

Recall:
Multiprocessor Scheduling: a problem

Thread A, running

N
.
CPUO Ag B, Aq B, Ag B,
E F{equést 1 : equest ;2 ' : :
| i eply 1 | Reply 2 | |
CPU 1 B, A, B, A, B, A,
Time 0O 100 200 300 400 500

Problem with communication between two threads
both belong to process A
both running out of phase

Scheduling and synchronization inter-related in
multiprocessors

600

The Priority InversionProblem

Uncontrolled use of locks in RT systems Limit priority
can result in unbounded blocking due to Inversions by modifying task
priority inversions. priorities.

High |

Med

o 4ot Time —» t ot ot Time —>»

- lock -Priority Inversion -Computation not involving shared object accesses

3

Scheduling and Synchronization

Priorities + locks may result in:
priority inversion: To cope/avoid this:
use priority inheritance
Avoid locks in synchronization (wait-free, lock-free,
optimistic synchronization)
convoy effect: processes need a resource for short
time, the process holding it may block them for long
time (hence, poor utilization)
Avoiding locks is good here, too

The Mutual Exclusion Problem

Locking Synchronization

while true do

. Noncritical Section;
Nprocgsses, each Entry Section;
with this structure: Critical Section;

Exit Section

: : od
Basic Requirements:

- Exclusion: Invariant(# in CS < 1).

- Starvation-freedom: (process 7in Entry) leads-to
(process /in CS).

* Can implement by "busy waiting” (spin locks) or using
kernel calls.

Synchronization without locks

* The problem:
- Implement a shared object without mutual

exclusion. .
- Shared Object: A data structure (e.g., queue) shared 059

by concurrent processes.
- Why?
* To avoid performance problems that result when a
lock-holding task is delayed.
- To enable more interleaving (enhancing parallelism)
* To avoid priority inversions

Synchronization without locks

- Two variants:

- Lock-free:

- system-wide progress is guaranteed.

* Usually implemented using "retry loops."
- Wait-free:

- Individual progress is guaranteed.

* More involved algorithmic methods

Do~ ama /AN A mna Diaa] o oan
ReEAdErsS/s/ vvriliers TO Z M

[Courtois, et al. 1971.]

Similar to mutual exclusion, but several readers
can execute "critical section” at the same time.

- If awriter isinits critical section, then no
other process can be in its critical section.

- + no starvation, fairness

Solution 1

Readers have “priority”...

W, mutex: boolean semaphore Reader::
Initially 1 P(mutex);
rc.=rc+1;
If rc = 1 then P(w) fi;
Writer:: V(mutex);
P(w); CS;
CS; P(mutex);
V(w) rc.=rc-—1,
If rc = 0 then V(w) fi;
V(mutex)

“First” reader executes P(w). “Last” one executes V(w).

10

Concurrent Reading and Writing
[Lamport 77]

- Previous solutions to the readers/writers

problem use some form of mutual exclusion.

* Lamport considers solutions in which readers
and writers access a shared object
concurrently.

- Motivation:

- Don't want writers to wait for readers.

- Readers/writers solution may be needed to
implement mutual exclusion (circularity problem).

11

Interesting Factoids

* This is the first ever lock-free algorithm:
guarantees consistency without locks

* An algorithm very similar to this has been

implemented within an embedded controlier in
Mercedes automobiles

12

The Problem

Let vbe a data item, consisting of one or more
sub-items.

For example,
v= 256 consists of three digits, "2", "5", and "6".
String "I love spring” consists of 3 words (or 13 characters)
A book consists of several chapters

* Underlying model: subitems can be read and
written atomically.

* Objective: Simulate atomic reads and writes of
the data item v.

13

Preliminaries

Definition: V1 where /> 0, denotes the /™ value
written to v. (vl%is vs initial value.)

Note: No concurrent writing of v.

Partitioning of v v; --- v,
- To start, focus on v being a number
- v;may consist of multiple digits.

To read v: Read each v;(in some order).

To write v: Write each v, (in some order).

14

More Preliminaries

read r:
read v, read readv, readv,, --- read v,
® Lg ® ® @ |
I / \ | I
/ \ \
// \ !
/ \ !
! v _ \
|wr|te:k | |wr|te:k+| | |wr|te:l‘ |

We say: r reads vikl!l,

Value is consistent if k = 1.

15

Main Theorem

Assume that i < j implies that viI<vUl wherev=4d, ... d

ml

(a) If v is always written from right to left, then a read from left to
right obtains a value vkl < vlil,

(b) If v Is always written from left to right, then a read from right to
left obtains a value vik!l > vlkl,

16

Readers/Writers Solution

Writer:: Reader::

— —
V1:>VIi, repeat temp := V2
write D; read D

“— —

V2:=V1 until V1 = temp

:> means assign larger value.

% -
V1 means “left to right”.

e -
V2 means “right to left”.

17

Useful Synchronization Primitives

Usually Necessary in Nonblocking Algorithms

CAS(var, old, new) CAS?
CIf vaq_:& old-then return false fi; extends
var := new; :
return true) this
LL(var)

(establish “link” to var;
return var)

SC(var, val)
(If “link” to var still exists then
break all current links of all processes;

var ;= val:
return true
else

return false
fl) 18

Another Lock-free Example
Shared Queue

type Qtype = record v: valtype; next: pointer to Qtype end
shared var Tail: pointer to Qtype;
local var old, new: pointer to Qtype

procedure Enqueue (input: valtype)
new := (input, NIL);
repeat old ;= Tall
until CAS2(Tail, old->next, old, NIL, new, new)

next

ald |2 — Lnew

: - ald E1—1{ newl?

» =/

Cache-coherence

Procomos fll_‘ L E
|
cache coherency e [x1 = x
protocols are based 1 '
on a set of (cache Shand memoy
block) states and
.. Wrie-Invalkiate pretocol
state tfransitions : 2 [: — —
) Poosox | FL n Pn
main types of T T
protocols | | |
write-update St memon
write-invalidate Wehe-update peotocol

Reminds Cuches % |_E=L'

readers/writers?

Multiprocessor architectures, memory
consistency

Memory access protocols and cache coherence
protocols define memory consistency models

Examples:

Sequential consistency: e.g. SGI Origin (more and
more seldom found now...)

Weak consistency: sequential consistency for special
synchronization variables and actions before/after
access to such variables. No ordering of other
actions. e.g. SPARC architectures
Memory consistency also relevant at compiler-
level

i.e. The latter may reorder for optimization purposes

Multicomputers

Definition:

Also known as
cluster computers
clusters of workstations (COWSs)

illusion is one machine
Alternative to symmetric multiprocessing (SMP)

23

Clusters

Benefits of Clusters

Scalability
Can have dozens of machines each of which is a multiprocessor
Add new systems in small increments

Availability

Failure of one node does not mean loss of service (well, not
necessarily at least... why?)

Superior price/performance

Cluster can offer equal or greater computing power than a single
large machine at a much lower cost

BUT:
think about communicationll!
The above picture is changing with multicore systems

24

Multicomputer Hardware example

Node 1 Node 2
Main RAM Main RAM
Usef{ 5_ = >
7_ X A
OS { 5] [4 /5
N—e
Switch
Main RAM| Main RAM
Optional f I
on- board
CPU Interface
Node 3 Interface board Node 4
board
RAM

Network interface boards in a multicomputer

25

Clusters:
Operating System Design Issues

Failure management
offers a high probability that all resources will be in service
Fault-tolerant cluster ensures that all resources are always
available (replication needed)

Load balancing
When new computer added to the cluster, automatically include this
computer in scheduling applications

Parallelism
parallelizing compiler or application

e.g. beowulf, linux clusters

Distributed
shared storage

Linux
workstations

Cluster Computer Architecture

Network

Middleware layer to provide
- single-system image

- fault-tolerance, load balancing, parallelism

Client Workstation

Presemntation services

recueest

Hardware platfiorm

Applcation loglc it Application loglc
(client portiomn) (server portlon)
response
Communications R | Communications
software protocol software

imteractlion
Cliemnt Server
operating system operating sysbem

Hardware platfiorm

IPC

Client-Server Computing
Remote Procedure Calls

P2P collaboration (related to overlays, cf. advanced
networks and distr. Sys course)

