
EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 1

Combitech Systems

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Welcome to Lecture 13

Hardware reliability prediction
More on software diversity

Outline

• Hardware reliability prediction (from lecture 10)

• More on design diversity in software

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 2Lecture 13

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 2

Outline
(from lecture 10)

• Risk analysis
 Risk classification

 Acceptability of risk - ALARP

 Assignment of Safety Integrity Levels

• ISO 26262

• Hazard analysis
 Hazard and operability studies (HAZOP)p y ()

• Safety case

• Hardware reliability prediction

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 3Lecture 13

Hardware failure rates

• Ways of improving reliability of hardware
 Decrease temperature

 Decrease electrical stress (derating)

 Reduce number of components or increase integration

 Increase quality of components

 Improve physical environment
– Reduce exposure to moisture

– Reduce exposure to vibrations

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 4Lecture 13

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 3

Examples of Failure Rate Prediction
for Hardware

• MIL-HDBK-217, Military handbook, US Department of
D f P t St M d l (R i i F N ti 2Defense, Parts Stress Model (Revision F Notice 2,
released February 1995)

• Telcordia SR-332, Issue 2 (released Sept 2006)

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 5Lecture 13

Failure Rate Prediction
Mil-Hdbk-217F

p = (C1T + C2E)QL failures / 106 hours

p is the part failure rate
C1 is related to die complexity

T is related to ambient temperature
C2 is related to the package type

E is determined by the operating environment

Q is determined by the part quality

L represents the learning factor and is determined by the experience of the L p g y p
manufacturer.

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 6Lecture 13

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 4

Telcordia SR-332
(Bellcore)

ss = G QST failures / 106 hours

ss is the steady state failure rate

G is the generic steady state failure rate (table look up based
on field data)

Q is determined by the part qualityQ

S is determined by the electrical stress

T is related to operating temperature

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 7Lecture 13

Standards for hardware reliability
prediction

• MIL-HDBK-217 Part Stress & Part Count
MIL HDBK 217 F Notice 2MIL-HDBK-217 F Notice 2.

• 217Plus - Based on Handbook of 217PlusTM
Reliability Prediction Models, 26 May 2006 by Reliability Information
Analysis Center (RIAC).

• Telcordia Issue 2 - Reliability Prediction Procedure for Electronic
Equipment, SR-332, Issue 2, September 2006

• IEC 62380 (RDF 2003)
Updated version of RDF 2000 UTEC 80810 method – French Telecom
reliability prediction Standard. It includes most of the same
components as MIL-HDBK-217.

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 8Lecture 13

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 5

Standards for hardware reliability
prediction

• FIDES Guide 2009
The FIDES methodology is applicable to all domains using electronics:The FIDES methodology is applicable to all domains using electronics:
aeronautical, naval, military, production and distribution of electricity,
automobile, railway, space, industry, telecommunications, data
processing, home automation, household appliances.

• BRT - British Telecom - British Telecom Module for reliability
prediction based on British Telecom document HRD-4 or HRD-5.

• GJB299 Chinese reliability standard• GJB299 - Chinese reliability standard.

• Siemens SN29500.1 - Siemens reliability standard.

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 9Lecture 13

Design Diversity

Design diversity is used to tolerate development
faults in hardware and software

Two techniques for tolerating software design faults:
 N-version programming

 Recovery blocks

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 10Lecture 13

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 6

N-version programming

• Uses majority voting on results produced by N
program versions

• Program versions are developed by different
teams of programmers

• Assumes that programs fail independently

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 11

• Resembles hardware voting redundancy

Lecture 13

N-version programming

Program
version 1

Program
Inputs

Program
version 3

Program
version 2

p

Voting
element

Program
Output

Program
Inputs

Program
Inputs

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 12

Program
version 4

Lecture 13

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 7

Ensuring independence in N-version
programming

• Use different design teams for each version

• Use diverse specifications

• Prevent cooperation among design teams

• Use diverse programming languages, compilers,
CASE tools etc

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 13

CASE tools, etc.

• …

Lecture 13

Evaluation of N-version programming

Objective
 To investigate if independently developed programs fail independently To investigate if independently developed programs fail independently

Overview
 Missile interceptor program

 27 versions produced by students at University of Virginia and University
of California, Irvine.

 All students was given the same specification

 200 test cases to validate each program

 1 million test cases to test independence (simulation of production

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 14

1 million test cases to test independence (simulation of production
environment)

 Published 1985

Knight, J.C., N.G. Leveson, and L.D. St. Jean, ”A Large Experiment in N-version Programming”, Digest of
Papers, Int. Symposium on Fault-tolerant Computing (FTCS-15), Ann Arbor, Michigan, June, 1985, pp.
135-139.

Lecture 13

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 8

Experimental set-up (1)

• 27 versions produced by senior-level students
 9 versions from University of Virginia 9 versions from University of Virginia

 18 versions from University of California, Irvine

 Written in Pascal

• Program for anti-missile system
 Determines if radar reflections represents a incoming

hostile missilehostile missile.

 Well-known problem – previously used in software
engineering experiments.

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 15Lecture 13

Experimental set-up (1)

• Input to students

R i t ifi ti Requirements specification

 Instructed not to cooperate or discuss the problem amongst themselves

 No restrictions on the use of references

 12 input data sets for debugging

• Acceptance test for programs

 200 randomly generated tests

 Different set of tests for each programp g

 Resembles testing in real systems

 Only programs that passed the acceptance test was used in the
experimental data

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 16Lecture 13

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 9

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 17Lecture 13

Evaluation of N-version programming
Occurrence of Multiple Program Failures

Failed Programs # Test Cases
2 5512 551
3 343
4 243
5 73
6 32
7 12
8 2

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 18

Conclusion: The programs in this experiment do not fail independently*!
(1256 multiple failures, 21257 single failures)
*The hypothesis of independence is rejected at the 99% confidence level.

