
EDA122/DIT061 Fault-Tolerant Computer Systems DAT270 Dependable Computer Systems

Welcome to Lecture 1

Johan Karlsson

Definition of fault tolerance

Fault tolerance means to **avoid service failures** in the **presence of faults**.


Avizienis, et al., "Basic Concepts and Taxonomy of Dependable and Secure Computing"

Lecture

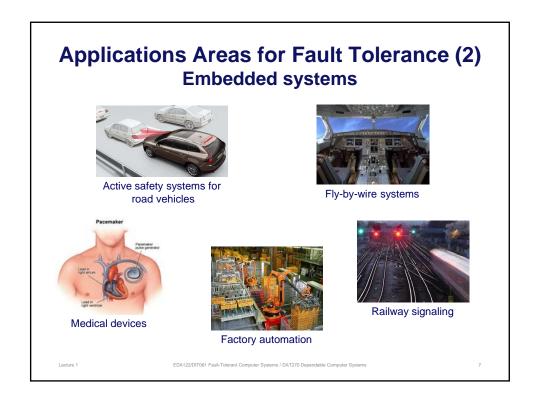
EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

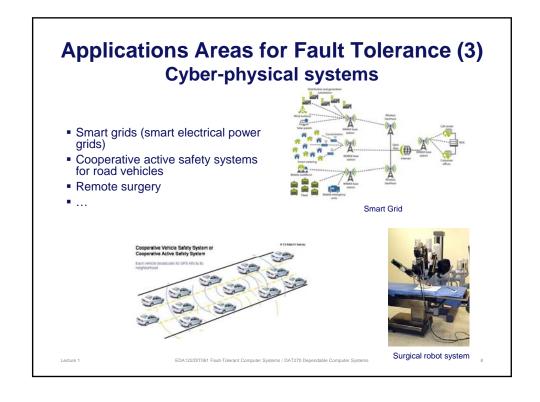
Fault-Tolerance - How?

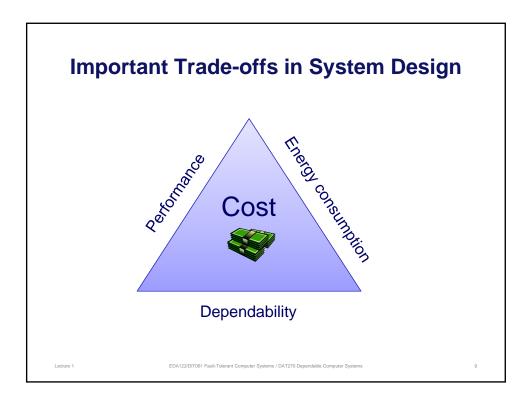
- By introducing *redundancy* (extra resources)
- Forms of redundancy
 - hardware redundancy
 - software redundancy
 - time redundancy
 - information redundancy

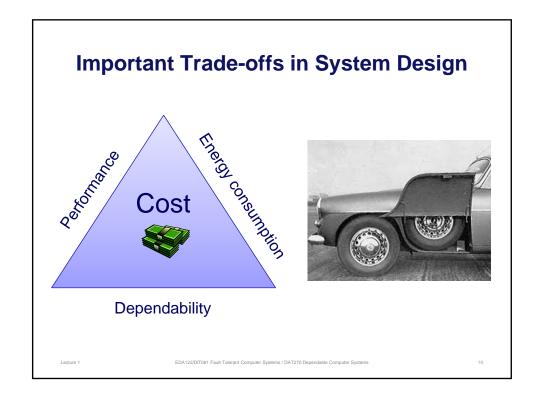
Lecture 1

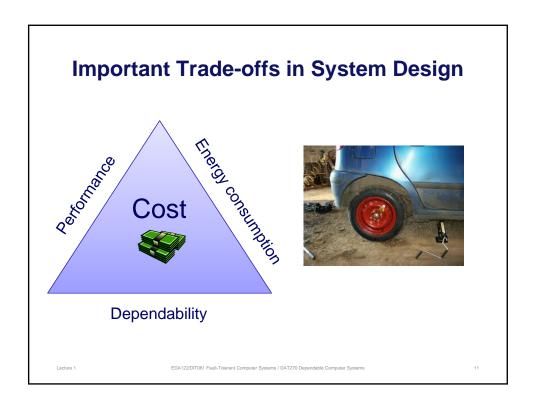
EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

