
PERFORMANCE AND

RELIABILITY ANALYSIS OF

COMPUTER SYSTEMS

An Example-Based Approach Using

the SHARPE Software Package

PERFORMANCE AND

RELIABILITY ANALYSIS

OF COMPUTER

SYSTEMS

An Example-Based Approach Using

the SHARPE Software Package

Robin SAHNER

Urbana, IL

Kishor S. TRIVEDI

Duke University

Durham, N.C.

Antonio PULIAFITO

University of Catania

Catania, Italy

KLUWER ACADEMIC PUBLISHERS
Boston/London/Dordrecht

CONTENTS

Part I APPENDICES 6

A SHARPE COMMAND LINE SYNTAX 9

B SHARPE LANGUAGE DESCRIPTION 11

B.1 Conventions 11

B.2 Basic Language Components 11

B.3 Speci�cation of Exponential Polynomial Functions 16

B.4 Speci�cation of Models 18

B.5 Asking for Results 31

B.6 Built-in Functions 35

B.7 Controlling the Analysis Process 40

B.8 Program Constants 43

B.9 Summary of Top-level Input Statements 43

C USING SHARPE INTERACTIVELY 45

D ALGORITHM CHOICES FOR PHASE-TYPE

MARKOV CHAINS 51

v

PART I

APPENDICES

8

A
SHARPE COMMAND LINE

SYNTAX

The SHARPE program has two modes of operation: it can read input from one
or more �les (batch mode) or from a terminal (interactive mode). The language
used in interactive mode is a subset of the batch-mode language; some of the
keywords are not used because the context of an interactive session makes them
unnecessary. At the user's option, when in interactive mode SHARPE can copy
the user's input into a �le in the syntax suitable for batch-mode operation.

The SHARPE command line for batch mode is

sharpe [-v] [-nf] [-p<njo>] [-e<1j2>] [-vo] [-s<cju>] �le [�le ...]

The SHARPE command line for interactive mode is

sharpe [-v] [-nf] [-p<njo>] [-e<1j2>] [-vo] [-s<cju>] [-d data�le]

If there are no �le arguments, SHARPE runs in interactive mode. If the -d
ag
is present, SHARPE runs interactively and saves the user's input in data�le. In
interactive mode, SHARPE will prompt the user for input and read from the
user's terminal. In general, if the user mistypes a line or types an invalid line,
SHARPE will ignore the line and allow the user to try again. However, some
errors are fatal. When SHARPE is saving a copy of the user's input in a �le,
it ignores lines containing errors.

If there are any �le arguments, SHARPE runs in batch mode and reads its input
from the �les. When there is more than one input �le, SHARPE does not care

9

10 Appendix A

where the �le boundaries lie; it treats the �les as if they were concatenated into
one �le.

In both batch and interactive mode, output appears on the user's terminal. The
user may, of course, use an appropriate method (depending on the operating
system) to redirect the output into a �le.

The -v
ag tells SHARPE to print verbose output. See Section B.5.5 for a list
of extra information printed when this
ag is present. Verbose mode can also
be turned on and o� while SHARPE is running using the statements verbose
on and verbose o�.

The -nf (\no force")
ag has to do with the analysis of irreducible Markov
chains, semi-Markov chains and GSPNs. Without this
ag, SHARPE will
switch automatically to an underrelaxation algorithm if its SOR iteration does
not seem to be converging. With the
ag, SHARPE asks the user to choose
whether to stop, continue with SOR, or switch to relaxation with an ! param-
eter of the user's choice. See Sections ??, ?? and B.7.2 for more details.

The -pn, -po, -e1, -e2 and -vo
ags choose between alternative algorithms
provided for the analysis of phase-type Markov chains and GSPNs. For more
information, see Appendix D.

The -sc and -su
ags tell SHARPE whether the distributions assigned to the
transitions in semi-Markov chains are to be conditional or unconditional. The
default is conditional. The default can also be overridden on a per-chain basis
in the statement that de�nes the chain name. See Sections ?? and B.4.2 for
more information.

B
SHARPE LANGUAGE

DESCRIPTION

B.1 CONVENTIONS

Keywords and necessary punctuation are given in boldface. Syntactic cate-
gories are given in italics. A line contained in angled brackets <> indicates
an unspeci�ed number (possibly zero) of repetitions of the line. Curly brack-
ets (fg) indicate an optional portion of a line or optional set of lines. Square
brackets ([]) containing elements separated by vertical lines (`j') indicate that
one of the elements is expected.

SHARPE distinguishes between lower-case and upper-case letters. Keywords
must be either all lower-case or all upper-case. In this guide, keywords are
shown in lower-case.

The SHARPE language is line-oriented. Tokens within a line may be separated
by any amount of white space (de�ned to be blanks and/or tabs). SHARPE
recognizes the UNIX line-continuation character, backslash (`n').

B.2 BASIC LANGUAGE COMPONENTS

B.2.1 Comments

Any line that has the character `*' (star) as its �rst non-white-space character
is considered to be a comment line, and is ignored.

11

12 Appendix B

B.2.2 Copying Text To Output

A line of the form

echo anytext

causes anytext to be written on the output and is otherwise ignored.

B.2.3 Constants

A constant is an integer (sequence of digits) or a real number (digits followed
by a decimal point followed by digits). In a real number, either the leading or
trailing digits may be omitted (but not both). All integers are converted to

oating-point format for purposes of internal computation. SHARPE does not
currently support scienti�c notation for constant input.

B.2.4 Taking Input From Secondary Files

A line of the form

include �lename

causes input to be taken from �lename. This may appear anywhere in either
the \primary" input �le (the one given on the command line) or in �les that
are \included." There is no protection against in�nitely recursive includes.

B.2.5 Names

A name consists of a letter followed by any combination of letters, digits, colons,
pound signs ('#'), question marks, underscores and periods. Names are used for
variables, function and exponential polynomial names, parameters, and indices
in sum functions.

Names may be any length, but only the �rst part of each name is signi�cant.
Early versions of SHARPE looked at the �rst 14 characters; later versions
provide the number of signi�cant characters via the command info constants.

SHARPE Language Description 13

In the remainder of this document, identi�ers ending in name are assumed to
be of type name.

B.2.6 Words and Evaluated Words

A word is a sequence of any characters except white space, commas, semicolons,
parentheses, backslashes and dollar signs. Words are used for the speci�cation
of names of models and the components they contain.

A subword is a string of the form $n or $(expression). In the �rst case, n is
any single letter. In the second case, any expression can be used within the
parentheses. An evaluated word is made up of subwords and any characters
except white space, commas, semicolons, parentheses, backslashes and dollar
signs.

When component names are used within built-in functions, they are evaluated
words. The use of evaluated words provides a limited means of indexing. If i
is 4 and j is 5, the evaluated word $(i)A-$(j-i)B-$j evaluates to the component
name 4A-1B-5. For examples of the use of evaluated words, see Sections ?? and
??.

Words may be any length, but only the �rst part is signi�cant. Early versions of
SHARPE looked at the �rst 14 characters; later versions provide the number
of signi�cant characters via the command info constants. In the case of
evaluated words, the truncation occurs after evaluation.