Lecture 13

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 10

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 19Lecture 13

Discussion (1)

Is it realistic to use students in a software engineering
i t?experiment?

• Programming experiences of students outside their degree
programs
 12 students had less than two years of programming experience

 10 students had between two and five years of programming
experiencep

 5 students had more than five years of programming experience

• Students had diverse backgrounds

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 20Lecture 13

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 11

Discussion (2)

Is one million test cases enough?
 Test cases represent “unusal” events.

 “If the program is executed once per second and unusal
events occur every ten minutes, then one million test
cases correspond to 20 years of operational use”

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 21Lecture 13

Conclusions of NVP study (1)

• The assumption of independence of failures among
i d t h ldversions does not hold

• The above does not render NVP useless! - It merely
shows that the impact of correlated failures must be taken
into consideration when estimating the reliability of
systems that use NVP.

• The result is only valid for the application used

• Similar results may, or may not, be observed for other
applications.

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 22Lecture 13

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 12

Conclusions of NVP study (2)

• More than half of the software fault was present in two or
more programs

• Possible explanations for the high percentage of correlated
faults:
 Programmers make similar mistakes

 Certain parts of the problem is difficult and lead to mistakes by
many programmers

 Flaws causing uncorrelated failures are easy to catch by normal
debugging

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 23Lecture 13

Conclusions of NVP study (3)

• Need for further research
 More experiments needed to draw general conclusions

 Possible explanations for the high percentage of
correlated faults need to be investigated.

 Relying on random chance to obtain diversity may not
be an effective approach. Deliberate diversity may work
betterbetter.

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 24Lecture 13

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 13

Recovery Blocks

• Uses one primary software module and one or
several secondary (back-up) software modules

• Assumes that program failures can be detected by
acceptance tests

• Executes only the primary module under error-free
conditions

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 25

• Resembles dynamic hardware redundancy

Lecture 13

Recovery blocks

Primary
Module

Program
Inputs

Acceptance
tests

Secondary
Module 2

Secondary
Module 1

p

N-to-1
Switch

Program
Output

Error detection

Program
Inputs

Program
Inputs

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 26

Secondary
Module N

Program
Inputs

Lecture 13

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 14

Construction of acceptance tests

• An acceptance test is a software implemented
check designed to detect errors in the results
produced by a primary or a secondary module

• Acceptance tests often relies on application
specific information

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 27

• An acceptance test is similar to a software
assertion (a.k.a. executable assertion).

Lecture 13

Software Assertions

 Executes consistency checks on application data or
ti t d toperating system data

 Implemented in software

 Automatic generation
– E.g., run-time type checking generated by complier

 Manual generation
– E.g., application programmer inserts checks on a valid

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 28

E.g., application programmer inserts checks on a valid
temperature range, acceleration, etc.

Lecture 13

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 15

Examples of how acceptance tests/
software assertions can be

constructed
• Satisfaction of requirements
 Inversion of mathematical functions; e.g. squaring the

result of a square-root operation to see if it equals the
original operand.

 Checking sort functions; result should have elements in
descending order

…

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 29

• Reasonable checks
 Checking physical constraints; e.g. speed, pressure, etc
 Checking sequence of application states
…

Lecture 13

Evaluation of Recovery Blocks

• Goal: to evaluate recovery blocks for a medium-scale
naval command and control system (concurrent real-timenaval command and control system (concurrent real time
system)

• The system provides a simulated radar display overlaid
with tracking information. Allows the operator to attack
hostile submarines.

• 8000 lines of source code in CORAL, 14 concurrent
activities

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 30

• Programmed by professional programmers

• Recovery supported by a special recovery cache

Lecture 13

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 16

Conduct of Experiment

• The command and control system was run against
an environment simulator by the operator

• Several typical scenarios were simulated

• Operator logged all abnormal behaviors of the
system

• Monitoring routines within the system recorded

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 31

g y
recovery and failure events

Lecture 13

Evaluation of recovery blocks

Naval command and control system (8000 statements in the Coral language)

117 abnormal events

Correct recovery 78 %
Incorrect recovery, program failure 3 %
Incorrect recovery, no program failure 15 %
Unnecessary recovery 3 %

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 32

Anderson, T., et al., ”Software Fault Tolerance: An Evaluation,” IEEE Trans. on Software Engineering, vol.
SE-11, no. 12, Dec 1985, pp. 1502-1510.

Lecture 13

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 17

Overhead for the Case Study

• 60% supplementary development cost

• 33% extra code memory

• 35% extra data memory

• 40% extra execution time

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 33Lecture 13

Comparison of N-version
programming and Recovery blocks

N-version programming
 Applied at the program level Applied at the program level

 Runs N programs at the same time

 Resembles static hardware redundancy

 Assumes that independence among program versions is achieved by
random differences in programming style among programmers

Recovery blocks
 Applied at the module (subprogram) level

 Runs only the primary module under error-free conditions

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems 34

Runs only the primary module under error free conditions

 Resembles dynamic hardware redundancy

 Independence is achieved by deliberately designing the primary and
secondary modules to be as different as possible

Lecture 13

EDA122/DIT061 Fault-Tolerant Computer Systems
DAT270 Dependable Computer Systems

Academic year 2011/12

Dept. of Computer Science and Engineering
Chalmers University of Technology 18

Overview of Lecture 14

• Byzantine failures
Preparations:

 Byzantine Agreement, Section 3.1

 Lecture slides

• Error detection and time redundancy
Preparations:

EDA122/DIT061 Fault-Tolerant Computer Systems 35Lecture 14

Preparations:

 Section 6.3 and 6.4 in the course book

 Lecture slides