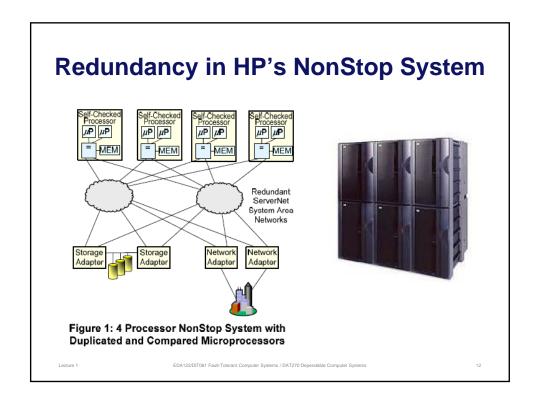

Fault tolerance vs. Fault prevention

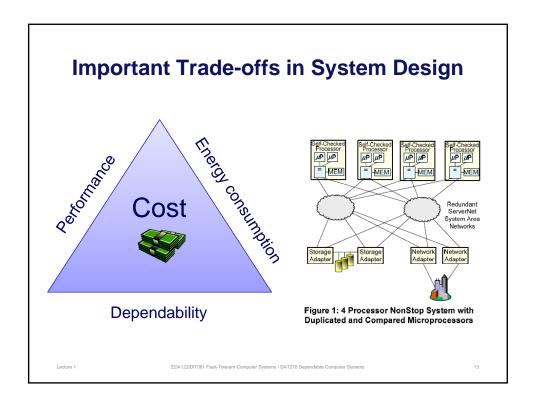

- Fault tolerance to avoid service failure during operation
 - Requires fault and error handling mechanisms, e.g.,
 - Error detection
 - System recovery
 - Fail-over
- Fault prevention to prevent or reduce the occurrence of faults
 - Fault prevention is applied during development, e.g.,
 - Robust design
 - Testing
 - Formal verification

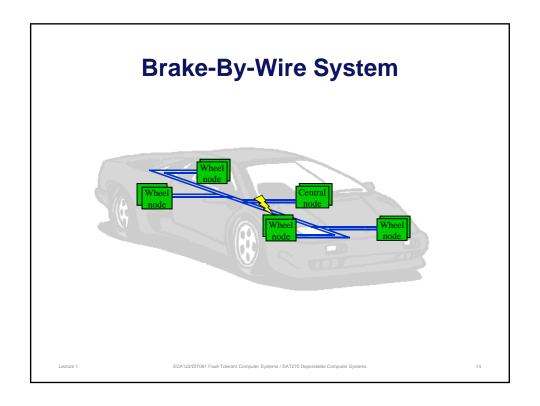

Lecture

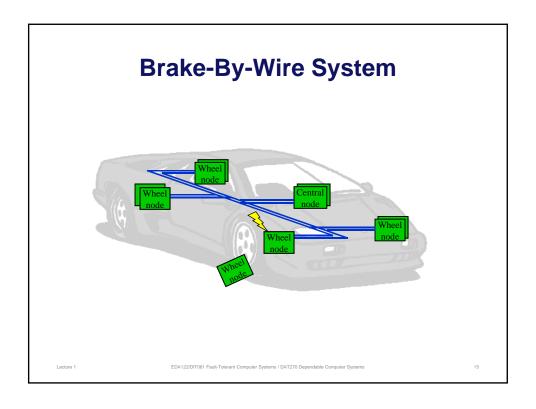

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

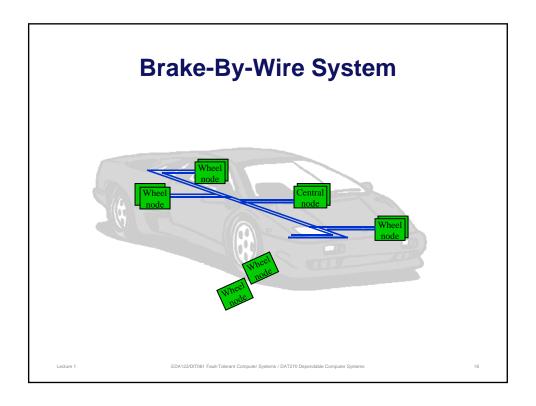

Applications Areas for Fault Tolerance (1) Business-critical applications • Web servers • Cloud computing • Financial transaction system • E-business • General-purpose file servers • ... • ... • ... • ... • ... • ... • ... • ...