In the remainder of this document, identi�ers ending in word are assumed to
be of type word and identi�ers ending in eword are assumed to be of type
evaluated word.

B.2.7 Arithmetic Expressions

Expressions (expression) are written in in�x form. The following operators are
allowed: addition(`+'), subtraction (`�'), negation (`�'), division (`/'), multi-
plication, (`*'), exponentiation (`^') and \power of e" (`^'). The use of a unary
\^" to mean \power of e" is nonstandard. At �rst, it seemed natural to de�ne
a built-in variable name e, but if that is done, we are prevented from allowing
the letter e as a user-de�ned variable. All operations are
oating point.

14 Appendix B

The default operator precedence is as follows:

1. negation

2. exponentiation and \power of e"

3. multiplication and division

4. addition and subtraction

Within each level, evaluation is done from left to right. An order of evaluation
other than the default may be forced by the use of parentheses. The allowed
operands are as follows:

constant,

simple var,

de�ned var,

func name (arg list)

built in function

If func name is used, it must have already been de�ned and the number of
arguments must agree with the number of parameters (possibly none) speci�ed
when the function was de�ned.

Built-in functions are described in Section B.6. If a built-in function containing
a model argument is used, the model argument must have been de�ned. The
number of arguments (not counting the system and node names) must match
the number of parameters (possibly none) in the system de�nition.

Examples of expressions are:

360 / (360 + (k-1) * x)

k * x * (1 - c(x, k))

3 * lambda * prob (second-fault, recovered; 2*lambda)

^(-(k-1) * x * tau)

delta / ((k-1) * x) * (1 - ^(-(k-1) * x / delta))

sum (i,1,n,sum(j,1,i,j))

sum (i,1,n,prob(m,\$(i)-\$(j)))

SHARPE Language Description 15

A constant expression is an expression in which all operands are constants.

B.2.8 Variables, Binding and Functions

A simple variable (simple var) is a name that is de�ned implicitly by appearing
in an expression. All simple variables must be bound to values before analysis
takes place. There are two formats for binding variables. A single variable can
be bound to a value by the line

bind simple var expression

A group of variables can be bound as follows:

bind
<simple var expression>
end

Simple variables can be bound either before or after their �rst appearance in
an expression. All variables appearing in the speci�cation of a model must
be bound to values before the user requests results from that model. Once a
variable is bound, it retains its value until it is bound to a di�erent expression.

A function is de�ned by

func func name (param list) expression

The parameter list is allowed to be empty, but the parentheses must be present.
A de�ned variable (de�ned var) is the same as a function with no arguments;
it is de�ned by

var de�ned var expression

If a function or de�ned variable contains a simple variable in its de�nition and
the simple variable is rebound, the function or de�ned variable is recomputed
the next time its value is needed.

16 Appendix B

B.2.9 Scope of Names and Words

Simple variables, de�ned variables, function names, exponential polynomial
names and model names are global. They must all be di�erent. No two models
can have the same name, even if they are of di�erent type. Component names
are local to the model in which they appear. Parameter names are local to
their system, function, or exponential polynomial de�nition. The index of a
loop is local to the loop. The index in a sum function is local to the function.

B.2.10 Parameter and Argument Lists

A parameter list (param list) has the form

name, name, ... , name

Parameter lists are used when in the de�nitions of functions, exponential poly-
nomials and models. An argument list (arg list) has the form

expression, expression, ... , expression

Argument lists are used when functions or models are to be evaluated. It is
possible for a parameter or argument list to be empty.

B.3 SPECIFICATION OF EXPONENTIAL

POLYNOMIAL FUNCTIONS

An exponential polynomial function (EP) is a �nite exponential polynomial:

F (t) =
X

j

ajt
kjebjt (t � 0)

See Sections ?? and ?? for background information about exponential polyno-
mials and mixture distributions. These are the built-in forms for specifying an
EP (ep):

1. zero

SHARPE Language Description 17

This speci�es the discrete function having all of its mass at zero.

2. inf

This speci�es the discrete function having all of its mass at 1.

3. prob (p)

This speci�es a discrete function having mass p at zero and 1� p at 1.

4. exp (�)

This speci�es the exponential polynomial F (t) = 1� e��t.

5. gen triple, triple, ...

This speci�es a complete exponential polynomial, term by term, where all
numbers are real (not imaginary). Each triple has the form

aj ; kj ; bj

where aj and bj may be real or integer, bj < 0, and kj must be a non-
negative integer.

6. cgen �ve-tuple, �ve-tuple, ...

This speci�es a complete exponential polynomial, term by term, where
complex numbers are used. Each �ve-tuple has the form

real(aj); imag(aj); kj ; real(bj); imag(bj)

where kj must be a non-negative integer, the rest of the numbers may
be real or integer and real(bj) < 0. The exponential polynomial must
be real-valued. An equivalent condition is that the imaginary numbers
must occur in conjugate pairs. That is, for every appearance of the term
real(aj), imag(aj), kj , real(bj), imag(bj) where imag(aj) or imag(bj)
is nonzero, the term real(aj), �imag(aj), kj , real(bj), �imag(bj) must
appear.

7. tgen n-tuple, n-tuple, ...

Here n is either four or �ve for each term. This speci�es a complete expo-
nential polynomial using sine and cosine functions. Each n-tuple has one
of the following three forms:

aj ; kj ; bj ; none

aj ; kj ; bj ; sin; xj

aj ; kj ; bj ; cos; xj

18 Appendix B

where kj must be a non-negative integer and the rest of the numbers may
e real or integer; again bj < 0.

8. de�ned ep (arg list)

This speci�es a user-de�ned exponential polynomial. The parentheses
must be present even if there are no parameters.

9. cdf (system name f,state eword g f; arg list g)

The system name may be that of any model type except irreducible chain
or GSPN. A state eword is allowed only for Markov and semi-Markov
chains (with absorbing states). The exponential polynomial is that printed
by the cdf keyword. The number of arguments must match the number
of parameters (possibly none) in the system de�nition.

To create a user-de�ned exponential polynomial, the following statement is
used:

poly name (param list) ep

The parentheses must be present even if the argument list is empty; name be-
comes a de�ned exponential polynomial (de�ned ep) and can be used anywhere
one of the built-in forms can be used.

B.4 SPECIFICATION OF MODELS

A model may have parameters; in that case the scope of the parameters is
exactly the entire model de�nition. If there are no parameters, the parentheses
on the �rst line in the model speci�cation may be (but do not have to be) left
out. The comments in the following model speci�cations are not required; they
are included here for informational value.

B.4.1 Markov Chains

SHARPE allows three kinds of Markov chains: irreducible, acyclic and PH-
type. A PH-type (phase-type) chain is a chain with absorbing states in which
every state that is not absorbing is transient.

