at the service interface originates from detection
mechanisms checking the correctness of the service.

• The detection mechanisms have themselves two failure modes:

1. Signaling a failure when no failure has actually occurred; a false alarm

2 Not signaling a ser ice fail re an nsignaled fail re2. Not signaling a service failure; an unsignaled failure

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 7Lecture 14

Failure Consistency

• Consistent failures. The incorrect service is perceived identically
by all system usersby all system users.

• Inconsistent failures (or Byzantine failures). Some or all system
users perceive the incorrect service differently. Some users may
perceive a correct service.

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 8Lecture 14

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 5

Consequence of Failures on the
Environment

• Grading the consequences of the failures upon the system
environment involves a definition of failure severitiesenvironment involves a definition of failure severities

• The definition of the severity levels depends on the application

• Examples of criteria for determining the classes of failure severities
include:

1. the outage duration (for availability)

2. the possibility of human lives being endangered (for safety)

3. the type of information that may be unduly disclosed (for confidentiality)

4. the extent of the corruption of data and the ability to recover from these
corruptions (for integrity)

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 9Lecture 14

Summary of taxonomy of failure modes

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer SystemsLecture 14 10

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 6

Reading Instructions:
“Basic Concepts and Taxonomy of Dependable and Secure Computing”

(Careful reading)

The following sections shall be read carefully:

2 The Basic Concepts2. The Basic Concepts

3.2.1 The Taxonomy of Faults

3.3.1 Service Failures

3.4 Errors

3.5 The Pathology of Failure: Relationship between Faults, Errors, and Failures

4.1 The Definitions of Dependability and Security

5.1 Fault Prevention

5.2 Fault Tolerance

5.3 Fault Removal

5.4 Fault Forecasting

Check out the reading instructions about parts designated as “Normal reading”.

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 11Lecture 14

Outline

• Characterization of Failure Modes

• Byzantine failures

• Layered fault tolerance

• Error detection techniques

• Self-checking nodes

Lecture 14 12EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 7

Agreement in presence of
Byzantine failures

• A Byzantine failure is an inconsistent, non-detectable,
t t f ilcontent failure.

• The Byzantine generals problem:
 How do replicated units reach agreement on a non-replicated value

in the presence of inconsistent content failures?

• This problem is also known as the interactive consistency
blproblem

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 13Lecture 14

Impossibility of Reaching Agreement on
Clock Value

Clock B
Clock = 11

Inconsistent content failure

Node B

Clock C
Clock = 9

Node CNode A
Clock A

Clock = 10

9

10

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 14Lecture 14

Voting algorithm: Use median value to resynchronize local clock
Node C sends Clock C = 9 to Node A and Clock C =12 to Node B
Node A uses median{9,10,11} = 10, Node B uses median{10,11,12} = 11

Node C is said to be maliciously faulty, since it fools the non-faulty nodes
to set their clocks to different values.

10

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 8

Byzantine Generals Problem
Scenario

Several armies are camped outside a city which they plan to attack.

Each army is led by a commander. One of the commanders is a general
that will issue the order attack or retreat.

One or several commanders, including the general, may be traitors.

To win the battle all loyal commanders must attack at the same time.

The traitors will attempt to fool the loyal commanders so that not all of p y
them attack at the same time.

To stop the traitors’ malicious plan, all commanders exchange messages
directly with each other.

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 15Lecture 14

Algorithm ICA(m)

• Tolerates m byzantine failures using oral messages (oral message =• Tolerates m byzantine failures using oral messages (oral message =
unprotected message)

• Objectives of the algorithm

O1: All fault-free commanders (subordinates) agree on the same
command.

O2: If the general (the sender) is fault-free, then all the fault-free
commanders agree on the command issued by the general.

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 16Lecture 14

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 9

Algorithm ICA(m)

• Requirements

R1 At l t 3 1 it t ti i tR1: At least 3m+1 units must participate

R2: At least m+1 rounds of communication must take place

R3: All units must be synchronized within a known skew of each other

• Assumptions about the message passing system

A1: Every message that is sent by a node is delivered correctly by the
message passing system to the receivermessage passing system to the receiver.

A2: The receiver of a message knows which node has sent the
message

A3: The absence of a message can be detected.

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 17Lecture 14

Algorithm ICA(m) (cont’d)

Algorithm ICA(0)Algorithm ICA(0)

1. The value from the general is sent to every subordinate

2. Each subordinate uses the value received from the general or uses the
value RETREAT.

Algorithm ICA(t>0)

1. The value from the general is sent to every subordinate.

2. For each i, let vi be the value that subordinate i received from the general,
or else be RETREAT if none received Subordinate i acts as the generalor else be RETREAT if none received. Subordinate i acts as the general
in Algorithm ICA(t-1) to send the value vi to each of the other (n-2)
subordinates.