Safety

Safety is a property of a system that it will not endanger human life or the environment

A **safety-related** system is one by which the safety of equipment or plant is assured

The term **safety-critical system** is normally used as a synonym for a safety-related system, although it may suggest a system of high criticality

(Neil Storey)

Lecture

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

Important concepts

- Fault tolerance
 - To avoid service failures in the presence of faults
- Graceful degradation
 - Gradual reduction of service in the presence of faults

Lecture

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

Course Outline

- 16 lectures (16 x 2 h) including 3 guest lectures
- 9 exercise classes (9 x 2 h)
- 2 laboratory classes (2 x 4 h)
- 7,5 credits (hp)

Lecture

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

Course Homepage

www.cse.chalmers.se/edu/course/EDA122

Also available via the student portal

Here you find:

- The course PM (contains all administrative information)
- Lecture slides
- Messages from the examiner
- Old exams, etc

Lecture

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

Course Homepage

Username: ftcs2011

• Password: depend2011

Lecture

DA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

Teachers

Johan Karlsson, ext. 1670, room 4107 johan@chalmers.se (examiner and lecturer)

Negin Fathollah Nejad, ext. 5404, room 4127 negin@chalmers.se_(teaching assistant)

Lecture

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

Examination

Written examination

Grades: Failed, 3, 4, 5 (Chalmers),

Failed, G, VG (GU)

Exam dates: 19 October, 2010, afternoon

9 January, 2011, afternoon 21 August, 2011, afternoon

Participation in laboratory classes + approved laboratory reports

Lecture 1

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

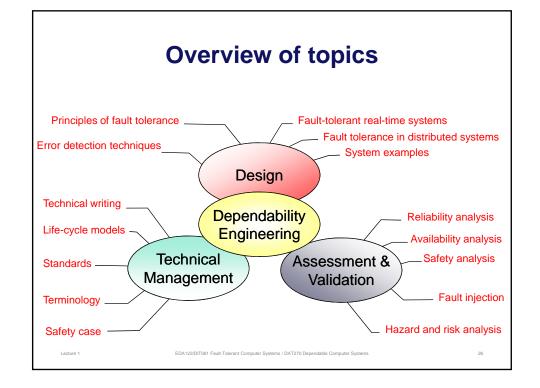
Literature

- Course book: Neil Storey, "Safety-Critical Computer Systems", Prentice Hall, ISBN 0-201-42787-7
- Reprints of articles on selected topics in fault-tolerant computing (available on the course homepage)
- Lecture slides
- Compendium of exercise problems
- PMs for laboratory classes (Lab PM)

Lecture

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer System

Course Evaluation


- Two to six student representatives, representing different programmes.
- Student representatives will receive a voucher valid for 200 SEK at Cremona.
- Three meetings:

Week 2, Week 3 and after the course.

- Student representatives are expected to
 - 1. Provide feedback from all students
 - 2. Review and help design the course questionnaire
 - 3. Participate in all meetings

Lecture

DA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

Learning goals

After completion of the course the student should be able to:

- Formulate dependability requirements for computer systems used in business-, safety- and mission-critical applications.
- Describe the structure and principles of commonly used system architectures of fault tolerant computers.
- Perform probabilistic dependability analysis of computer system using faulttrees, reliability block diagrams, Markov chains and stochastic Petri nets.
- Master the terminology of dependable computing and describe major elements of relevant standards.
- Describe basic concepts in life-cycle models and standards employed in the development of safety-critical systems.

Lecture '

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

27

Outline for the rest of this lecture

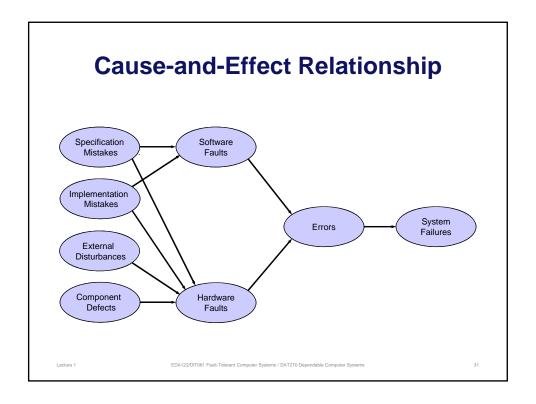
- Overview of faults types
- Basic terminology
- Voting redundancy