Distributed shared memory (cf. advanced distr. Sys course)

28

Distributed Shared Memory (1)

Machine 1 Machine 2 Machine 1 Machine 2 Machine 1 Machine 2
Application Application Application Application Application Application
Run-time Run-time Run-time Run-time Run-time Run-time

system system system system system system

A

Operating Operating Operating Operating Operating Operating

system system system system system system

A
Hardware Hardware Hardware Hardware Hardware Hardware
Shared memory Shared memory Shared memory

(@) (b) (c)

* Note layers where it can be implemented

- hardware
- operating system

29
- user-level software

Distributed Shared Memory (2)

CPU 1 CPU 2
o
/ ____ _ Aand B are unrelated
Shared | A — " A 14— | shared variables that just
page B / \:‘ E': happen to be on the same page
Code using Code using
variable A variable B

~

Network

False Sharing
Must also achieve consistency
Both issues also in cache protocols

30

Multicomputer Scheduling
Load Balancing (1)

| | I |
Node1 | Node?2 | Node 3 Node 1 | Node 2 | Node 3
& |).:-4 -] € > | € Bt >

|
3 | 2 I 3
A —(B—= (O — ®)
|

* Graph-theoretic deterministic algorithm

31

W
I’'m overloaded
/;
)
Ly
%.
@
%
®
o
%
)
X
d)

- Sender-initiated distributed heuristic

algorithm
- overloaded sender

32

<
.Q,\\’“
0:25'
Q
S
Q
S
&
I'm free tonight

I'm bored
A

- Receiver-initiated distributed heuristic

algorithm
- under loaded receiver

33

Document-Based Middleware

Horthern University
Geogmphy
fHiztory

Langua gn s e

Main p.:ge-l’

Geoguaphy Dept

Big counties
Small counties
Aich counties
Poai counties

Humanities

Univeisiyof HothSauth
Schoaol of

Humanities

School of Social
Sciences

Science

Ashonamy
Biclogy

Chemizty
Physics \

Social sciences

Arthiopology
Payshology

SoSioloTy e—

Hu manities

Scimnces

Srimnem—

Scimnoces

-]

Srminl meimne——

Wain page Main page
Hiztony Dept. Languages Dept. Astionomy Dept. Biclogy Dept. Che mistry Dept. Physic= Dept. Amthiopclogy Dept. Psychology D=pt. Sociclogy Dept
Ancient times Englizh Galaxie= Amchnids Acids Election= Afiican tibes Fi=ud Cla== =tiuggle
Medizval times French Hebulas Mammals Bases Mesons Austalian tibes Rats Gender stiuggles
Madsin timss Dutch Planat= Piotozca Estais Heu tron= aw Guinean Genelic stuggle
Futue time= Fiisian Quasais Worms Fioteins Neutines tibes
Spanizh Star= PFiotans Social science=s

Social sciences

E.g. The Web

a big directed graph of documents

34

File System-Based Middleware

Single processor

1. Write "c"
Qriginal
_~ file

S

ab]c]
o
/

2. Read gets "abc"
(a)

(%
A
2. Write "c¢" /1' Read "ab"
\ File server
/
/3 . Read gets "ab"
Client 2

Needs consistency: local updatesvscentralized updates
Some issues similar to cache coherence
Semantics of File sharing and trade-offs

(a) single processor gives sequential consistency

35

(b) distributed system may return obsolete value

Shared Object-Based Middleware

Client _ Client stub Skeleton =~ Server
Client N Server
- —~
code code
Object 5
< ClientJoRB adaptar Server|ORB
Operating|system Operating/system
k lIOP protocol /

Network

E.g. CORBA based system

Common Object Request Broker Architecture;
ITOP: Internet InterORB protocol

36

Coordination-Based Middleware

E.g. via Linda system for communication & synch

independent processes
communicate via abstract tuple space
Tuple

like a structure in C, record in Pascal

("abc", 2, 9)
("matrix-1", 1, 6, 3.14)
("family", "is-sister", "Stephany", "Roberta")

Operations: out (insert), in (remove), read (without
removing) , eval (evaluate parameters)

E.g. Jini - based on Linda model
devices plugged into a network
offer, use services

37

That's all folks! © (for now)

Summary: OS takes cares of processes needs

memory, CPU, data, files, IO, synchronization,
resources,

We have seen methods and instantaitions in
maistream OS

Recall ...

