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Abstract

An experimental project to assess the effectiveness
of software fault tolerance techniques is
described. Techniques were developed for, and
applied to, a realistic implementation of a
practical real-time system, namely a naval command
and control system. Reliability data was collected

by running this system with a simulated tactical
environment for a variety of action scenarios.
Analysis of the data confirms that software fault
tolerance techniques can significantly enhance
system reliability.

Introduction

Over the last ten years there has been considerable
research activity in the field of software fault
tolerance. (See, for example, references 1-5.) An
outcome of this research has been the
identification of a number of techniques and tools
for providing software fault tolerance, including
recovery blocks {6] and N-version programming [7].
However, the use of such techniques in practical
systems has not yet become widespread, although
dual-software systems have been constructed for
critical systems [8,9]. One reason may be the
absence of evaluation studies of the techniques in
practical systems. To date, evaluation of software
fault tolerance has either been conducted by
statistical modelling techniques [10] or by
empirical studies of multiple versions of software

modules ([11]. Both of these approaches have their
limitations. The modelling approach is often
bedevilled by unjustified assumptions and/or
unquantifiable parameters, whereas the empirical
approach  has wusually had to be applied to
relatively small modules (because of cost

considerations). Nevertheless, both approaches have
indicated the potential for significant gains in
software reliability from the wuse of fault
tolerance techniques.

This paper reports on a two and a half year project
(Aug. 1981 - Feb. 1984) conducted at the University
of Newcastle upon Tyne in conjunction with MARI,
the Microelectronics Applications Research
Institute. The aims of this project were: to refine
and develop software fault tolerance techniques for
use in concurrent and real-time systems; to confirm
the wutility of these techniques in a practical
context; to determine and quantify the
effectiveness of the techniques for  enhancing
software reliability; to measure the costs and
overheads incurred as a consequence adopting
fault tolerance.

of

In order that the results of the project could be
considered applicable and relevant to current
practical systems it was decided to implement, for
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an application system of
scale, constructed by professional
to normal commercial standards. The
selected was a medium-scale naval
and control system, engineered to be as
realistic as possible, but incorporating software
fault tolerance capabilities based on recovery
blocks and conversations {1].

purposes,

An experimental programme was designed which
involved executing the application software with a
simulated tactical environment using a large number
of action scenarios. Two modes of execution were
available, depending on whether the fault tolerance
features were enabled or disabled. Data from these
experiments was analysed to provide a number of
quantitative assessments of the improvement in
reliability arising from the wuse of fault
tolerance. In fact, the results of this analysis
suggest that software fault tolerance can prove
very effective in coping with the consequences of
faults in software.

This paper provides an overview of the experimental
configuration, describes the programme of
experiments, summarises the data obtained from the

experiments, and presents the analysis of and
results derived from this data. Information on
costs 1is briefly summarised in the conclusions. A

project report [12] provides full details of the
experimental configuration and programme, and
includes more details on costs. Another paper is
being prepared which describes the software fault
tolerance techniques developed for this project

{13].

Experimental System Configuration

The experimental system employs three DEC computers
configured as shown in figure 1. The command and
control system runs on a PDP-11/45, and receives
simulated sensor inputs from the simulator system
running on an LSI-11/23. The simulator stores a
representation of the tactical environment which is
updated according to a predefined scenario file.
Another PDP-11/45 provides file service facilities:

scenarios for the simulator, and file storage to
log the monitoring data generated by the command
and control system.

All project software was written in the CORAL

language, supported by a project developed MASCOT
[14] executive. In particular the command and
control system contained 8000 lines of CORAL source
code structured into 14 concurrent activities,
interacting as indicated in figure 2. To maximise
the realism of this software, the Royal Navy
participated in the high level design, programs
were developed in  accordance with  MASCOT
techniques, and documented to the MoD standard for
miltary systems (JSP-188).
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The command and control system interacts with an
operator and maintains a simulated radar display
overlaid with tracking information. Using this
information the operator can conduct an attack on a
hostile submarine by means of a helicopter armed
with a torpedo.

The provision of software fault tolerance in the
command and control system was based on the use of
recovery blocks [6] and “dialogues” [13]. The
dialogue notation provides a form of restricted
conversation [1] which supports a static recovery
structure for concurrent activities, while still
permitting inter—process communication. Appropriate
extensions and constraints were incorporated into
the MASCOT executive to enable acceptance checks
and alternative modules to be included in the
command and control system. Backward error recovery
[3] was provided by a prototype hardware recovery
cache device [15]) developed by a previous project.

Conduct of the Experimental Programme

The experimental programme consisted of rumning a
number of typical scenarios on the command and
control system. Each time an error was detected the
operator would log the incident, and attempt to
identify the fault which caused the error. The run
would then continue, and the outcome of the
incident (successful recovery or system failure)
would be recorded. Monitoring routines within the
system recorded data on all recovery and failure
events, and this data was wused to assist in
classifying the events.
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2 MASCOT ACP Diagram of the Command and Control Subsystem




The system was provided with a means of disabling
the fault tolerance features. It was originally
intended that each experiment would consist of a
pair of runs, one conducted with fault tolerance
enabled, the other with fault tolerance switched
off. The intention was that the unrecoverable run
would proceed along a similar path to the fault
tolerant run until an  event occurred. The
unrecoverable run would then provide data on the
consequences of that event in a non-fault tolerant
system. A test exerciser sub-system (automatic
operator) was constructed to run in con junction
with the command and control software in an attempt
to provide a consistent operator reaction and
thereby ensure repeatability. Experience soon
showed, however, that the system did not provide
the levels of repeatability required for such a
method, and that two runs started in a similar
manner were likely to follow quite different paths.
The causes of this lack of repeatability are well
understood, and centre around the unpredictability
of the external interfaces to the command and
control system. In particular, the communications
protocol used to interface with the simulator
(which wuses a combination of checksums, timeouts
and re-transmissions to ensure that no messages are
lost or corrupted) is such that the ordering of the
stream of messages from the simulated environment
cannot be guaranteed to be the same for two rums
conducted under similar conditions. Because of
these problems fewer non-fault tolerant runs were
performed, and these were used to provide
information which could be used to predict the
effects of an event on a non-fault tolerant system.

Experimental Programme Results

The results from the experimental programme are
presented in two sections; the first section gives
a summary of the events which occurred in the fault
tolerant runs only, whereas the second section
presents overall statistics on both sets of runs.

Summary of the Fault Tolerant Runs

An “event” in a fault tolerant run is either an
observed failure, or the detection by internal
checks of a suspected error in the state of the
system. Events were grouped into eight categories
(enumerated in the tables below); it should be
noted that in comparison with the non-fault

tolerant version of the system, events in category
1 constituted an improvement in reliability, events

in categories 2-5 produced no change in
reliability, but events in categories 6 and 7
resulted in a deterioration in reliability.

The classification of events was performed at two

The first of these represents
being based on
on the
unclear

second

levels of certainty.
a very high level of confidence,
observation of the effects of the events

system. Any event producing uncertain or

effects was placed in category 8. At the
level, the events in category 8 were allocated to
the other categories according to the
experimenters” judgement. The tables provide counts
of the events in each category; figures in brackets

record the second level counts which are less
certain (although in practice the placings were
made with a high degree of confidence).

Two cases are presented; the first covers all
events whereas the second only includes the first
event from each run. This distinction is made to
factor out any events which might arise due to the
inclusion of events which occurred after the non-—

fault tolerant system would have failed.
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The total number of fault tolerant runs

undert
was 43. aken

Summary of All Events in Pault Tolerant Runs

1. Events which produced recovery

which averted failure 40 (40)
2. Events in which recovery occurred

unnecessarily, but no failure resulted 4 ( 6)
3. Events in which a successful recovery

took place, but the system failed 0 (0)
4. Events in which recovery was defective

and the system failed 13 (14)
5. Events in which the system failed

without recovery being attempted 0 (0)
6. Events in which a defective recovery

caused the system to fail 3 (4
7. Failures due to fault tolerance in

which recovery was not attempted 1 (1)
8. Events for which the outcome is unclear 4 ( 0)

Total events: 65

Thus 40 events yielded an improvement, 17 events
produced no change, and 4 events resulted in a
deterioration of the reliability of the fault
tolerant system in comparison with the non-fault

tolerant version.

Summary of First Events in Fault Tolerant Runs

1. Events which produced recovery which

averted failure 7 C17)
2. Events in which recovery occurred

unnecessarily, but no failure resulted 4 (6)
3. Events in which a successful recovery

took place, but the system failed 0 (0)
4. Events in which recovery was defective

and the system failed 9 (10)
5. Events in which the system failed

without recovery being attempted 0 (0)
6. Events in which a defective recovery

caused the system to fail 2 (3
7. Failures due to fault tolerance in

which recovery was not attempted 1 (L
8. Events in which the outcome is unclear 4 (0)

Total first events: 27

Comparative Data for Fault Tolerant and Non-Fault
Tolerant Runs

Data in the previous section relates solely to runs
of the fault tolerant version of the system, aund
assessment of the impact of fault tolerance on
system reliability depends upon an analysis and
categorisation of the events which took place. 1In
this section, data is presented which enables a
direct comparison to be made between the overall
reliability of the two versions of the system. This
may seem to provide a superior approach to
comparative evaluation, but the reader is cautioned
that due to a variety of factors (discussed below)
the implications to be drawn from this data must be



stated less firmly than those based on the data of
the preceding section.

The following table presents, for both versions of
the command and control system, a summary of the
entire experimental programme. It records the total
number of experimental runs of each system, the
total elapsed time during the execution of these
runs, the total number of failures which occurred,
and the number of runs which were completed without
a failure of the command and control system (i.e.
either completion of the scenario or premature
termination due to a failure elsewhere).

Fault Tolerant Non-Fault Tolerant

Total runs 43 17
Total run time 50423 sec. 28057 sec.
Total failures 19 25
Failure-free runs 24 8

A number of points must be taken into consideration
when analysing this data:

1. Firstly, the
considered. A

of a run should be
with a period of
relative inactivity, during which little other
than object and screen wupdating and object
classification takes place, and during which
very few events occur. This is followed by a
phase during which the system supplies the
operator with information enabling him to guide
an armed helicopter to engage a target
submarine. This phase is referred to as a
"yectac"” (vector and attack) and is a period of
intense activity during which events are much
more likely to occur. After the vectac, the
system returns to relative inactivity until
either a further vectac takes place or the run
is stopped. During the experimental programme,
in order to restrict runs to a manageable
duration, and to ensure an adequate rate of
occurrence of events, the periods of inactivity
before and after a vectac were artificially
curtailed. This was done by running the
simulation in fast run” mode until shortly
before the vectac was due to commence, then
ending the run shortly after the vectac had
completed (assuming that the system continued to
run until this point). This curtailment has the
effect that, since the system is 1likely to
suffer few, if any, failures during periods of
relative inactivity, any reliability
measurements based on timing figures (for
example MTBF) will appear far worse than they
otherwise would. Thus, such figures might give a
less favourable impression than figures for the
proportion of events successfully recovered.

nature
run begins

2. The lack of repeatability between runs (see
section 3), the consequent lack of a one to one
correspondence between fault tolerant and non-
fault tolerant runs, and the divergence of the
two systems when an event occurs, means that the
implications of a direct comparison between the
two systems are not as definitive as are the
experimental results presented in the previous
section.

3. The figures are heavily weighted by one
particular run in which 16 of the total of 25
non-fault tolerant failures occurred. This run
was in no way a “freak”; all the failures were
explained by known faults. However, the
frequency of occurrence of such runs will
clearly affect the overall system reliability.
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Unfortunately, there is insufficient data from
the non-fault tolerant runs to deduce the
probability that such a run will occur.

Analysis of Results

A number of different approaches can be adopted for
estimating the increase in reliability which can be
attributed to the provision of fault tolerance in
the command and control system. Three approaches,
characterising different aspects of reliability,
are presented in the following sections. The first
approach 1is based on estimating the “coverage”
achieved by the fault tolerance techniques; that
is, what proportion of potential failures are
successfully averted thanks to software fault
tolerance? The second approach provides a direct
estimate of the mean time between failures for both
versions of the system, while the third quantifies
the proportion of missions successfully completed
for the two versions of the system. A final section
endeavours to estimate what results would have been
obtained if the recovery mechanisms had been much
more reliable.