Lecture

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer System

Fault Types

- Random faults (physical faults)
 - Aging faults
 - External disturbances
 - Ionizing particle radiation
 - Electromagnetic interference
- Systematic faults (development faults in HW or SW)
 - Specification faults
 - Design faults
 - Implementation faults

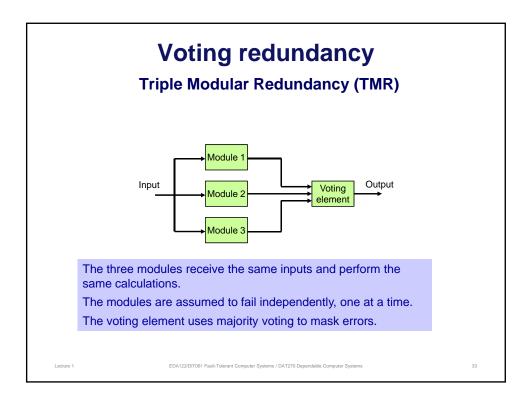

Terminology

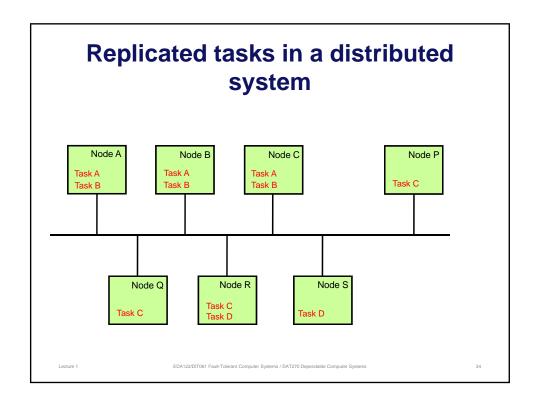
- Cause of an error, e.g., an open circuit, a Fault software bug, or an external disturbance.

Error

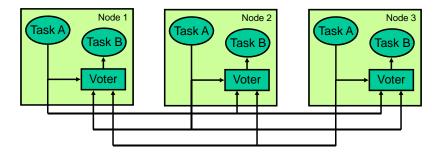
- Part of the system state which is liable to lead to failure, e.g., a wrong value in a program variable.

Failure - Delivered service does not comply with the specification, e.g., a cruise control in a car locks at full speed.




Hardware Redundancy

- Voting redundancy (this lecture)
- Stand-by redundancy (lecture 3)
- Active redundancy (lecture 3)


Lecture

DA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

The tasks and voters are implemented in software.

The figure shows the exchange of data messages between the replicas of Task A and Task B in the previous slide.

Lecture

DA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

35

Failure = Service failure

- A failure occurs when a service provider (system, or subsystem) delivers an incorrect service.
- Example: A node is a subsystems in a distributed system
 - Node failure a node delivers an incorrect service
- Example: A network is a subsystems in a distributed system
 - Network failure a network delivers an incorrect service
- Example: A processor core is a subsystem in a multi-core processor
 - Core failure a core delivers an incorrect service

Lecture

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

Fundamental Concepts Failure mode

A *failure mode* describes the nature of a failure

- Examples of failure modes:
 - Value failure a service provider delivers an erroneous result
 - Content failure same as value failure
 - Timing failure a service provider delivers a result too late, or too early
 - Silent failure a service provider delivers no result
 - Signaled failure a service provider sends a failure signal
 - Interference failure a service provider disturbs the service delivered by another service provider

Lecture '

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

27

Failure model vs. Failure mode

- A failure model is a set of assumptions about likely failure modes for a service provider
- A failure mode describes the nature of a given class of failures

Lecture

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer System

Fundamental Concepts Error processing

Error processing aims at removing errors from the computational state, if possible, before a failure occurs.