3. For each i and each j≠i, let vj be the value subordinate i received from
subordinate j in step 2 (using Algorithm ICA(t-1)), or else RETREAT if
none is received. Subordinate i uses the value majority(v1,v2, ..., vn-1)

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 18Lecture 14

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 10

Tolerating one Byzantine failure

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 19Lecture 14

Example: Unit 2 uses v’1 = majority{v1, v31, v41}

Number of messages for agreement on one value is: 3 + 2·3 = 9 messages

A majority decision involving 4 units (e.g. 4 sensor values) requires: 9·4 = 36
messages

Tolerating two Byzantine failures

Example: Unit 2 uses v’1 = majority{v1, v’31, v’41, v’51, v’61,v’71}

v’41 = majority{v41, v341,v541,v641, v741}

Number of messages for agreement on one value is 6 + 6(5 +5·4) = 156
messages

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 20Lecture 14

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 11

Mid-level voters in the JAS Gripen
Flight Control System

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 21Lecture 14

Tolerating Byzantine Failures Using
Multiple Voting Planes

• Lars Holmlund mentioned in his guest lecture that the JAS
G i fli ht t l t t l t B ti f ilGripen flight control system can tolerate Byzantine failures

• How is this possible for a three channel system?

• We will look at Byzantine failures in a multi-stage TMR
systemsystem

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 22Lecture 14

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 12

Inconsistent Content Failure in a
TMR system

Input values
Voter selects median value

Module 1Input 1

Module 2

Median
Voter

Median
Voter

Output 1

Output 2Input 2

10

11

12

12
11
10

12
11
10 11

11

Inconsistent
output

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 23Lecture 14

Module 3 Median
Voter Output 3Input 3

9
11

12
10

Inconsistent content (value) failure

10

p

Fault

Masking Inconsistent Content
Failures with Two Voting Planes

A second round of voting achieves consistent outputs

Module 1

Module 2

Median
Voter

Median
Voter

Input 1 Median
Voter

Median
Voter

Input 2

11

11

11

11

12
11
10

12
11
10

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 24Lecture 14

Module 3
Median
Voter

Median
Voter

Input 3 1110

9
11
10

Voter selects 10 instead of 11Faulty input from Module 3

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 13

Masking Inconsistent Content
Failures with Two Voting Planes

A second round of voting achieves consistent outputs

Module 1

Module 2

Median
Voter

Median
Voter

Input 1 Median
Voter

Median
Voter

Input 2

11

11

10

11

12
11
10

12
9

10

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 25Lecture 14

Module
Median
Voter

Median
Voter

Input 3 1112

12
13
10

Voters produce different outputsInconsistent faulty inputs from Module 2

Masking Inconsistent Content
Failures with Two Voting Planes

Consistent outputs

Module 1

Module 2

Median
Voter

Median
Voter

Input 1 Median
Voter

Median
Voter

Input 2

11

11

11

?

12
11
10

12

10
11

11

11
X

11

11
Y

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 26Lecture 14

Module 3
Median
Voter

Median
Voter

Input 3 1111

12
11
10

11

11
Z

System is resilient to inconsistent failures in the output from Voter 2 since the other
two voters deliver identical results. X, Y and Z can assume any values.

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 14

The US space shuttle’s computer
system

Lecture 14 27EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

Main features of the Space Shuttle
Computer

• Consist of five “off-the-shelf” computers with identical hardware

• Four computer executes critical functions in 4MR*• Four computer executes critical functions in 4MR*

• The computers exchange results via special inter-processor buses and vote on
the results in software

• One computer is a backup equipped with an independently developed**,
stripped-down version of the critical flight control software

• The fifth computer performs non-critical functions under fault-free
circumstances

• The computers send independent commands to actuators, which useThe computers send independent commands to actuators, which use
hardware voting the mask errors in the commands

* 4MR = NMR, with N=4.
** Design diversity

Lecture 14 28EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 15

Cracked diode in US Space Shuttle

A crack (fissure) through a diode appeared in a Space Shuttle while on the launch pad

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 29Lecture 14

c ac (ssu e) oug a d ode appea ed a Space S u e e o e au c pad
preparing for mission STS-124. At 12 minutes and 38 seconds past noon May 13, 2008 this
caused a 3-1 split of the four computers that control the Shuttle. Three seconds later, the
split became 2-1-1. But, none of the processors or their intercommunications were faulty.
The fault was in a box that sends messages to the computers.

Source and text: Kevin R. Driscoll, Honeywell Aerospace, USA

Normal messages

Lecture 14 30EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 16

Faulty Message on the Right

Note the message’s bit
amplitudes follow a
capacitor charge curve.