38

Recall ...

After successful completion of the course
students will be able to demonstrate knowledge
and understanding of:

- The core functionality of modern operating systems.

- Key concepts and algorithms in operating system
implementations.

- Implementation of simple OS components.
The students will also be able to:

- Write programs that interface to the operating
system at the system-call level.

- Implement a piece of system-level code.

39

Exam

15 march, 8.30-12.30 M building

Welcome and best wishes from the course
support team!

Thank youl %%
Z

40

41

Also of relevance to Distributed Systems (and more):
Microkernel OS organization

Small OS core; contains only essential OS functions:

- Low-level memory management (address space mapping)

- Process scheduling

- I/0 and interrupt management
Many services traditionally included in the OS kernel are now
external subsystems

- device drivers, file systems, virtual memory manager, windowing
system, security services

Lser

Users
Mode

File System

Lser

Interprocess Communication
[J' LITLK I Mode

Kernel
Mode

2EnE =REms=-

/O and Device Management

e

Virtual Memory

Kernel
Mode

5 r e

HARDWARE

Primitive Process Management

42

(a) Layered kernel (b)) Microkernel

Benefits of a Microkernel Organization

Uniform interface on request made by a process

All services are provided by means of message passing
Distributed system support

Messages are sent without knowing what the target machine is
Extensibility

Allows the addition/removal of services and features
Portability

Changes needed to port the system to a new processor is changed in
the microkernel - not in the other services

Object-oriented operating system

Components are objects with clearly defined interfaces that can be
interconnected

Reliability
Modular design;
Small microkernel can be rigorously tested

43

Schematic View of Virtual File System

file-system interface

l

VFS interface

|

local file system
type 1

Y

local file system
type 2

|

remote file system
type 1

44

client server

system-calls interface

v

VFS interface l — VFS interface l

y y y l

T [e s =
Network interface: l T
client-server protocol
. Uses UDP (over IP RPC/XDR I RPC/XDR I
over -most commonly- ~—
ethernet) disk l disk
* Mounting and caching network

45

Solution 2 readers writers

Writers have “priority” ...
readers should not build long queue on r, so that writers can overtake =>

mutex3

Reader::
P(mutex3);
P(r);
P(mutexl);
rc:=rc+1,
If rc =1 then P(w) fi,
V(mutex1);
V(r);
V(mutex3);
CS;
P(mutexl);
rc:=rc-1,
If rc =0 then V(w) fi;
V(mutex1)

Writer::
P(mutex2);
wc :=wc + 1;
If we =1 then P(r) fi;
V(mutex2);
P(w);
CS;
V(w);
P(mutex2);
WC :=wcC — 1;
If we = 0 then V(r) fi;
V(mutex2)

Properties

If several writers try to enter their critical
sections, one will execute P(r), blocking readers.

Works assuming V(r) has the effect of picking a
process waiting to execute P(r) to proceed.

Due to mutex3, if a reader executes V(r) and a
writer is at P(r), then the writer is picked to
proceed.

47

48

Theorem 1

If v is always written from right to left, then a read from left to right obtains a value

Vl[kl’ll] Vz[kZ’IZ] L Vm[km,lm]

where k, <I, <k, <1, < ... <k, <.
l

Example: v =v,v,v; =d,d,d,

| read v, read read vy |
read: ® =2 ®
| ! read d, , readd, ,, read d, |
/

/ ! |

/ I |

/ I |

y wl/
write:0 |—@—@ write:1 | *—o write:2 | *—o

| wd, wd, wd, wd; wd, wd, wd; wd, wd,

Read reads v, 001y, [1.1y,[2.2],

49

Another Example

V=V, V,
(I | E—
readv, readv
dyd; dsd, | — 2 |
read: | oo
", rdy - nd, 1
WV, WV, | oW, S WV, . WV, Wy,
|'o¢"e+’"io¢1 —o—e—o—o—
| wd, wd, wd;, wd,) ! wd; wd, wd; wd,

| wd, wd, wd; wd,
write:2

write:0

Read reads v,[01y,[1.2],

- Assume reader reads vaix. 41plk. L1k Al

Proof Obligation: V2[4 11=VII&B B8l= k, = /.