Coverage Analysis

One measure of the effectiveness of the wuse of
software fault tolerance in the demonstration
system is a direct estimation of the proportion of
failures which would have occurred in the non-fault

tolerant version of the system which do not occur
in the fault tolerant version of the system. To be
a little more precise, given that a situation

arises in which the non-fault tolerant system would
fail, what is the probability that the fault
tolerant system is able to continue operating
without failing? The advantage of this approach is
that the required probability can be estimated from
the event count tables of the previous section, and

this data is entirely discrete in nature. The
probability is calculated as the ratio

Number of failures averted

Number of potential failures
A detailed calculation is presented for the data
covering all events, since this is considered to
provide the most satisfactory evaluation,
addressing all events of the fault tolerant system

on each experimental run.

Coverage of All Events

the data for all events, the total number of

in fault tolerant runs was 65. Using the
figures for high confidence of classification, 12
of these events are disregarded (initially),
specifically 4 events in which the outcome is
unclear (category 8), 4 events in which spurious
recovery occurred (catgory 2) and 4 events in which
a failure was caused by defective fault tolerance
(categories 6 and 7). The remaining 53 events all
constitute situations where the system would fail
in the absence of fault tolerance. Of these 53
events, only 13 failures actually occurred in the
fault tolerant system (categories 3, 4 and 5)
since for 40 of the events recovery was invoked and
failure was averted (category 1).

From
events

Thus the probability of success (coverage) should
be estimated as 40/53, which is approximately 0.75.
This 1s the maximum likelihood estimate. A Bayesian
analysis using the Beta distribution indicates that
the value estimated can be asserted to exceed 0.67
with 90% confidence.

These figures should be abated to take into account
the four failures caused by fault tolerance. The



simplest approach regards these failures as "own
goals” and subtracts them from the successes of
category 1. An amended coverage estimate of 36/53
(i.e. 0.68) is then obtained.

Very similar results are obtained if the slightly
less certain categorisation counts are used (those
in brackets in the event count tables). The initial
coverage ratio 1is then 40/54 (0.74), but five
failures are now blamed on fault tolerance and so
the adjusted coverage estimate falls to 0.65.

In summary, the above analysis shows that
approximately 70% of potential software failures
were prevented by the use of fault tolerance
techniques in the command and control system
software. This very encouraging result is perhaps
the single most important finding of this research
project.

Coverage up to First Event

The total number of first events in fault tolerant
runs was 27. Using the high confidence data the
initial estimate of coverage is determined as the
ratio of category 1 divided by the sum of
categories 1,3,4 and 5. This yields 7/16 giving a
maximum likelihood estimate of 0.44, and a Bayesian
90% confidence point of 0.29. Allowing for failures
induced by fault tolerance yields a  coverage
estimate of 0.25. The estimates derived from the
less certain categorisation data are 0.41, and 0.18
allowing for induced failures.

In summary, this analysis shows that over 40% of
potential software failures were prevented by means
of fault tolerance even when only the first
successful recovery in an experimental run is
counted. The reduction in the estimate of coverage
obtained from this section compared with that for
all events suggests that after a first successful
recovery had taken place further (possibly related)
successful recoveries were likely to occur. Careful
examination of the raw experimental data supports
this contention. However, the count of failures
actually caused by the provision of fault tolerance

has a much greater impact on the results of this
section. In fact, these failures can all be
attributed (at least in part) to deficiencies in
the implementation of the supporting recovery
mechanisms. Results from which these effects have
been eliminated are presented at the end of this
section.
Failure Rate Analysis
Simple arithmetic applied to the table of timing
and failure data yields the following results:
Failure rate for the fault
tolerant system: 1.36 per hour
Failure rate for the non-

fault tolerant system: 3.21 per hour
Ratio (fault tolerant / non-
fault tolerant): 0.42

Making the standard, though often unjustified,
assumption that the mean time between failures
(MTBF) can be calculated as the reciprocal of the
failure rate, yields the following alternative
presentation of these results.

MTBF for fault tolerant

system: 0.74 hours
MTBF for non-fault tolerant
system: 0.31 hours

Ratio (fault tolerant / non-
fault tolerant): 2.36
These results may be compared with those of the
previous section by using the change in failure
rate to provide an estimate for the coverage of
failures by means of fault tolerance.

