
EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems 

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 1

Combitech Systems

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Welcome to Lecture 13

Hardware reliability prediction
More on software diversity

Outline

• Hardware reliability prediction (from lecture 10)

• More on design diversity in software

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 2Lecture 13



EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems 

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 2

Outline
(from lecture 10)

• Risk analysis
 Risk classification

 Acceptability of risk - ALARP

 Assignment of Safety Integrity Levels

• ISO 26262

• Hazard analysis
 Hazard and operability studies (HAZOP)p y ( )

• Safety case

• Hardware reliability prediction

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 3Lecture 13

Hardware failure rates

• Ways of improving reliability of hardware
 Decrease temperature

 Decrease electrical stress (derating)

 Reduce number of components or increase integration

 Increase quality of components

 Improve physical environment
– Reduce exposure to moisture

– Reduce exposure to vibrations

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 4Lecture 13



EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems 

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 3

Examples of Failure Rate Prediction 
for Hardware

• MIL-HDBK-217, Military handbook, US Department of 
D f P t St M d l (R i i F N ti 2Defense, Parts Stress Model (Revision F Notice 2, 
released February 1995)

• Telcordia SR-332, Issue 2 (released  Sept 2006)

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 5Lecture 13

Failure Rate Prediction
Mil-Hdbk-217F

p = (C1T + C2E)QL  failures / 106 hours

p is the part failure rate
C1 is related to die complexity

T is related to ambient temperature
C2 is related to the package type

E is determined by the operating environment

Q is determined by the part quality

L represents the learning factor and is determined by the experience of the L p g y p
manufacturer. 

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 6Lecture 13



EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems 

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 4

Telcordia SR-332
(Bellcore)

ss = G QST  failures / 106 hours

ss is the steady state failure rate

G is the generic steady state failure rate (table look up based
on field data)

Q is determined by the part qualityQ

S is determined by the electrical stress

T is related to operating temperature

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 7Lecture 13

Standards for hardware reliability 
prediction

• MIL-HDBK-217 Part Stress & Part Count
MIL HDBK 217 F Notice 2MIL-HDBK-217 F Notice 2. 

• 217Plus - Based on Handbook of 217PlusTM
Reliability Prediction Models, 26 May 2006 by Reliability Information 
Analysis Center (RIAC).

• Telcordia Issue 2 - Reliability Prediction Procedure for Electronic 
Equipment, SR-332, Issue 2, September 2006

• IEC 62380 (RDF 2003)
Updated version of RDF 2000 UTEC 80810 method – French Telecom 
reliability prediction Standard. It includes most of the same 
components as MIL-HDBK-217. 

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 8Lecture 13



EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems 

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 5

Standards for hardware reliability 
prediction

• FIDES Guide 2009
The FIDES methodology is applicable to all domains using electronics:The FIDES methodology is applicable to all domains using electronics: 
aeronautical, naval, military, production and distribution of electricity, 
automobile, railway, space, industry, telecommunications, data 
processing, home automation, household appliances.

• BRT - British Telecom - British Telecom Module for reliability 
prediction based on British Telecom document HRD-4 or HRD-5.

• GJB299 Chinese reliability standard• GJB299 - Chinese reliability standard.

• Siemens SN29500.1 - Siemens reliability standard.

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 9Lecture 13

Design Diversity

Design diversity is used to tolerate development 
faults in hardware and software

Two techniques for tolerating software design faults:
 N-version programming

 Recovery blocks

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 10Lecture 13



EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems 

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 6

N-version programming

• Uses majority voting on results produced by N 
program versions

• Program versions are developed by different 
teams of programmers

• Assumes that programs fail independently

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 11

• Resembles hardware voting redundancy

Lecture 13

N-version programming

Program
version 1

Program
Inputs

Program
version 3

Program
version 2

p

Voting
element

Program
Output

Program
Inputs

Program
Inputs

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 12

Program
version 4

Lecture 13



EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems 

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 7

Ensuring independence in N-version 
programming

• Use different design teams for each version

• Use diverse specifications

• Prevent cooperation among design teams

• Use diverse programming languages, compilers, 
CASE tools etc

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 13

CASE tools, etc.