SHARPE Language Description 19

Markov Chains with Absorbing States

A Markov chain with absorbing states (either acyclic or PH-type) is speci�ed
as follows:

markov name f (param list) g
* section 1: transitions and transition rates
<name name expression>
* section 2: rewards (optional)
f reward fdefault expressiong
<name expression> g
end
* section 3: initial state probabilities
<name expression>
end

Each line in the �rst section speci�es a state transition from the �rst name to
the second name having as its transition rate the given expression. The state
transitions (and associated rates) can be given in any order.

The second section is optional. If present, each line assigns a reward rate
(expression) to a non-absorbing state (name). In the current implementation,
nonabsorbing states must have nonzero reward rates. By default, a state that
is not assigned a reward rate is assumed to have a reward rate of 0. If the
reward keyword is followed by default expression, the default reward for this
chain is changed to expression.

The third section gives initial state probabilities. In each line, the node name
is assigned expression as its initial state probability. If a state is not assigned
an initial state probability, the probability is assumed to be 0. The sum of all
assigned initial probabilities must be 1.

For an acyclic chain, the third section may be left empty if there is a single
node having no incoming transitions. In that case, the single node is assumed
to have an initial probability of 1, and all other nodes have initial probability
0. If more than one node has no incoming transitions, this section must not be
empty.

20 Appendix B

Irreducible Markov Chains

An irreducible Markov chain is speci�ed in one of two ways, either with or
without initial state probabilities. If only a steady-state analysis of an irre-
ducible Markov chain is to be done (using the built-in function prob), initial
state probabilities are irrelevant. If a transient analysis is to be done (using
tvalue), initial state probabilities are required.

Older versions of SHARPE did not support transient analysis of irreducible
chains and did not expect initial state probabilities to be speci�ed for irreducible
chains. For the sake of compatibility, SHARPE assumes that irreducible chains
will be followed by initial state probabilities if and only if the line containing
the chain name ends in the keyword readprobs. An irreducible chain without
initial state probabilities is speci�ed as follows:

markov name f (param list) g
* section 1: transitions and transition rates
<name name expression>
* section 2: rewards (optional)
f reward f default expression g
<name expression> g
end

Once an irreducible chain has been speci�ed without initial state probabilities,
tvalue cannot be applied to it. When an irreducible chain has been speci�ed
with readprobs, either prob or tvalue can be applied to it. An irreducible
chain with initial state probabilities is speci�ed as follows:

markov name f (param list) g readprobs
* section 1: transitions and transition rates
<name name expression>
* section 2: rewards (optional)
f reward f default expression g
<name expression> g
end
* section 3: initial state probabilities
<name expression>
end

SHARPE Language Description 21

B.4.2 Semi-Markov Chains

SHARPE allows two kinds of semi-Markov chains: acyclic and irreducible. An
acyclic semi-Markov chain is speci�ed as follows:

semimark name f (param list) g f cond j uncond g
* section 1: transitions and transition distributions
<name name ep>
* section 2: rewards (optional)
f reward f default expression g
<name expression> g
end
* section 3: initial state probabilities
<name expression>
end

The speci�cation is the same as for Markov chains with absorbing states, ex-
cept that instead of instantaneous transition rates we have distribution speci-
�cations.

By default, the distribution associated with a transition is conditional. That
is, if F (t) is attached to the transition from state A to state B, then F (t) is
the probability that the time from entering state A to entering state B is less
than or equal to t, given that all transition from state from A other than to B
are disallowed.

The default can be overridden on the command line; the
ag -su (for semi-
Markov unconditional) causes the default to be to interpret the distributions
to be unconditional. That is, Q(t) is the unconditional probability that the
time from entering A to entering B is less than or equal to t. The function Q(t)
is thus defective (less than 1 as t!1) unless B is the only possible successor
of A. For the sake of completeness, SHARPE also recognizes the
ag -sc (for
semi-Markov conditional), even though it is the default.

The �rst line of the speci�cation may optionally end in the keyword cond or
uncond. If the line ends in cond, all distributions in the speci�cation are
interpreted to be conditional, regardless of the default. If the line ends in
uncond, all distributions are interpreted as unconditional.

An irreducible semi-Markov chain is speci�ed as follows:

22 Appendix B

semimark name f (param list) g f cond j uncond g
* section 1: transitions and transition distributions
<name name ep>
* section 2: rewards (optional)
f reward f default expression g
<name expression> g
end

B.4.3 Reliability Block Diagrams

A reliability block diagram is speci�ed by

block name f (param list) g
<blockline>
end

A blockline has one of the following forms:

1. comp name ep

This is a basic component type. It is assigned a name and an exponential
polynomial.

2. parallel name name name f name . . . g

This represents components combined in parallel. The parallel system is
assigned the �rst name and is composed of the rest of the names. The
system must have at least two components.

3. series name name name f name ... g

This represents components combined in series. The series system is as-
signed the �rst name and is composed of the rest of the names. The system
must have at least two components.

4. kofn name1 expression, expression, name2

This represents a k-out-of-n system having identical components. The sys-
tem is assigned the name name1. The �rst expression gives k and the
second expression gives n; name2 gives a component or sub-block. The

SHARPE Language Description 23

block name1 is assumed to consist of n identically distributed (indepen-
dent) copies of name2. In order for the system to be operating, k of the
components must be operating.

5. kofn name1 expression, expression, name name f name ... g

This represents a k-out-of-n system having possibly di�erent components.
The system is assigned the name name1. The �rst expression gives k,
and the second expression gives n. The second expression is followed by
n names, which give the components comprising the system name1. The
system is assumed to be con�gured so that in order for the system to be
operating, k of the components must be operating. In general, the compo-
nents and sub-blocks will not have identical failure-time distributions. It
is important to note where there are commas on this line and where there
are not.

In forms 2 through 5, the names making up the block must already be de�ned.

B.4.4 Fault Trees

A fault tree is speci�ed by the following:

ftree name f (param list) g
<ftreeline>
end

An ftreeline has one of the following forms:

1. basic name ep

This is a basic event (or component) type. It is assigned a name and an
exponential polynomial. Whenever this name appears later in the fault
tree speci�cation, it is interpreted as being a physically distinct copy of an
event type having the assigned exponential polynomial.

2. repeat name ep

This is also a basic event assigned a name and a exponential polynomial. In
this case, whenever this name appears later in the fault tree speci�cation,
it is interpreted as being the same physical event.

24 Appendix B

3. transfer name name

The second name must have been previously de�ned using either basic
or repeat. Whenever the �rst name appears later in the fault tree spec-
i�cation, it is interpreted as being the same physical event as the second
name.

4. and name name name f name ... g

This represents an \and" gate. The gate is assigned the �rst name, and
the rest of the names form the inputs to the gate. There must be at least
two inputs.

5. or name name name f name ... g

This represents an \or" gate. The gate is assigned the �rst name, and the
rest of the names form the inputs to the gate. There must be at least two
inputs.

6. kofn name expression, expression, name

This represents a k-out-of-n gate having identical inputs. The gate is as-
signed the �rst name. The �rst expression gives k and the second ex-
pression gives n. The inputs to the gate are assumed to be n identically
distributed, independent copies of the second name.

