
I/O System

The I/O system communicates with the hardware at the
lowest level.

The I/O system consists of:

1. General device driver code

2. Device driver code for specific hardware units

3. A block buffer cache for the file systems

The I/O system also defines a common interface to the
other parts of the operating system.

An important function for the I/O system is to hide the
details in the different hardware units from the main part of
the kernel.

1

UNIX I/O System

There are two main categories of I/O units in UNIX, block
devices and character devices.

In addition there are sockets that are used for network
communication.

Block devices

• Devices that addresses blocks of a fixed size, usually
disk memories.

• Data blocks are buffered in the buffer cache.

• Block devices are usually called via the file system, but
are also available as special files (for example
/dev/hde1).

Character devices

• Terminals and printers, but also everything else (except
sockets) that do not use the block buffer cache.

• There are for example /dev/mem that is an interface to
physical memory.

2



UNIX I/O System

• Device drivers are called via a switch table.

• There is one switch table for block devices and one for
character devices.

• A hardware device is identified by its type (block or
character) and a device number.

• Device numbers consist of two parts: major device
number and minor device number.

• Major device number is used as an index in the switch
table to locate the correct device driver.

• Minor device number is forwarded to the device driver
and used to select correct subunit. (For example correct
file system partition if the disk is divided in several
partitions).

3

Block Buffer Cache

• The goal for the block buffer cache is to reduce the
number of read and write operations to the disk
memory.

• If the same data are read several times within a short
period of time, only one disk access is needed.

• It often happens that written data are erased within a
short period of time. For example temporary files
produced by a compiler. These data may never need to
be written to the disk if the cache uses long enough
delay.

• However using a long delay in writing imposes a risk. If
the system crashes - all data that is not written to disk is
lost.

• To reduce the data loss in case of a system crash, the
command sync is run (usually with 30 second intervals)
to write all modified cache blocks to the disk.

4



Raw I/O Interface

• Most block devices also have a character device file.

• Character devices for block oriented devices are called
raw device interfaces.

• The difference between a block interface and a raw
interface is that the raw interface do not use the buffer
cache.

• With raw interfaces data is transfered directly from the
virtual address space in the process to disk controller.

• Raw interfaces are more efficient when reading large
amounts of data one time.

5

I/O Hardware

Many different types of I/O devices

Two different types of connections:

• point-to-point

• bus

In a typical PC (Fig. 13.1) external devices are connected
to a PCI bus.

A controller is an electronic chip or circuit board used to
operate a device.

Computers use two different methods to communicate with
controllers:

• Special I/O instructions

• Memory mapped registers

• Some systems, for example the PC, uses both methods

6



I/O Hardware - Polling

Read device register to determine state of device.

If the device is not ready:

• Use a busy-wait loop to wait for the device.

Usually ok for writing to fast devices that give short wait
times.

Not good for reading because the waiting may be for ever if
no data arrives.

7

I/O Hardware - Interrupts

• A controller signals the CPU that it needs attention by
generating an interrupt.

• An interrupt vector is usually used to direct the interrupt
to the correct handler routine.

• There exist several interrupt request lines to request
interrupts at different priority.

• The interrupt mechanism is also used to handle
exceptions.

8



I/O Hardware - DMA

• To avoid the need for the processor to copy all data from
the controller to the main memory - a DMA (Direct
Memory Access) controller can be used.

• A DMA controller contains logic that enables it to control
the data bus itself without help from the processor.

• When using a DMA controller - the processor allocates
a kernel data buffer and informs the controller to do a
data transport.

• The controller copies data from the device (disk
memory) to the main memory and generates an
interrupt when the transport is finished.

9

Blocking and Nonblocking I/O

• The UNIX system calls are normally blocking - that is
they do not return until the requested service is
completed.

• By using special options or special system calls also
nonblocking I/O is available.

• Nonblocking operations always returns immediately and
have a return parameter that reports the result of the
operation.

• Nonblocking I/O is needed by processes that wait for
data on more than one data channel at the same time.

• The life cycle of a typical blocking I/O operation is
illustrated in fig. 13.13

10



Protection

Objects can be hardware objects such as CPU,
memory segments and disks or software
objects such as files and programs.

Protection domain A process executes within a
protection domain, which specifies the
resources the process may access. Each
domain defines a set of objects and the type of
operations that may be invoked at each object.

• All access rights in a system can be described by an
access matrix.

• The rows of the access matrix represents domains and
the columns represent objects.

• Each entry in the matrix consists of a set of access
rights.

• The complete access matrix for a system is usually very
big, but most of the entries are empty. For this reason
only a part of the matrix is stored.

11

Access Lists

• Each column of the access matrix can be implemented
as an access list for one object.

• The access list consists of ordered pairs <domain,
access rights>, which defines all domains with a
nonempty set of access rights for that object.

• This method is used by the Andrew file system and by
NTFS.

• The UNIX standard file systems use a simplified variant
of access list with only three domains (user, group,
others) and three access rights (read, write, execute).

12



Capability Lists

• If the protection is based on the rows in the access
matrix, a capability list is associated with each domain.

• A capability list for a domain is a list of objects
together with the access rights for each object.

• A capability specifies an access right for a specific
object.

• The possession of the capability gives access right.

• The capability lists are protected by the kernel and are
not directly accessible by the processes.

• Capabilities are often named by their position in the
capability list. This naming method is very similar to the
file descriptors in UNIX.

• A capability can usually be transferred from one process
to another and in this case the rights associated with
the capability is transferred to the new process.

13

Revocation of Access Rights

With an access-list scheme, revocation is easy:

• Search the access list for the access right and remove
or modify it.

Capabilities creates much more problems related to
revocation.

Some possible solutions:

• Reacquisition - Periodically capabilities are deleted
from each domain.

• Back-pointers - A list of pointers is maintained with
each object, pointing to all capabilities for the object.
General solution, but expensive to implement.

• Indirection - Each capability points to an entry in a
global table that point to the object. When revoking
access rights this table is searched and the entry is
deleted.

14