• …

Lecture 13

Evaluation of N-version programming

Objective
 To investigate if independently developed programs fail independently To investigate if independently developed programs fail independently

Overview
 Missile interceptor program

 27 versions produced by students at University of Virginia and University 
of California, Irvine.

 All students was given the same specification

 200 test cases to validate each program

 1 million test cases to test independence (simulation of production

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 14

1 million test cases to test independence (simulation of production 
environment) 

 Published 1985

Knight, J.C., N.G. Leveson, and L.D. St. Jean, ”A Large Experiment in N-version Programming”, Digest of 
Papers, Int. Symposium on Fault-tolerant Computing (FTCS-15), Ann Arbor, Michigan, June, 1985, pp. 
135-139.

Lecture 13



EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems 

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 8

Experimental set-up (1)

• 27 versions produced by senior-level students
 9 versions from University of Virginia 9 versions from University of Virginia

 18 versions from University of California, Irvine 

 Written in Pascal

• Program for anti-missile system
 Determines if radar reflections represents a incoming 

hostile missilehostile missile.

 Well-known problem – previously used in software 
engineering experiments.

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 15Lecture 13

Experimental set-up (1)

• Input to students

R i t ifi ti Requirements specification

 Instructed not to cooperate or discuss the problem amongst themselves

 No restrictions on the use of references 

 12 input data sets for debugging

• Acceptance test for programs

 200 randomly generated tests

 Different  set of tests for each programp g

 Resembles testing in real systems

 Only programs that passed the acceptance test was used in the 
experimental data  

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 16Lecture 13



EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems 

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 9

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 17Lecture 13

Evaluation of N-version programming
Occurrence of Multiple Program Failures

# Failed Programs # Test Cases
2 5512 551
3 343
4 243
5 73
6 32
7 12
8 2

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 18

Conclusion: The programs in this experiment do not fail independently*!
(1256 multiple failures, 21257 single failures)
*The hypothesis of independence is rejected at the 99% confidence level. 

Lecture 13



EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems 

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 10

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 19Lecture 13

Discussion (1)

Is it realistic to use students in a software engineering 
i t?experiment?

• Programming experiences of students outside their degree 
programs
 12 students had less than two years of programming experience 

 10 students had between two and five years of programming 
experiencep

 5 students had more than five years of programming experience

• Students had diverse backgrounds

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 20Lecture 13



EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems 

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 11

Discussion (2)

Is one million test cases enough?
 Test cases represent “unusal” events.

 “If the program is executed once per second and unusal
events  occur every ten minutes, then one million test 
cases correspond to 20 years of operational use”

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 21Lecture 13

Conclusions of NVP study (1)

• The assumption of independence of failures among 
i d t h ldversions does not hold

• The above does not render NVP useless! - It merely 
shows that the impact of correlated failures must be taken 
into consideration when estimating the reliability of 
systems that use NVP.

• The result is only valid for the application used

• Similar results may, or may not, be observed for other 
applications.

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 22Lecture 13



EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems 

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 12

Conclusions of NVP study (2)

• More than half of the software fault was present in two or 
more programs 

• Possible explanations for the high percentage of correlated 
faults:
 Programmers make similar mistakes

 Certain parts of the problem is difficult and lead to mistakes by 
many programmers

 Flaws causing uncorrelated failures are easy to catch by normal 
debugging

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 23Lecture 13

Conclusions of NVP study (3)

• Need for further research
 More experiments needed to draw general conclusions

 Possible explanations for the high percentage of 
correlated faults need to be investigated. 

 Relying on random chance to obtain diversity may not 
be an effective approach. Deliberate diversity may work 
betterbetter.