0.58

Failure coverage: 3.21 - 1.36 =
T3z

This value of 0.58 should be compared with
ad justed coverage estimate of 0.65 obtained
for all events.

the
above
The agreement is reasonably close,
and the measurements are mutually supportive.
However, it should be remembered that the
comparison between the fault tolerant and non-fault
tolerant runs is by no means exact, because of the
inability to precisely repeat any individual run.

Successful Missions

A further comparison between the two versions of
the system may be made by examining the proportion
of runs which were completed without a failure

arising from the command and control system. Again,
from the timing and failure data, it can be seen
that the fault tolerant system is more reliable,
though the improvement is much less marked.

Proportion of fault tolerant runs

which completed without failing: 56%
Proportion of non-fault tolerant runs

which completed without failing: 477
Ratio (fault tolerant / non-fault

tolerant) 1.19

Improved Recovery Mechanisms Projection

A substantial number of the failures which occurred
during the fault tolerant runs were due to faults
arising in the recovery mechanisms, either in the
hardware recovery cache or the MASCOT recovery
routines. This was perhaps to be expected in view
of the prototype and problematic nature of the
recovery cache, and because the MASCOT routines
could not be comprehensively tested in advance due
to resource limitations. In an operational system
such failures could certainly be expected to occur
very much less frequently, if at all, since the
recovery hardware and software should be developed
to stringent reliability standards. (The higher
development cost of constructing reliable recovery
mechanisms would be justified by their use in many

projects as well as their crucial role.) Thus in
this section an attempt is made to assess the
outcome of the experimental programme assuming
highly reliable recovery mechanisms. It can be
argued that these figures give a more accurate
estimate of the benefits which software fault
tolerance can achieve than the actual experimental

results presented in the preceeding sections.

The following figures were mnot explicitly achieved;

they are obtained from the experimental results by
eliminating 14 failures caused by defective
recovery.

Failure coverage over all events: 0.91

Failure rate for the fault
tolerant system: 0.36 per hour
MTBF for the fault tolerant

system: 2.80 hours



MTBF ratio (fault tolerant /

non-fault tolerant): 8.99
Comparative failure coverage 0.89
Proportion of fault tolerant runs

successfully completed: 88%
In view of the significant improvement potential

indicated by the above results it is planned to

debug the recovery mechanisms in the light of this
set of experiments, and then conduct a further
phase of experimentation to see if these figures
can be substantiated empirically.
Conclusion

The results of the previous section show clearly
that for this application, in these experiments,
the inclusion of software fault tolerance has
produced a significant increase in reliability.
Approximately 70% of software failures were
eliminated, whereas the mean time between failures
increased by about 135%. Furthermore, these
improvements were achieved despite the wuse of
essentially prototype hardware and software
recovery mechanisms. Ignoring failures introduced
by these mechanisms indicates that a failure
coverage of about 907 could be achieved, with a

nine-fold increase in MTBF.

Of course these gains were achieved at a cost, paid

in capital costs to support fault tolerance,
development costs to incorporate fault tolerance,
and run time and storage overheads incurred by

utilising fault tolerance.

The capital cost for supporting fault tolerance
consisted of the cost of acquiring a hardware
recovery device, for developing recovery software
and incorporating this in the MASCOT operating
system, and devising an interface by which
dialogues and recovery blocks could interact with
the operating system. The project expended
approximately 1000 man-hours on these tasks, but
the aim for the future would be that recovery
facilities should be available systems for
critical applications on payment of a limited
premium to the system manufacturer.

on

The supplementary development cost of incorporating
fault tolerance in the command and control system
was approximately 60%. This covered the provision
of the acceptance tests and alternate modules used
in recovery blocks and dialogues. The figure of 60%
is probably rather high, reflecting the novelty of
the techniques employed and their unoptimised
utilisation in this particular application. Against

the increased development cost must be offset any
gains resulting in economies in testing the
software.

Overheads in system operation were measured as: 337%
extra code memory, 357% extra data memory and 407
additional run-time (though the system still had to
meet its real-time constraints). The run-time
overhead was incurred largely as a penalty for the

synchronisation of processes for consistent
recovery capability; data collection for state
restoration purposes only contributed about 107 of
the run-time overhead. By tuning the system to

optimise its real-time response this overhead could
be substantially reduced.

Thus, by means of software fault tolerance, a
significant and worthwhile increase in software
reliability was achieved at acceptable cost for a
complex real-time system.
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