7. kofn name expression, expression, name name f name ... g

This represents a k-out-of-n gate whose inputs need not be identical. The
gate is assigned the �rst name. The �rst expression gives k and the second
expression gives n. The names following the second expression are the
inputs to the gate; there must be at least two. The inputs are assumed to
be con�gured so that the system only fails if k of the inputs fail.

In forms 2 through 5, the names making up the block must already be de�ned.

B.4.5 Reliability Graphs

A reliability graph is speci�ed by the following:

relgraph name f (param list) g
* section 1: unidirectional edges
<edge name edge name ep>
* section 2: bidirectional edges (optional)

SHARPE Language Description 25

f bidirect
<edge name edge name ep> g
end

In the �rst section, unidirectional edges are speci�ed. A path exists from the
�rst edge name to the second edge name. The ep is the exponential polynomial
CDF for the time-to-failure of the path.

In the second section (which is optional), bidirectional edges are speci�ed. Two
paths exist, one from the �rst edge name to the second and one from the second
to the �rst, each having ep as the time-to-failure CDF.

B.4.6 Single-Chain Product-Form Queueing

Networks

A single-chain product-form queueing network is speci�ed as follows:

pfqn name f (param list) g
* section 1: station-to-station probabilities
<station name station name expression>
end
* section 2: station types and parameters
<station name station type expression, ...>
end
* section 3: number of customers per chain
<chain name expression>
end

In the �rst section, the two names represent station names in the queueing
network, and the expression is the probability that a job goes to the second
station after it has been served at the �rst.

The second section de�nes the service type and parameters of each station.
station type is chosen from a pre-de�ned set of types. The number of expressions
depends on the server type. The possibilities for the lines in this section are as
follows:

1. station name is rate

26 Appendix B

The station is an in�nite server; each job at the server has exponential
service-time CDF with the speci�ed rate.

2. station name fcfs rate

The station is a �rst-come-�rst-serve server. Jobs in the queue are served
one at a time; the job being served (if any) has exponential service-time
CDF with the speci�ed rate.

3. station name ps rate

Jobs at the station share the server. When n jobs are at the station, each
has exponential service-time CDF with rate rate=n.

4. station name lcfspr rate

The serving algorithm is \last come �rst served, preemtive resume."

5. station name ms number of servers, rate

The station contains multiple servers; the number of servers is given by
the expression number of servers. Each server has the same rate.

6. station name lds rate or loop, rate or loop, ...

There is one server, whose service rate depends on the number of jobs at
the station. The keyword lds is followed by a series of rates or loops. A
rate is any expression. A loop has the form

loop (index,low,high,increment,expression)

Each loop is expanded into a series of rates (see Section ?? for an example).

After expansion of loops, the �rst rate applies when there is one job, the
second rate when there are two jobs, and so on. If there are fewer rates
given than the maximum number of jobs, the last rate on the line is as-
signed to all numbers of jobs for which no rate was explicitly given.

The third section gives the number of customers in the network. Although the
network has only a single chain, the chain must be given a name (which is never
used).

B.4.7 Multiple-Chain Product-Form

Queueing Networks

A multiple-chain product-form queueing network is speci�ed as follows:

SHARPE Language Description 27

mpfqn name f (param list) g
* section 1: station-to-station probabilities for each chain
<chain chain name
<station name station name expression>
end>
end
* section 2: station types and parameters
<station name station type f expression , ... g
f<chain name expression, ...> g
end>
end
* section 3: number of customers per chain
<chain name expression>
end

In the �rst section, the two names represent station names in the queueing
network, and the expression is the probability that a job goes to the second
station after it has been served at the �rst. The second section de�nes the
service type and parameters of each station in each chain; station type is chosen
from the same pre-de�ned set of types as for single-chain product-form queueing
networks. A particular station is assigned one station type (it cannot have
di�erent station types per chain). For stations of the multiple server type, the
number of servers is the same for all chains. Except for FCFS stations, stations
are allowed to have di�erent rates for each chain. An FCFS station must have
its station type and rate speci�ed as follows:

station name fcfs expression
end

For other stations, there are two ways to specify the server type and rates. The
�rst way is to specify the rates for each chain, like this:

station name station type f number of servers g
<chain name expression, ...>
end

The expression number of servers is present if and only if station type is ms
(multiple server). Multiple rates (and/or loops) are expected if and only if sta-
tion type is lds (load-dependent server). A chain-speci�c line must be present
for every chain in the network, even for chains which do not contain the station.

28 Appendix B

The second way to specify server rates is to specify a default on the line that
de�nes the server type. The default rate (or list of rates) is assigned to the
server for all chains. For each chain-speci�c line following the default, the
rates given there override the default for that particular chain. The number of
chain-speci�c lines can be zero. Here is the form using the default:

station name station type f number of servers g expression, ...
<chain name expression, ...>
end

The third section gives the number of customers in each chain.

B.4.8 Generalized Stochastic Petri Nets

A generalized stochastic Petri net (GSPN) is speci�ed as follows:

gspn name (param list)
* section 1: places and initial numbers of tokens
<place name expression>
end
* section 2: timed transition names, types and rates
<transition name ind expression>
<transition name dep place name expression>
end
* section 3: immediate transition names and weights
<transition name ind expression>
<transition name dep place name expression>
end
* section 4: place-to-transition arcs and multiplicity
<place name transition name expression>
end
* section 5: transition-to-place arcs and multiplicity
<transition name place name expression>
end
* section 6: inhibitor arcs and multiplicity
<place name transition name expression>
end

SHARPE Language Description 29

Each line in the �rst section speci�es a place name and the initial number of
tokens in the place.

Each line in the second section speci�es a name for a timed transition, a tran-
sition type (ind if the transition rate is marking-independent and dep if it is
marking-dependent), a place name if and only if the rate is dependent, and a
rate. If the transition is marking-dependent, the e�ective rate of the transition
is multiplied by the number of tokens present in the place.

Each line in the third section speci�es a name for an immediate transition,
a transition type (ind if the transition weight is marking-independent and
dep if it is marking-dependent), a place name if and only if the weight is
dependent, and a weight. If the transition is dependent, the e�ective weight of
the transition is multiplied by the number of tokens present in the place. The
transition weight determines the probability that the transition is chosen if it
is one of multiple immediate transitions leaving a place.

The lines in the fourth section specify the arcs from places to transitions. The
multiplicity indicates the number of tokens that must be present in the place
for the transition to �re. The lines in the section �ve specify the arcs from
transitions to places. The multiplicity indicates the number of tokens that are
deposited in the place when the transition is �red. The lines in section six
specify inhibitor arcs from places to transitions. The multiplicity indicates how
many tokens must be in the place to inhibit the transition from �ring.

SHARPE allows GSPNs to have the same three types it allows for Markov
chains: acyclic, irreducible, and PH-type.

B.4.9 Series-Parallel Graphs

A series-parallel graph is speci�ed as follows:

graph name f (param list) g
< name f name g>
end
<graphline>
end

30 Appendix B

The �rst group of lines speci�es the edges in the graph. The edges do not have
to be sorted. There may be more than one start and/or terminating edge. It
is possible for a name to appear alone on a line. This represents a node having
no predecessors and no successors.

A graphline has one of the following forms:

1. dist name ep

This assigns the given ep to the given graph node. An ep must be speci�ed
for each graph node.

2. exit name exit type

This assigns the given exit type to the given node. For every node that
has more than one exiting edge, an exit type must be speci�ed. If a graph
called g has more than one entrance node (node with no predecessors),
then SHARPE supplies a dummy entrance node called E.g with zero ex-
ponential polynomial and edges leading from E.g to each user-speci�ed
entrance node. When this is the case, the user must supply an exit type
for the node E.g.

3. prob name name expression

The expression gives a probability value to be assigned to the edge going
from the �rst name to the second name. For each node x that has n
successors and whose exit type is prob, probability values must be assigned
to at least n� 1 of the edges leading out of x. If values are given for all of
the edges, the sum of the values must be 1. If one value is missing, the sum
of the values must be less than 1 and SHARPE will compute the missing
value.

4. multpath

This line requests multiple-path information for the system. Whenever
there are probabilistic subgraphs that are not inside maximum, minimum,
or k-out-of-n subgraphs, SHARPE considers the graph to contain more
than one path. If multiple-path information is requested, SHARPE will
compute for each path the probability of taking the path and the condi-
tional distribution for the time-to-�nish, given that the path is taken.

The exit types (exit type) are

1. prob

SHARPE Language Description 31

The parallel subgraphs are probabilistic.

2. max

All of the parallel subgraphs must complete before going on.

3. min

One of the parallel subgraphs must complete before going on.

4. kofn expression, expression

The �rst expression gives k and the second expression gives n; k out of the
n parallel subgraphs must complete before going on. If this exit type is
speci�ed for a graph with exactly one successor node, that node is assumed
to be duplicated n times, with each copy being identically distributed.
Except for this case, it is required that a node with kofn exit type have
exactly n following parallel subgraphs.

B.5 ASKING FOR RESULTS

B.5.1 Printing Results of Model Analysis

SHARPE provides the following statements for printing the results of model
analysis:

1. cdf (system name f;arg listg)
cdf (chain namef, state ewordg f;arg listg)

The keyword cdf asks for an exponential polynomial result and its mean
and variance. The name cdf was chosen because the result is usually a
cumulative distribution function (CDF). However, it may have another
interpretation depending on the system and the meaning of the functions
assigned to the system components. The �rst form is for graphs, block
diagrams, fault trees, reliability graphs and non-irreducible GSPNs. The
second form is for Markov and acyclic semi-Markov chains. The results
are:

(a) series-parallel acyclic directed graph. Generally the function
assigned to each component is the CDF of its execution time; cdf for
the graph is the graph execution time. If multiple-path information
was requested, the CDF is given for each path.

32 Appendix B

(b) reliability block diagram, fault tree, reliability graph. If the
function assigned to each component is the CDF of its failure time,
cdf gives the system failure time CDF. If the function assigned to
each component is the instantaneous or steady-state availability, cdf
gives the instantaneous or steady-state system availability.

(c) acyclic semi-Markov chains, acyclic and phase-type Markov
chains. If no state name is given, cdf gives the distribution function
for the time until some absorbing state is reached. If the name of an
absorbing state is given, cdf gives the distribution function for the
time until the given state is reached, conditional on that state being
reached, and also prints the probability that the state is reached.
If the name of a transient state is reached, cdf gives the transient
probability function of being in that state.

(d) irreducible Markov chain. A state name must be given; cdf gives
the transient probability function of being in that state.

(e) non-irreducible GSPN: cdf gives the CDF for the time until reach-
ing an absorbing marking.

2. lcdf (chain name, state eword f;arg listg)

The keyword lcdf asks for the exponential polynomial function of t giving
the conditional probability that the state has been left by time t, given that
the state was visited at all. SHARPE also prints the mean and variance
of the CDF and the probability of visiting the state.

3. pqcdf (system name f;arg listg)

This statement is valid for fault trees and reliability graphs. The result
of the system analysis is printed symbolically in terms of the functions
assigned to the individual components or edges. The result consists of a
sum of products where the multiplicands are functions Qi and Pi, where
Qi is the function assigned to component or edge i and Pi is 1�Qi.

4. reward (chain name f;arg listg)

This statement is valid only for Markov and semi-Markov reward models
with absorbing states. The result is the function R(r), the probability that
the accumulated reward at time of absorption is less than or equal to r.

5. fetok (system name,place eword f;arg listg)
fprempty (system name,place eword f;arg listg)
futil (system name,transition eword f;arg listg)
ftput (system name,transition eword f;arg listg)

SHARPE Language Description 33

These statements are valid for GSPNs. They are transient functions of
a time variable t, given symbolically in the time variable. fetok gives
the average number of tokens in the speci�ed place. fprempty gives the
probability that the speci�ed place is empty. futil and ftput give the
utilization and throughput, respectively, of the speci�ed transition. For
more ways of getting GSPN results, see Section B.6.6.

6. eval (system name f,state ewordg f;arg listg) low high increment ffunctiong

The arguments are the same as for cdf. low, high and increment are all
expressions. function is cdf, reward, or any of the built-in functions names
that take a time parameter (see Section B.6). If no function appears, the
default is cdf.

SHARPE evaluates function over the interval (low,high) at increments of
increment. If the speci�ed system was a graph and multiple-path informa-
tion was requested, the evaluation is given for each path.

7. expr expression f,expression ... g

SHARPE prints the value of the expression(s).

B.5.2 Number of Digits Printed

The statement

format constant expression

speci�es the number of digits after the decimal point to be printed in results.
This in no way changes the way calculations are carried out internally, which
is however the machine implements the C double data type.

B.5.3 Format for Complex Numbers

The keyword imag is used to control whether a CDF containing imaginary
numbers is printed in complex-number form or sine-cosine form. The statement
imag on causes results to be printed in complex-number form. The statement
imag o� causes results to be printed in sine-cosine form.

34 Appendix B

B.5.4 Printing a System Type

To have SHARPE print the type of a system, use the command

type system name

This can be used, for example, to verify that the type of a chain (acyclic,
irreducible or PH-type) is what was intended.

B.5.5 Verbose Output

SHARPE provides two ways of asking for verbose output. If the
ag -v is used
on the command line, SHARPE turns verbose output on for the entire input
�le unless it is turned o� within the �le. To turn verbose output on and o�
within the �le, the following commands are used:

* the following turns verbose output on
verbose on
* the following turns verbose output o�
verbose o�

When verbose output is turned on, SHARPE prints the following information:

for Markov or semi-Markov chains, a list of the absorbing states (if any)

whenever results for the system are requested, the type of the system and
whether or not a new analysis is being done

for GSPNs, the type (acyclic, irreducible or PH-type) of GSPN just after
the GSPN speci�cation is read

for reliability graphs, a list of paths from source to sink

when a PH-type chain or GSPN is analyzed, the algorithm and methods
therein that are used (see Section B.7.1).

when the \new" algorithm is being used for a PH-type chain or GSPN,
the condition number of the underlying matrix

SHARPE Language Description 35

for GSPNs, assorted cryptic information useful for debugging purposes

when the uniformization algorithm is used, the values of l (left truncation
point) and k (right truncation point).

when the uniformization algorithm is used with steady-state checking, the
value of l or k when steady state is reached (if at all)

warnings whenever adjustments are made because of numerical considera-
tions

B.5.6 Using a Loop to Print Results

A loop may be used for printing results; the only legal statements within a
loop are expr, loop, bind and epsilon statements. See Section B.7.3 for
information about the epsilon statement. The syntax is

loop simple var, low,highf,incrementg
<<loop> j
<bind simple var expression> j <expr expression f,expression ... g> j
<epsilon e type expression>>

end

Here low, high and increment may be any expressions. If no increment is
present, it is assumed to be one. The statement types within the loop may be
intermixed.

B.6 BUILT-IN FUNCTIONS

SHARPE provides built-in functions (built in function) that return information
about model speci�cation, provide values resulting from model analysis and
provide summation functionality.

B.6.1 Functions of Exponential Polynomials

The following functions extract a value from an exponential polynomial re-
sult. (See Section B.5.1 for a description of the model types that yield ex-
ponential polynomial results.) If the model is an irreducible Markov chain,

36 Appendix B

state eword must be present. If the model is an acyclic or phase-type Markov
chain, state eword is optional. For other model types, state eword cannot be
present.

1. value (t; system name f,state ewordg f;arg listg)

This gives the value at t of the exponential polynomial.

2. mean (system name f ,state eword g f ;arg list g)

This gives the mean of the exponential polynomial.

3. variance (system name f ,state eword g f ;arg list g)

This gives the variance of the exponential polynomial.

4. pzero (system name f , state eword g f ;arg list g)

This gives the value at t = 0 of the exponential polynomial.

5. pinf (system name f,state ewordg f;arg listg)

This gives the limit at 1 of the exponential polynomial.

6. pcont (system name f,state ewordg f;arg listg)

This gives the \continuous part" of the exponential polynomial. For an
exponential polynomial F (t), pcont gives 1� F (0)� limt!1F (t).

B.6.2 The function tvalue

The built-in function tvalue provides transient results for a single value of t
obtained using algorithms that do not produce exponential polynomial func-
tions. This contrasts with the function value, which tells SHARPE to produce
an exponential polynomial function and then evaluate it at t. The function
tvalue is valid with fault trees, block diagrams, reliability graphs, and Markov
chains. The syntax is:

tvalue (t; system name f,state ewordg f;arg listg)

B.6.3 The function prob

The built-in function prob provides state probabilities for Markov and semi-
Markov chains. The syntax is:

SHARPE Language Description 37

prob (system name , state eword f ; arg list g

For an acyclic semi-Markov chain or an acyclic or phase-type Markov chain,
prob gives the probability that the given state was ever visited. For an irre-
ducible Markov or semi-Markov chain, prob gives the steady-state probability
for the given state.

B.6.4 Functions for Markov and semi-Markov

Reward Models

The following built-in functions are speci�c to Markov and semi-Markov reward
models:

1. sreward (system name, state eword f;arg listg)

This gives the reward rate assigned to the given state.

2. exrss (system name f;arg listg)

This gives the expected steady state reward rate.

3. exrt (t; system name f;arg listg)

This gives the expected reward rate at time t.

4. cexrt (t; system name f;arg listg)

This gives the cumulative expected reward over (0,t).

5. rvalue (r; system name f;arg listg)

This applies to acyclic semi-Markov and acyclic and phase-type Markov
models. It gives the probability that the accumulated reward is less than
r when an absorbing state is reached.

B.6.5 Functions for Product-Form Queueing

Networks

The following built-in functions are speci�c to single-chain and multi-chain
product-form queueing networks.

38 Appendix B

1. tput (system name,eword f;arg listg)

This gives the throughput for a single-chain PFQN station.

2. rtime (system name,station eword f;arg listg)

This gives the average response time of a single-chain PFQN station.

3. qlength (system name,station eword f;arg listg)

This gives the average queue length at a single-chain PFQN station.

4. util (system name,eword f;arg listg)

This gives the utilization for a single-chain PFQN station.

5. mtput (system name,station eword f,chain ewordg f;arg listg)

This gives the throughput for a multi-chain PFQN station, for a particular
chain or sum over all chains.

6. mrtime (system name,station eword f,chain ewordg f;arg listg)

This gives the average response time for a multi-chain PFQN station, for
a particular chain or sum over all chains.

7. mqlength (system name,station eword f,chain ewordg f;arg listg)

This gives the average queue length at a multi-chain PFQN station, for a
particular chain or sum over all chains.

8. mutil (system name,station eword f,chain ewordg f;arg listg)

This gives the utilization for a multi-chain PFQN station, for a particular
chain or sum over all chains.

B.6.6 Functions for GSPNs

The following built-in functions are speci�c to GSPNs. For more ways of getting
results about GSPNs, see Section B.5.1.

steady-state measures

These functions describe the steady-state condition of a GSPN. For an acyclic
or phase-type GSPN, this is the same as the condition of the GSPN when it
has reached an absorbing marking.

SHARPE Language Description 39

etok (system name,place eword f;arg listg)

This gives the steady-state average number of tokens in the given place.

prempty (system name,place eword f;arg listg)

This gives the steady-state probability that the given place is empty.

util (system name,transition eword f;arg listg)

This gives the steady-state utilization for a transition.

tput (system name,transition eword f;arg listg)

This gives the steady-state throughput for a transition.

measures at time t, computed from time-symbolic

result

These functions describe the condition of a GSPN at a speci�ed time t. The
function is computed by producing a time-symbolic exponential polynomial
form for the desired function, then evaluating the exponomial at time t. Values
for additional values of t are computed from the same exponential polynomial,
as long as the model parameters do not change.

etokt (t;system name,place eword f;arg listg)

This gives the expected number of tokens in the given place at time t.

premptyt (t;system name,place eword f;arg listg)

This gives the probability that the given place is empty at time t.

utilt (t;system name,transition eword f;arg listg)

This gives the utilization of the given transition at time t.

tputt (t;system name,transition eword f;arg listg)

This gives the throughput of the given transition at time t.

measures at time t, computed numerically

These functions describe the condition of a GSPN at a speci�ed time t. The
function is computed numerically using uniformization. This is a more stable
computation then the one used to produce an exponential polynomial result,
but must be done separately for each value of t.

40 Appendix B

etoku (t;system name,place eword f;arg listg)

This gives the expected number of tokens in the given place at time t.

premptyu (t;system name,place eword f;arg listg)

This gives the probability that the given place is empty at time t.

utilu (t;system name,transition eword f;arg listg)

This gives the utilization of the given transition at time t.

tputu (t;system name,transition eword f;arg listg)

This gives the throughput of the given transition at time t.

time-averaged measurements

tavetokt (t;system name,place eword f;arg listg)

This gives the time-averaged number of tokens in the given place during
(0,t).

tavtputt (t;system name,transition eword f;arg listg)

This gives the time-averaged throughput of the given transition during
(0,t).