31Lecture 14 EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

Outline

• Characterization of Failure Modes

• Byzantine failures

• Layered fault tolerance

• Error detection techniques

• Self-checking nodes

Lecture 14 32EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 17

Layered fault tolerance

• Fault-tolerance is typical achieved by combining several mechanisms
for error detection error masking and system recovery located atfor error detection, error masking and system recovery located at
different abstraction layers in a computer system

• The division of a system into layers can be done in different ways. We
will use a simple model with three layers:

 Hardware layer – mechanisms implemented in hardware either within an
integrated circuit or by replication of integrated circuits within a node.

 Software layer – mechanisms implemented in software dealing with errors
i ithi doccurring within a node

 System layer – mechanisms implemented in software dealing with errors
occurring in other nodes in the system, or in the system’s communication
network

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 33Lecture 14

Layered fault tolerance in distributed
systems

Catastrophic
failure

Benign
failure

Safe
Shutdown System failure modes

Detected
Error

Undetected
Error

Software-layer mechanisms

System-layer mechanisms

Error
removed

Interference
failure

Timing
failure

Content
failure

Fail
signal

Fail
silent

Fault
removed

C
os

t b
al

an
ci

ng

Node failure modes

Errors escaping detection by HW

3rdline of defence

2nd line of defence

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer SystemsLecture 14

Error
removedHardware-layer mechanisms

Undesirable and severe failure modes are marked in red!
34

HW Design
Fault

SW Design
Fault

Physical
Fault

ErrorErrorError

1stline of defence

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 18

Purpose of different layers

• Hardware layer – serves as a first line of defense that should

C t i i ll f ibl Correct as many errors as is economically feasible

 Detect most other errors

• Software layer – serves as a second line of defense that should

 Correct most errors detected, but not corrected by the hardware layer.

 Detect most errors that are not detected or corrected by the hardware layer

 Ensure appropriate failure semantics for the node for any error that cannot
be corrected. (Failure semantics is the same as failure mode assumptions.)(p)

• System layer – serves as a third line of defense that should

 Detect and correct any errors that are not detected or corrected by the
software and hardware layers

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 35Lecture 14

Outline

• Characterization of Failure Modes

• Byzantine failures

• Layered fault tolerance

• Error detection techniques

• Self-checking nodes

Lecture 14 36EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 19

Fault Detection and Error Detection

• Terminology
B th th t f lt d t ti d d t ti d i th Both the terms fault detection and error detection are used in the
literature, see discussion in the beginning of Chapter 6.4 in the
course book

• We distinguish between
 Concurrent (on-line) error detection

– Detection of errors during operation
– Purpose is to mask or minimize adverse effects of errors

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 37Lecture 14

 Non-concurrent (off-line) fault detection
– Testing to find physical hardware faults while the system is off-line
– Purpose is to identify faulty hardware units

• We will focus on techniques for concurrent error detection

Off-line fault detection techniques

• Functionality checking
 Examples:

– Test of random access memory (RAM) by writing and reading
back test patterns to all memory words

– Test of CPU by running special test programs

• Loop back testing
 Example: “echo” testing of communication paths Example: echo testing of communication paths

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 38Lecture 14

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 20

On-line error detection techniques
mentioned in the course book (1)

• Duplication and comparison
 Comparison of redundant signals

 Self-checking pair

• Consistency checking
 Uses a priori knowledge about information.

 Examples:

– Hardware exceptions in CPUs, e.g., division by zero, memory access to
odd addresses.

– Range checking in software of constrained program variables.

• Information redundancy
 Use of error detecting and error correcting codes

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 39Lecture 14

On-line error detection techniques
mentioned in the course book (2)

• Watchdog timer

• Bus monitoring
 Checking the range of addresses generated by a CPU
 Examples

– Checking that CPU use an even address when reading a 32 or 64-bit
word.

– Checking CPU memory access using a memory management unit.

• Power supply monitoring

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 40Lecture 14

pp y g

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 21

Watchdog timer

• Principle:
 When a program starts to execute it initiates a hardware timer

which is periodically reset by special instructions inserted into the
program

 If the program fails to reset the timer within a prescribed deadline,
the timer generates an interrupt to the CPU to signal an error

• Detects slow programs and programs that hang in infinite
loopsloops.

