
EDA122/DIT061 Fault-Tolerant Computer Systems

DAT270 Dependable Computer Systems

Welcome to Lecture 1

Johan Karlsson

Definition of fault tolerance

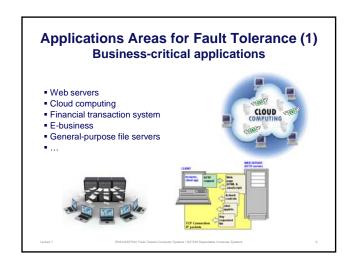
Fault tolerance means to avoid service failures in the presence of faults.

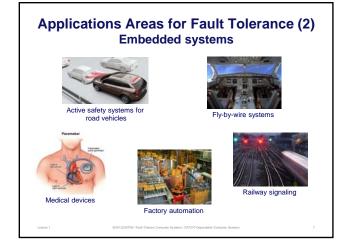
Avizienis, et al., "Basic Concepts and Taxonomy of Dependable and Secure Computing" $\label{eq:concepts}$

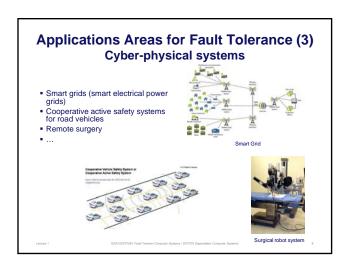
FDA122/DITO/U Fault-Trianner Computer Systems / DAT220 Da

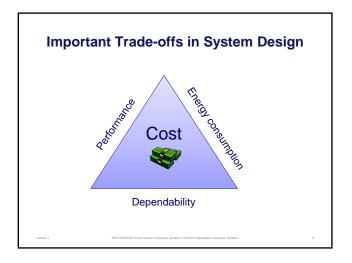
Fault-Tolerance - How?

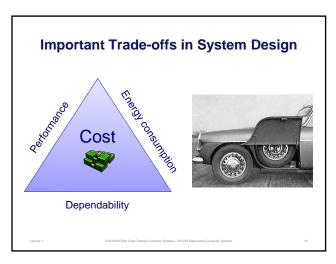
- By introducing *redundancy* (extra resources)
- · Forms of redundancy
 - hardware redundancy
 - software redundancy
 - time redundancy
 - information redundancy

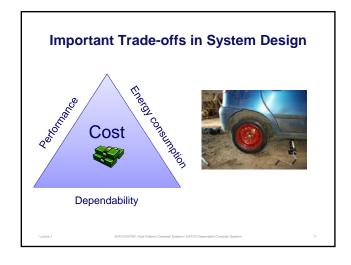

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer System

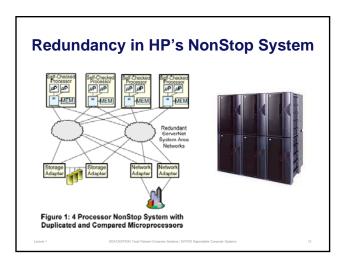

Fault tolerance vs. Fault prevention

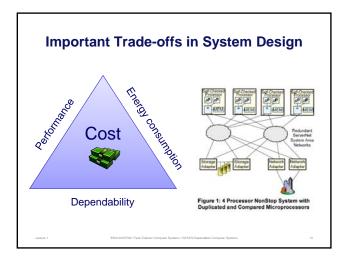

- Fault tolerance to avoid service failure during operation
 - Requires fault and error handling mechanisms, e.g.,
 - Error detection
 - System recovery
 - Fail-over
- Fault prevention to prevent or reduce the occurrence of faults
 - Fault prevention is applied during development, e.g.,
 - Robust design
 - Testing
 - Formal verification

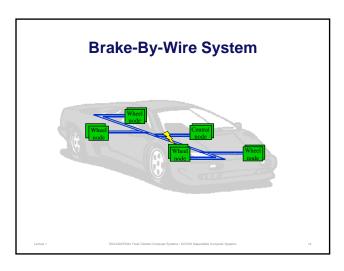

Lecture 1

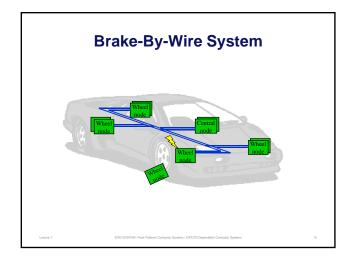

A122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer System

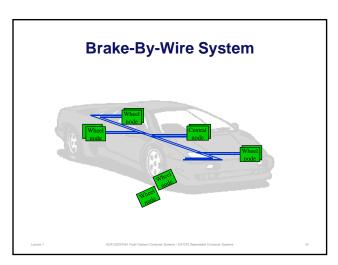


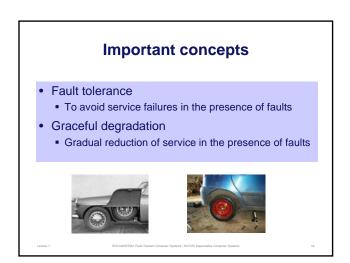












Safety is a property of a system that it will not endanger human life or the environment A safety-related system is one by which the safety of equipment or plant is assured The term safety-critical system is normally used as a synonym for a safety-related system, although it may suggest a system of high criticality (Neil Storey)

Course Outline

- 16 lectures (16 x 2 h) including 3 guest lectures
- 9 exercise classes (9 x 2 h)
- 2 laboratory classes (2 x 4 h)
- 7,5 credits (hp)

cture 1 EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable

Course Homepage

www.cse.chalmers.se/edu/course/EDA122

Also available via the student portal

Here you find:

- The course PM (contains all administrative information)
- Lecture slides
- · Messages from the examiner
- Old exams, etc

Lecture 1 EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Syst

Course Homepage

Username: ftcs2011Password: depend2011

Lecture 1 EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

Teachers

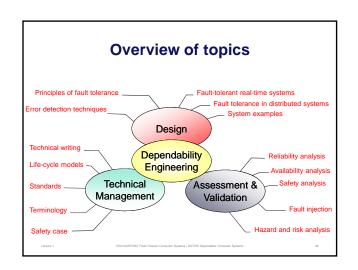
Johan Karlsson, ext. 1670, room 4107 johan@chalmers.se (examiner and lecturer)

Negin Fathollah Nejad, ext. 5404, room 4127 negin@chalmers.se (teaching assistant)

EDENYSPITARS East Tulorina Communic Outcome (DATSTO Describido Communica Outcome)

Examination

- Written examination
- Grades: Failed, 3, 4, 5 (Chalmers), Failed, G, VG (GU)
- Exam dates: 19 October, 2010, afternoon
 9 January, 2011, afternoon
 21 August, 2011, afternoon
- Participation in laboratory classes + approved laboratory reports


Lantino 1 FD3129001081 Fault-Telaniant Commuter Systems / D37270 Danarshible Commuter Systems

Literature

- Course book: Neil Storey, "Safety-Critical Computer Systems", Prentice Hall, ISBN 0-201-42787-7
- Reprints of articles on selected topics in fault-tolerant computing (available on the course homepage)
- Lecture slides
- · Compendium of exercise problems
- PMs for laboratory classes (Lab PM)

Lecture 1 EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer System

Course Evaluation Two to six student representatives, representing different programmes. Student representatives will receive a voucher valid for 200 SEK at Cremona. Three meetings: Week 2, Week 3 and after the course. Student representatives are expected to Provide feedback from all students Review and help design the course questionnaire Participate in all meetings

Learning goals

After completion of the course the student should be able to:

- Formulate dependability requirements for computer systems used in business-, safety- and mission-critical applications.
- Describe the structure and principles of commonly used system architectures of fault tolerant computers.
- Perform probabilistic dependability analysis of computer system using faulttrees, reliability block diagrams, Markov chains and stochastic Petri nets.
- Master the terminology of dependable computing and describe major elements of relevant standards.
- Describe basic concepts in life-cycle models and standards employed in the development of safety-critical systems.

acture 1 EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

Outline for the rest of this lecture

- · Overview of faults types
- · Basic terminology
- · Voting redundancy

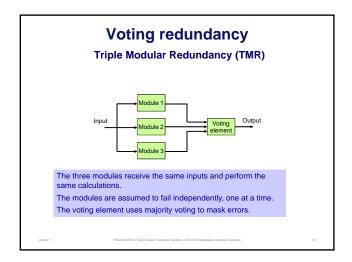
entras 1 FD&152/01/T093 Fasts.Tricknest Communic Systems / D&T293 Denoministic Communic Systems

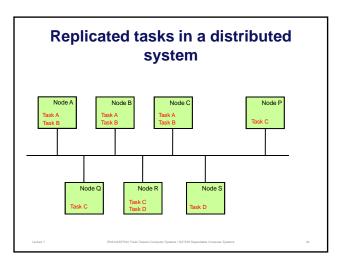
Fault Types

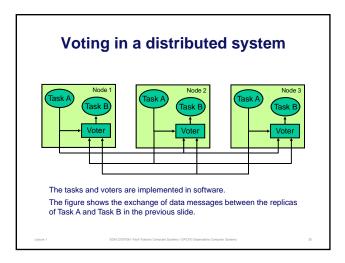
- · Random faults (physical faults)
 - Aging faults
 - External disturbances
 - Ionizing particle radiation
 - Electromagnetic interference
- Systematic faults (development faults in HW or SW)
 - Specification faults
 - Design faults
 - Implementation faults

Terminology

Cause of an error, e.g., an open circuit, a software bug, or an external disturbance. Fault


Error Part of the system state which is liable to lead to failure, e.g., a wrong value in a program variable.


Failure - Delivered service does not comply with the specification, e.g., a cruise control in a car locks at full speed.


Cause-and-Effect Relationship External Disturbance

Hardware Redundancy

- Voting redundancy (this lecture)
- Stand-by redundancy (lecture 3)
- Active redundancy (lecture 3)

Failure = Service failure A failure occurs when a service provider (system, or subsystem) delivers an incorrect service. Example: A node is a subsystems in a distributed system Node failure – a node delivers an incorrect service Example: A network is a subsystems in a distributed system Network failure – a network delivers an incorrect service Example: A processor core is a subsystem in a multi-core processor Core failure – a core delivers an incorrect service

Fundamental Concepts Failure mode

A *failure mode* describes the nature of a failure

- · Examples of failure modes:
 - Value failure a service provider delivers an erroneous result
 - Content failure same as value failure
 - Timing failure a service provider delivers a result too late, or too early
 - Silent failure a service provider delivers no result
 - Signaled failure a service provider sends a failure signal
 - Interference failure a service provider disturbs the service delivered by another service provider

.

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer System

Failure model vs. Failure mode

- A failure model is a set of assumptions about likely failure modes for a service provider
- A failure mode describes the nature of a given class of failures

Lecture 1

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems

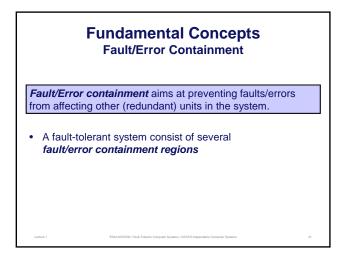
Fundamental Concepts Error processing

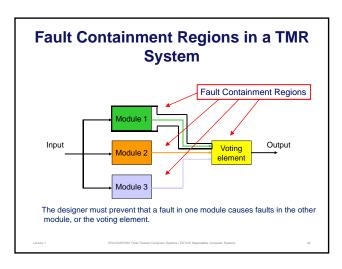
Error processing aims at removing errors from the computational state, if possible, before a failure occurs.

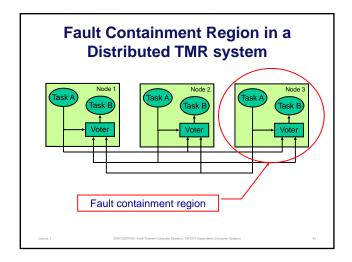
Error processing techniques:

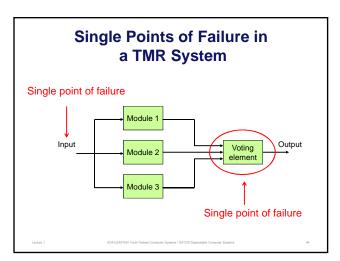
- Error detection to detect errors
- Error masking to mask the effects of errors
- Recovery to restore the state.
- to restore the system to an error-free state

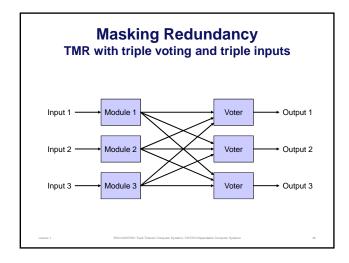
Lecture

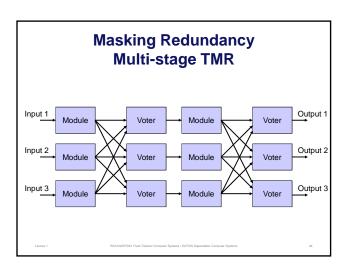

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems


Recovery


- · We distinguish between two types of recovery
 - Forward recovery
 - The state of the service provider is moved forward in time
 - Example: Error free state is copied from another (redundant) service provider
 - Backward recovery
 - The state of the service provider is moved backward in time
 - Example: Error free state is restored from a previously stored checkpoint
 - Checkpoint is stored in a crash proof memory, a.k.a. stable storage


Lecture 1


EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems



Summary

- · Fault tolerance
- Graceful degradation
- Safety
- Terminology: faults \rightarrow errors \rightarrow failures
- · Voting redundancy
- Fault/error containment
- · Single point of failure
- · Multi-stage voting

Lacture 1

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer System

Overview of Lecture 2

- · Reliability modeling
 - Basic concepts in probability
 - Reliability block diagrams
 - Fault-trees

Preparations:

Storey: Section 7.1 and 7.2 (pages 167 – 177)

Lecture 1

EDA122/DIT061 Fault-Tolerant Computer Systems / DAT270 Dependable Computer Systems