B.6.7 The built-in function sum

The built-in function sum provides the ability to take the summation of ex-
pressions. The syntax is;

sum (index, low, high, expression)

B.7 CONTROLLING THE ANALYSIS

PROCESS

This section describes the statements SHARPE provides to allow the user to
exercise some options for how model analysis is done.

SHARPE Language Description 41

B.7.1 Phase-type Markov Chain Analysis

SHARPE contains two algorithms for �nding the CDF for the time to absorp-
tion in a phase-type Markov chain. These algorithms are used when the cdf
or value keywords are used. Both algorithms allow the user to choose between
two alternative implementations for two of the steps. Appendix D describes
the alternatives and how to choose among them using command-line
ags and
SHARPE statements. If SHARPE is run with verbose output turned on, it
prints the choices.

In addition to the algorithms for �nding the CDF, SHARPE contains a \uni-
formization" algorithm that �nds the probability that an absorbing state has
been reached by a particular value of t. This algorithm is used when the built-in
function tvalue is used. The uniformization algorithm is much more stable but
it can take a lot longer than the CDF algorithms, especially for large values of
t.

B.7.2 Analysis of Irreducible Markov and

Semi-Markov Chains and GSPNs

To analyze irreducible Markov and semi-Markov chains, including the Markov
chains to which irreducible GSPNs are reduced, SHARPE uses an iterative
method called Successive Overrelaxation (SOR). This method is brie
y de-
scribed in Section ??.

The iteration is considered to have converged when the \tolerance" is small
enough, where the tolerance is the ratio between the largest di�erence between
the same elements in the two most recent consecutive values for the steady-
state probability vector (� in Equation ??) and the largest (in absolute value)
element in the most recent probability vector.

An important aspect of the SOR algorithm is the choice of ! in Equation ??.
SHARPE begins its analysis by setting ! = 1. Periodically, SHARPE adjusts
! to try to speed up the convergence.

If the iteration does not converge to a solution after a certain number of itera-
tions, the default behavior is to set ! = 0:9 and continue. This is a switch to
underrelaxation, which seems to have very good convergence properties over a
wide range of examples.

42 Appendix B

SHARPE provides users more control over the choice of ! through the -nf

ag on the command line. If -nf is used, then if SOR has not converged after
some number of iterations, SHARPE prints the number of iterations and the
tolerance and asks whether to stop, continue with its own value for !, or use a
user-supplied value for !. As long as the user does not choose to stop, SHARPE
will continue to prompt for a decision every time a certain number of iterations
has gone by without convergence.

The number of iterations between user prompts depends on the number of states
in the chain. The number of states also determines the maximum number of
iterations SHARPE will do when the -nf
ag is not present; this is much larger
than the number of iterations between prompts.

The tvalue built-in function can be applied to irreducible Markov chains to
obtain transient state probabilities using the uniformization algorithm. If the
time t is large enough, tvalue will �nd steady-state probabilities, but the al-
gorithm can be very time-consuming in this case.

B.7.3 Values of Epsilon

SHARPE contains �ve user-controlled \epsilons," the small values that deter-
mine when algorithms have converged or when two
oating point numbers are
equal. To set the value for one of these epsilons, the following statement is
used:

epsilon epsilon id expression

epsilon id is one of the following:

basic This sets the value that determines when two
oating point numbers
are equal or when a
oating point number is zero.

uniform This epsilon determines when the uniformization algorithm has con-
verged (see Sections B.7.1 and B.7.2).

�ndeigen This determines when either of the two eigenvalue-�nding algo-
rithms has converged.

sorteigen Both the old and new symbolic algorithms for phase-type chains
must sort eigenvalues after they are found. This epsilon determines when

SHARPE Language Description 43

two eigenvalues are considered to be equal. This is very important to the
slow symbolic algorithm, since it handles equal eigenvalues as a special
case in the remainder of the algorithm.

results This determines when a printed result is considered to be zero.

The statement info epsilons can be used to print the current value for all of
the \epsilons."

B.8 PROGRAM CONSTANTS

The following statement asks SHARPE to print information about the program
constants it contains:

info constants

Here is a list of the quantities that are limited:

length of an input line

number of intervals in an eval statement

B.9 SUMMARY OF TOP-LEVEL INPUT

STATEMENTS

A SHARPE input �le has the form

<statement>
end

where statement is one of the following (for multiple-line statements, only the
�rst line is shown):

44 Appendix B

echo anytext

include �lename

var name expression

func func name (param list) expression

poly name (param list) ep

graph name f(param list)g
markov name f(param list)g readprobs
semimark name f(param list)g f cond j uncond g
block name f(param list)g
relgraph name f(param list)g
ftree name f(param list)g
pfqn name f(param list)g
gspn name (param list)
bind
bind name expression

format expression

cdf (system name, fstate ewordg f;arg listg)
lcdf (chain name, state eword f;arg listg)
reward (chain name f;arg listg)
pqcdf (system name f;arg listg)
eval (system name f,state ewordg f;arg listg) low high increment ffunctiong
expr expression f,expression ... g
epsilon epsilon id expression

imag [on j o�]
verbose [on j o�]
voronoi [on j o�]
loop low, highf,incrementg
eigen1
eigen2
phold
phnew
type system name

info [epsilons j constants]

C
USING SHARPE INTERACTIVELY

SHARPE syntax for interactive sessions is pretty much the same as for �le
input. The di�erence is that when used interactively, SHARPE expects a null
line to end most constructs instead of the keyword end. During an interactive
session, SHARPE allows the user to recover from input errors when it can.

Figure C.1 (in many pieces) shows an interactive SHARPE session. During
the session, the block diagram of Figure ?? (Section ??) is speci�ed and its
failure-time distribution is evaluated over the interval (.5, 1.5) at intervals of
0.5.

Text in boldface is SHARPE output: prompts, error messages and results. Text
in normal font is user input. The line numbers are for reference only.

45

46 Appendix C

1 $ sharpe
2
3 Enter a line with one of the following forms:
4 var name expression
5 func name(params) expression
6 poly name(params) distribution
7
8 graph name(params)
9 markov name(params) [readprobs]
10 semimark name(params) [condjuncond]
11 block name(params)
12 relgraph name(params)
13 ftree name(params)
14 pfqn name(params)
15 mpfqn name(params)
16 gspn name(params)
17
18 bind
19 format p
20
21 cdf (name<,node><;args>)
22 reward (name<,node><;args>)
23 eval (name<,node><;args>) low high increment n
24 <cdfjrewardjexrtjcexrt>
25 expr expression

Figure C.1 An interactive SHARPE session.

line 1: In response to the system prompt ($), the user types the command to
run SHARPE interactively.

lines 2 to 25: SHARPE prints all of the available input line formats. This long
prompt is only printed once, at the beginning of the session, unless the user
asks to see it again (using help). Lines 23 and 24 will appear as one line, but
it was broken up here to �t on the page.