• Very common in embedded real-time systems

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 41Lecture 14

Watchdog Timer as a
Node Restart Mechanism

• Watchdog timer is often used to restart a node that has failed

• This simplifies error handling: whenever an error is detected by some
mechanisms, the node will simply stop executing until it is restarted by
the interrupt signal from the watchdog timer

• Restarting a node involves an elaborate set of actions, including
recovering the node’s view of the system state and reintegrating the
node into the set of operational nodes through a node membership
service These actions are usually handle by system layerservice. These actions are usually handle by system-layer
mechanisms

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 42Lecture 14

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 22

End-to-end Checksums

• An end-to-end checksum protects the result of a computation from the
producer to the consumersproducer to the consumers

• It is appended to the result by its producer and is checked by any
consumer of that result

• It protects a result while it is being transferred from the producer to the
consumers

• The producers and consumers are often application programsThe producers and consumers are often application programs

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 43Lecture 14

Examples of error detection mechanisms
at different layers

Hardware layer

• CPU hardware exceptions: Bus error Address error Illegal opcode Privilege violation• CPU hardware exceptions: Bus error, Address error, Illegal opcode, Privilege violation,
Division by zero, Spurious interrupt, etc.

• Error detecting and correcting codes in main memory, caches, internal buffers

• Special hardware circuits (often connected to the non-maskable interrupt signal of
a CPU): Power supply monitor, Network (bus) guardian.

• Watchdog timer (sometimes implemented as combination of HW and SW)

Software layer

• Compiler: Type checking of constrained variables, Value range overflow, Loop iteration
bound overflow

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 44Lecture 14

• OS: Processing time overflow, consistency checks on OS data,

• Application: time-redundant execution of tasks, application specific consistency checks

System layer

• End-to-end checksums

• Comparison of results produced by two nodes

• Voting on results produced by three or more nodes

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 23

Exceptions in CPU:s

• Modern central processing units (CPUs) are equipped with hardware
implemented error detection mechanisms called hardware exceptionsimplemented error detection mechanisms called hardware exceptions

• The number and type of hardware exceptions varies depending on the
CPU design

• When a hardware exception is raised, the CPU stops the program
execution and jumps to an exception routine

• The handling of exceptions is very similar to how a CPU responds to
interrupt signalsinterrupt signals

• Some examples of common hardware exceptions is given in the next
two slides

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 45Lecture 14

Examples of CPU exceptions (1)

Bus error: detects errors during read and write accesses to the main
memory This exception is raised (triggered) when the CPU attempts tomemory. This exception is raised (triggered) when the CPU attempts to
access an address to which no memory or any I/O device is connected.

Address error: detects when the CPU makes an attempt to access
memory using an odd numbered address; only even numbered addresses
are allowed in many CPUs.

Illegal opcode: detects if the CPU during an instruction fetch reads a
value from memory (or the instruction cache) that doesn’t correspond to a
valid instruction. This error can occur if the program counter is erroneously
loaded with an address pointing to a data area rather than a program code
area.

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 46Lecture 14

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 24

Examples of CPU exceptions (2)

Privilege violation: detects if a user program attempts to execute an
instruction which is allowed only for programs that execute in theinstruction which is allowed only for programs that execute in the
superuser mode (privileged mode), such as the operating system or
device drivers. User programs normally executes in user mode (normal
mode).

Division by zero: detects if a program tries to divide a number with zero.

Spurious interrupt: detects if an interrupt is signalled but no interrupt
vector is provided by the interrupting device. (The interrupt vector tells the
CPU which device it was that raised the interrupt signal and thereby
indicates which interrupt service routine that the CPU shall execute.)

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 47Lecture 14

Outline

• Characterization of Failure Modes

• Byzantine failures

• Layered fault tolerance

• Error detection techniques

• Self-checking nodes

Lecture 14 48EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 25

Self-checking node supporting software
implemented message comparison

• The processors executes the same
programs and exchange copies ofprograms and exchange copies of
outgoing messages via the inter
processor links

• They compare the message copies and
stops execution if the copies do not
match.

• An error counter stores the number of
mismatches that has occurred.

• The node is restarted after a mismatch
l if th l f th t ionly if the value of the error counter is

below a predefined threshold

• The bus guardian protects the bus from
erratic behavior (e.g., babbling idiot) of
the network interfaces

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 49Lecture 14

Self-checking node with message
comparison in hardware

• Processor failures are detected byProcessor failures are detected by
duplication and comparison

• The processors produce replicated
messages that are compared by the
comparator.

• The network interfaces receive
messages from the comparator and
send them to other nodes via two
redundant real-time busses.

• The payload in the messages are
protected by end-to-end checksums
added by the processors.

• End-to-end checksums can be used to
ensure that faults in the comparator and
network interfaces are detectable by the
service users (other nodes).

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 50Lecture 14

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 26

Overview of Lecture 15

• Time-Triggered Systems

• Preparations:
 Lecture slides

 The Time-Triggered Architecture (see reading
instructions)

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 51Lecture 14