o1

By Theorem 2,
2kl < /201 gnd V1lksl <\/1kks.I3] (1)
Applying Theorem 1 to V2 D V1,
ky <1<k, <1, <k; <. (2
By the writer program,
|, <k, = V2l <Vvilksl, (3)

(1), (2), and (3) imply
V2lkull < \/201 < \/1kal <\/1lkala]
Hence, V2lkilil = \/1[kala] — \/201] = \/1[k3]

=1, = kg , by the writer’s program.

—k,=1, by (2).
52

Example of (a) in main theorem

v = d,d,d,
| read d, read read d
read: | ° d.g ® I
/ I
/ II I
/ 1 I
/ 1 I
/I I I
el PR ey
| 8 9 13 | 9 9 3 | 0 0 4
write:0(398) write:1(399) write:2(400)

Read obtains vi92 = 390 < 400 = v!2],

53

Example of (b) in main theorem

v = d,d,d,
| read d, read read d,
read: | ° d.g ® I
/ I
/ II I
/ 1 I
/ 1 I
/I I I
P R e
'3 9 3 '3 9 9 4 0 0
write:0(398) write:1(399) write:2(400)

Read obtains vi©2 = 498 > 398 = vI0],

o4

Supplemental Reading lock-free synch

check:

G.L. Peterson, "Concurrent Reading While Writing”,
ACM TOPLAS, Vol. 5, No. 1, 1983, pp. 46-55.

Solves the same problem in a wait-free manner:
guarantees consistency without locks and
the unbounded reader loop is eliminated.

First paper on wait-free synchronization.

Now, very rich literature on the topic. Check
also:

PhD thesis A. Gidenstam, 2006, CTH

PhD Thesis H. Sundell, 2005, CTH %

Using Locks in Real-time Systems

The Priority Inversion Problem
Uncontrolled use of locks in RT systems Limit priority inversions

can result in unbounded blocking due to by modifying task priorities.
priority inversions.

High |

Med

Low - l l > Low -_F >
| ||
t

o 4ot Time —» t ot ot Time —>»

- Shared Object Access -Priority Inversion -Computation not involving object accesses

56

Dealing with Priority Inversions

Common Approach: Use lock-based schemes that bound their
duration (as shown).

Examples: Priority-inheritance protocols.

Disadvantages: Kernel support, very inefficient on
multiprocessors.

Alternative: Use non-blocking objects.
No priority inversions or kernel support.
Wait-free algorithms are clearly applicable here.
What about lock-free algorithms?
Advantage: Usually simpler than wait-free algorithms.
Disadvantage: Access times are potentially unbounded.

But for periodic task sets access times are also
predictablell (check further-reading-pointers)

o7

Key issue in load balancing:
Process Migration

Transfer of sufficient amount of the state of a process from one machine to
another; process continues execution on the target machine (processor)

Why to migrate?
Load sharing/balancing

Communications performance

Processes that interact intensively can be moved to the same node to reduce
communications cost

move process to where the data reside when the data is large
Availability

Long-running process may need to move if the machine it is running on will
be down

Utilizing special capabilities
Process can take advantage of unique hardware or software capabilities

Initiation of Migration
Operating system: When goal is load balancing, performance optimization,
Process: When goal is to reach a particular resource

58

What is Migrated?

Must destroy the process on source system and create it on target
system; PCB info and address space are needed
Transfer-all: Transfer entire address space

expensive if address space is large and if the process does not need
most of it

Modification: Precopy: Process continues to execute on source node
while address space is copied

Pages modified on source during pre-copy have to be copied again
Reduces the time a process cannot execute during migration

Transfer-dirty: Transfer only the portion of the address space
that is in main memory and has been modified

additional blocks of the virtual address space are transferred on
demand

source machine is involved throughout the life of the process

Variation: Copy-on-reference: Pages are brought on demand
Has lowest initial cost of process migration

59