Using SHARPE Interactively 47

26

27 block main
28
29 Enter lines of the form
30 comp name distribution
31 parallel name x1 x2 ...
32 series name x1 x2 ...
33 kofn name k, n, x1 x2 ...
34 End with a null line
35
36 comp proc
37 error: missing distribution type. Try again.
38
39 Distributions types are:
40 exp (rate)
41 dist name (args)
42 zero
43 inf
44 gen
45 cdf (system<,node><;args>)

Figure C.1 (continued) An interactive SHARPE session.

line 27: the user asks to de�ne a reliability block diagram called main.

lines 29 to 34: SHARPE prints the format for specifying a reliability block
diagram.

line 36: the user enters a block diagram component but forgets to enter the
failure-time distribution.

lines 37 to 45: SHARPE advises the user of the error, prompts for another try
and reminds the user how to specify a distribution.

48 Appendix C

46 comp proc exp(plam)
47 comp mem exp(mlam)
48 parallel p2 proc proc
49 parallel m3 mem mem mem
50 series top
51 error: not enough components. Try again.
52 series top p2 m3
53
54
55 Enter another command line
56 Enter <help> to see the possibilities
57 Enter a null line if there are no more commands
58
59 bind
60
61
62 Enter lines of the form
63 symbol expression
64 End with a null line.
65 plam .00139
66
67

Figure C.1 (continued) An interactive SHARPE session.

lines 46 to 50: The user enters block diagram components and structures. On
line 50, the user has forgotten to enter the substructures of the series structure.

line 51: SHARPE prints an error message and prompts for a retry

lines 52 and 53: the user correctly completes the block diagram speci�cation,
including a null line (line 53).

lines 55 to 57: SHARPE prompts for more input. Note that the list of input
formats is not printed again, but the user may type help to see it.

line 59: The user asks to bind the variables to values.

lines 62 to 64: SHARPE gives instructions for binding.

lines 65 and 66: The user binds the variable plam and ends with a null line.

Using SHARPE Interactively 49

68 Enter another command line
69 Enter <help> to see the possibilities
70 Enter a null line if there are no more commands
71
72 cdf(main)
73 Enter a value for mlam: .00764
74
75 CDF for system main:
76
77 1.0000e+00 t(0) exp(0.0000e+00 t)
78 + -6.0000e+00 t(0) exp(-9.0300e-03 t)
79 + 3.0000e+00 t(0) exp(-1.0420e-02 t)
80 + 6.0000e+00 t(0) exp(-1.6670e-02 t)
81 + -3.0000e+00 t(0) exp(-1.8060e-02 t)
82 + -2.0000e+00 t(0) exp(-2.4310e-02 t)
83 + 1.0000e+00 t(0) exp(-2.5700e-02 t)
84
85 mean: 2.2609e+02
86 variance: 1.9742e+04
87

Figure C.1 (continued) An interactive SHARPE session.

lines 68 to 70: SHARPE prompts for more input.

line 72: The user asks to see the CDF for the system called main.

line 73: While SHARPE is analyzing the block diagram, it realizes that the
variable mlam was never assigned a value. It prompts the user for a value for
the variable. The value .007645 is typed by the user.

lines 75 to 86: SHARPE prints the system CDF and its mean and variance

50 Appendix C

88 Enter another command line
89 Enter <help> to see the possibilities
90 Enter a null line if there are no more commands
91
92 eval (main) 5 1.5 .5
93 warning: lower limit is greater than upper limit.
94
95 Enter another command line
96 Enter <help> to see the possibilities
97 Enter a null line if there are no more commands
98
99 eval (main) .5 1.5 .5
100 system main
101 t F(t)
102
103 5.0000 e-01 5.3811 e-07
104 1.0000 e+00 2.3703 e-06
105 1.5000 e+00 5.8176 e-06
106
107 Enter another command line
108 Enter <help> to see the possibilities
109 Enter a null line if there are no more commands
110
111
112 $

Figure C.1 (continued) An interactive SHARPE session.

lines 88 to 90: SHARPE prompts for more input.

line 92: The user asks to have the CDF for system main evaluated. The user
meant to type .5 for the lower bound, but left out the decimal point.

lines 92 to 97: SHARPE warns the user that the interval of evaluation is empty
and prompts for another command.

line 99: The user types the line correctly.

lines 100 to 105: SHARPE prints the requested information and prompts for
further input.

line 110: The user types a null line to end the session.

D
ALGORITHM CHOICES FOR

PHASE-TYPE MARKOV CHAINS

SHARPE provides an \old" and a \new" algorithm for �nding the CDF of the
time to absorption in phase-type Markov chains. The \old" algorithm is called
that because it was implemented �rst. The \new" algorithm is more e�cient
than the \old," (O(n3) for the \new" as opposed to O(n5) for the \old") but
its numerical behavior is sometimes not as good. The \old" algorithm is the
default.

Both the \old" and the \new" algorithms make use of an eigenvalue-�nding
algorithm. SHARPE contains two of these, the \�rst" and \second." The
two algorithms are about as e�cient as each other; each has better numerical
behavior in some situations. The \�rst" eigenvalue-�nder can only be used
with the \old" algorithm; the \second" can be used with either algorithm.

Both the \old" and the \new" algorithms contain a step that consists of choos-
ing a set of complex values for a variable. SHARPE contains two algorithms for
doing this, the \simple" algorithm and the \voronoi" algorithm. Each leads to
better numerical behavior in some situations. The \voronoi" value-chooser can
be used only with the \new" algorithm; the \simple" can be used with either
\old" or \new" algorithm.

The default is to use the \old" algorithm with the \�rst" eigenvalue-�nder
and the \simple" value-chooser. The -pn and -po
ags tell SHARPE to use
the \new" and \old" algorithms, respectively. The same thing can be done
while SHARPE is running using the statements phnew and phold. The -e1
and -e2
ags tell SHARPE to use the \�rst" and \second" eigenvalue-�nders,
respectively. The same thing can be done while SHARPE is running using the
statements eigen1 and eigen2. The -pn
ag implies -e2 even if -e2 is not

51

52 Appendix D

algorithm eigenvalue value statements
ags
�nder chooser

slow �rst simple (phold) (-po)
(eigen1) (-e1)
(voronoi o�) (no
ag)

slow second simple (phold) (-po)
eigen2 -e2
(voronoi o�) (no
ag)

fast second simple phnew -pn
(eigen2) -e2
(voronoi o�) (no
ag)

fast second voronoi phnew -pn
(eigen2) -e2
voronoi on -vo

Table D.1 Available phase-type analysis choices.

present on the command line. The -vo
ag tells SHARPE to use the \voronoi"
value-chooser. Use of \voronoi" can be turned on and o� while SHARPE is
running using the statements voronoi on and voronoi o�.

Table D.1 summarizes the possible combinations of algorithms and methods
within algorithms that are available and indicates the statements that would
be used to have SHARPE use each combination. When a statement appears in
parentheses in the table, it means that the statement can be omitted because
it is the default.