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 24Lecture 13



EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems 

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 13

Recovery Blocks

• Uses one primary software module and one or 
several secondary (back-up) software modules

• Assumes that program failures can be detected by 
acceptance tests

• Executes only the primary module under error-free 
conditions

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 25

• Resembles dynamic hardware redundancy

Lecture 13

Recovery blocks

Primary
Module

Program
Inputs

Acceptance
tests

Secondary
Module 2

Secondary
Module 1

p

N-to-1
Switch

Program
Output

Error detection

Program
Inputs

Program
Inputs

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 26

Secondary
Module N

Program
Inputs

Lecture 13



EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems 

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 14

Construction of acceptance tests

• An acceptance test is a software implemented 
check designed to detect errors in the results 
produced by a primary or a secondary module

• Acceptance tests often relies on application 
specific information

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 27

• An acceptance test is similar to a software 
assertion (a.k.a. executable assertion).

Lecture 13

Software Assertions

 Executes consistency checks on application data or 
ti t d toperating system data

 Implemented in software

 Automatic generation
– E.g., run-time type checking generated by complier

 Manual generation
– E.g., application programmer inserts checks on a valid

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 28

E.g., application programmer inserts checks on a valid 
temperature range, acceleration, etc.

Lecture 13



EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems 

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 15

Examples of how acceptance tests/ 
software assertions can be 

constructed
• Satisfaction of requirements
 Inversion of mathematical functions; e.g. squaring the  

result of a square-root operation to see if it equals the 
original operand.

 Checking sort functions; result should have elements in 
descending order

…

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 29

• Reasonable checks
 Checking physical constraints; e.g. speed, pressure, etc
 Checking sequence of application states
…

Lecture 13

Evaluation of Recovery Blocks

• Goal: to evaluate recovery blocks for a medium-scale 
naval command and control system (concurrent real-timenaval command and control system (concurrent  real time 
system)

• The system provides a simulated radar display overlaid 
with tracking information. Allows the operator to attack 
hostile submarines.

• 8000 lines of source code in CORAL, 14 concurrent 
activities

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 30

• Programmed by professional programmers

• Recovery supported by a special recovery cache

Lecture 13



EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems 

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 16

Conduct of Experiment

• The command and control system was run against 
an environment simulator by the operator

• Several typical scenarios were simulated

• Operator logged all abnormal behaviors of the 
system

• Monitoring routines within the system recorded 

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 31

g y
recovery and failure events

Lecture 13

Evaluation of recovery blocks

Naval command and control system (8000 statements in the Coral language)

117 abnormal events

Correct recovery 78 %
Incorrect recovery, program failure 3 %
Incorrect recovery, no program failure 15 %
Unnecessary recovery 3 %

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 32

Anderson, T., et al., ”Software Fault Tolerance: An Evaluation,” IEEE Trans. on Software Engineering, vol. 
SE-11, no. 12, Dec 1985, pp. 1502-1510.

Lecture 13



EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems 

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 17

Overhead for the Case Study

• 60% supplementary development cost

• 33% extra code memory

• 35% extra data memory

• 40% extra execution time 

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 33Lecture 13

Comparison of N-version 
programming and Recovery blocks

N-version programming
 Applied at the program level Applied at the program level

 Runs N programs at the same time

 Resembles static hardware redundancy

 Assumes that independence among program versions is achieved by 
random differences in programming style among programmers

Recovery blocks
 Applied at the module (subprogram) level

 Runs only the primary module under error-free conditions

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 34

Runs only the primary module under error free conditions

 Resembles dynamic hardware redundancy

 Independence is achieved by deliberately designing the primary and 
secondary modules to be as different as possible

Lecture 13



EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems 

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 18

Overview of Lecture 14

• Byzantine failures
Preparations: 

 Byzantine Agreement, Section 3.1

 Lecture slides

• Error detection and time redundancy
Preparations:

EDA122/DIT061 Fault-Tolerant Computer Systems 35Lecture 14

Preparations: 

 Section 6.3 and 6.4 in the course book

 Lecture slides