Error processing techniques:

- Error detection to detect errors
- Error masking to mask the effects of errors
- Recovery to restore the system to an error-free state

Lecture '

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

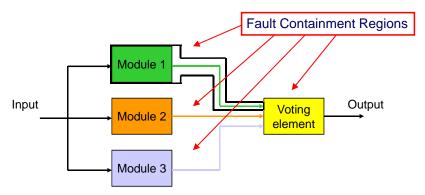
Recovery

- We distinguish between two types of recovery
 - Forward recovery
 - The state of the service provider is moved forward in time
 - Example: Error free state is copied from another (redundant) service provider
 - Backward recovery
 - The state of the service provider is moved backward in time
 - Example: Error free state is restored from a previously stored checkpoint
 - Checkpoint is stored in a crash proof memory, a.k.a. stable storage

Lecture

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer System

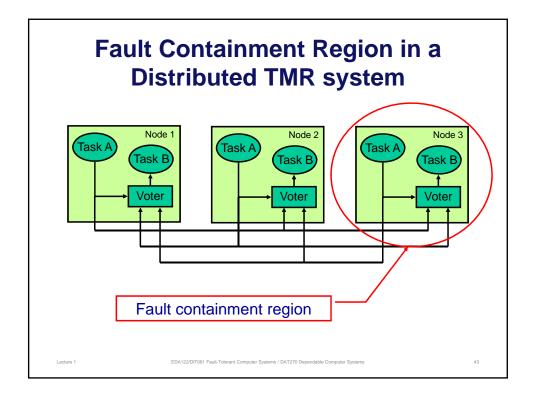
Fundamental Concepts Fault/Error Containment

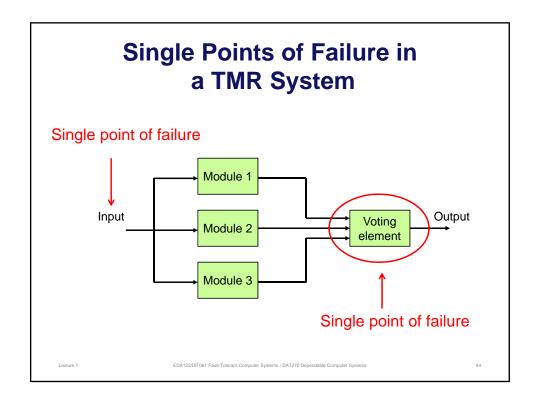

Fault/Error containment aims at preventing faults/errors from affecting other (redundant) units in the system.

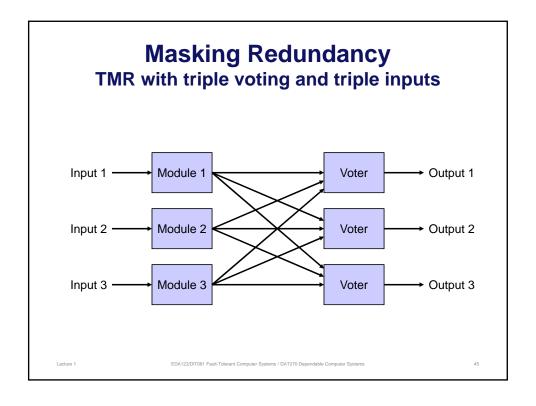
 A fault-tolerant system consist of several fault/error containment regions

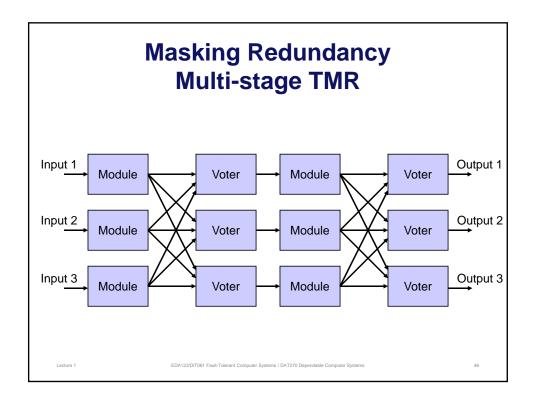
Lecture

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems


Fault Containment Regions in a TMR System




The designer must prevent that a fault in one module causes faults in the other module, or the voting element.


Lectu

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

Summary

- Fault tolerance
- Graceful degradation
- Safety
- Terminology: faults → errors → failures
- Voting redundancy
- Fault/error containment
- Single point of failure
- Multi-stage voting

Lecture

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

Overview of Lecture 2

- · Reliability modeling
 - Basic concepts in probability
 - Reliability block diagrams
 - Fault-trees

Preparations:

Storey: Section 7.1 and 7.2 (pages 167 – 177)

Lecture

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems