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Recall: 
Multiprocessor Scheduling: a problemMultiprocessor Scheduling: a problem

P bl m ith mm ni ti n b t n t  th ds• Problem with communication between two threads
– both belong to process A
– both running out of phase
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g f p
• Scheduling and synchronization inter-related in 

multiprocessors



The Priority Inversion Problem

Uncontrolled use of locks in RT systems Possible solution: Limit priorityUncontrolled use of locks in RT systems
can result in unbounded blocking due to
priority inversions.

Possible solution: Limit priority 
Inversions by modifying task 
priorities.

High High

Med Med

Low Low

Timet t t0 1 2

lock Priority  Inversion

Time t0 t1 t 2

Computation not involving shared object accesses
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Scheduling and Synchronizationg y

Priorities + locks may result in:y
priority inversion: To cope/avoid this:

– use priority inheritance
id l k  i  h i i ( i f  l k f  – Avoid locks in synchronization (wait-free, lock-free, 

optimistic synchronization)
convoy effect: processes need a resource for short c n y ff ct  pr c  n  a r urc  f r h rt 

time, the process holding it may block them for long 
time (hence, poor utilization)

A idi  l k is d h  t– Avoiding locks is good here, too
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Readers Writers and Readers-Writers and 
non-blocking synchronization

(some slides are adapted from J. Anderson’s slides on 
same topic)
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The Mutual Exclusion Problem
Locking Synchronization

hil t d

• N processes, each 
ith this st t :

while true do
Noncritical Section;
Entry Section;

with this structure: Critical Section;
Exit Section

odBasic Requirements:• Basic Requirements:
– Exclusion: Invariant(# in CS ≤ 1).

St ti f d : ( ss i i  E t ) l ds t  – Starvation-freedom: (process i in Entry) leads-to 
(process i in CS).

• Can implement by “busy waiting” (spin locks) or using 
kernel calls.
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Synchronization without locksy

• The problem:
– Implement a shared object without mutual mp m nt a har  j ct w th ut mutua  

exclusion.
• Shared Object: A data structure (e.g., queue) shared 

b   

Locking
by concurrent processes.

– Why?
T  v id p rf rm nc  pr bl ms th t r sult h n  • To avoid performance problems that result when a 
lock-holding task is delayed.

• To enable more interleaving (enhancing parallelism)g g p
• To avoid priority inversions
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Synchronization without locksy

• Two variants:
– Lock-free:L c fr

• system-wide progress is guaranteed.
• Usually implemented using “retry loops.”

– Wait-free:
• Individual progress is guaranteed.

 l d l h  h d• More involved algorithmic methods
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Readers/Writers ProblemReaders/Writers Problem

[Courtois   et al  1971 ][Courtois,  et al. 1971.]
• Similar to mutual exclusion, but several readers 

 t  “ iti l s ti ” t th  s  tican execute “critical section” at the same time.
• If a writer is in its critical section, then no 

other process can be in its critical section.
• + no starvation, fairness 
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Solution 1
Readers have “priority”…

Reader::
P(mutex);

w, mutex: boolean semaphore
Initially 1 P(mutex);

rc := rc + 1;
if rc = 1 then P(w) fi;

Initially 1

V(mutex);
CS;
P( t )

Writer::
P(w);
CS P(mutex);

rc := rc − 1;
if rc = 0 then V(w) fi;

CS;
V(w)

if rc  0 then V(w) fi;
V(mutex)
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“First” reader executes P(w).  “Last” one executes V(w).



Concurrent Reading and Writing
[L t ‘77][Lamport ‘77]

Previous solutions to the readers/writers • Previous solutions to the readers/writers 
problem use some form of mutual exclusion.

• Lamport considers solutions in which readers 
and writers access a shared object j
concurrently.

M ti ti• Motivation:
– Don’t want writers to wait for readers.

/  l      – Readers/writers solution may be needed to 
implement mutual exclusion (circularity problem).
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Interesting Factoidsg

• This is the first ever lock-free algorithm: This is the first ever lock free algorithm: 
guarantees consistency without locks

• An algorithm very similar to this has been 
i l t d ithi   b dd d t ll  i  implemented within an embedded controller in 
Mercedes automobiles
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The Problem

• Let v be a data item, consisting of one or more 
sub-items.
– For example, 

• v = 256 consists of three digits, “2”, “5”, and “6”.
• String “I love spring” consists of 3 words (or 13 characters)

A b k i t  f l h t• A book consists of several chapters
• ….

• Underlying model: subitems can be read and 
written atomically.m y

• Objective: Simulate atomic reads and writes of 
13

the data item v.



Preliminaries

• Definition: v[i], where i ≥ 0, denotes the ith value 
written to v. (v[0] is v’s initial value.)

• Note: No concurrent writing of v• Note: No concurrent writing of v.

• Partitioning of v: v1 L vm.g 1 m
– To start, focus on v being  a number
– vi may consist of multiple digits.i y p g

• To read v: Read each vi (in some order).

• To write v: Write each vi (in some order).
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More Preliminaries

read r:

z z z z z
read v3 read 

v2

read vm-1read v1 read vmL

write:k write:k+i write:l
L L

We say: r reads v[k,l].

Value is consistent if k = l.
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Main Theorem

Assume that i ≤ j implies that v[i] ≤ v[j] where v = d dAssume that i ≤ j implies that v[ ] ≤ v[j], where v = d1 … dm.

(a) If v is always written from right to left, then a read from left to( ) y g ,
right obtains a value v[k,l] ≤ v[l].

(b) If i l i f l f i h h d f i h(b) If v is always written from left to right, then a read from right to
left obtains a value v[k,l] ≥ v[k].

discuss why
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Readers/Writers Solution

Writer::
→

Reader::
→→

V1 :> V1;
write D;
←

→
repeat temp := V2

read D
←
V2 := V1

←
until V1 = temp

:> means assign larger value.

→
V1 means “left to right”.

←
V2 means “right to left”.
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Useful Synchronization Primitivesy
Usually Necessary in Nonblocking Algorithms

CAS2CAS(var, old, new) CAS2
extends
this

( , , )
〈 if var ≠ old then return false fi; 
var := new;
return true 〉return true 〉

LL(var)
〈 establish “link” to var;〈 establish link  to var;

return var 〉

SC(var, val)( , )
〈 if “link” to var still exists then

break all current links of all processes;
var := val;var :  val;
return true

else
return false
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return false
fi 〉



Another Lock-free Examplen r L fr  E amp
Shared Queue

type  Qtype = record v: valtype; next:  pointer to Qtype end
shared var Tail:  pointer to Qtype;
local var old new: pointer to Qtypelocal var old, new: pointer to Qtype

procedure Enqueue (input: valtype)
new := (input NIL);new := (input,  NIL);
repeat  old := Tail
until  CAS2(Tail, old->next, old, NIL, new, new) retry loop

ld ldne

Tail

old

Tail

oldnew new
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Cache-coherence

cache coherency 
protocols are based 
on a set of (cache 
block) states and 
state transitions : 2 
main types of 
protocols

• write-update 
• write-invalidatewrite invalidate

R i d  
20

• Reminds 
readers/writers? 



Multiprocessor architectures, memory 
nsist nconsistency

• Memory access protocols and cache coherence 
protocols define memory consistency models

• Examples:p
– Sequential consistency: e.g. SGI Origin (more and 

more seldom found now...)
– Weak consistency: sequential consistency for special 

synchronization variables and actions before/after 
access to such variables. No ordering of other 
actions. e.g. SPARC architectures

M  i  l  l   il• Memory consistency also relevant at compiler-
level 
– i.e. The latter may reorder for optimization purposes
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Distributed OS issues: 
IPC: Client/Server, RPC mechanisms 
Clusters  load balncing  MiddlewareClusters, load balncing, Middleware



Multicomputersp

• Definition:• Definition:
Tightly-coupled CPUs that do not share memory

• Also known as
clust  c mput s– cluster computers

– clusters of workstations (COWs)

– illusion is one machine
Alt ti  t  t i  lti i  (SMP)– Alternative to symmetric multiprocessing (SMP)
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Clusters

Benefits of Clusters
• Scalability

– Can have dozens of machines each of which is a multiprocessor
– Add new systems in small incrementsy

• Availability
– Failure of one node does not mean loss of service (well, not 

necessarily at least… why?)necessarily at least… why?)
• Superior price/performance

– Cluster can offer equal or greater computing power than a single 
large machine at a much lower costlarge machine at a much lower cost

BUT:
• think about communication!!!

Th  b  i  i  h i  i h l i  • The above picture is changing with multicore systems
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Multicomputer Hardware examplep p

Network interface boards in a multicomputer
25

Network interface boards in a multicomputer



Clusters: 
Op tin  S st m D si n Iss sOperating System Design Issues

Failure management
• offers a high probability that all resources will be in service
• Fault-tolerant cluster ensures that all resources are always 

available (replication needed)available (replication needed)
Load balancing
• When new computer added to the cluster, automatically include this p , y

computer in scheduling applications
Parallelism
• parallelizing compiler or application
e.g. beowulf, linux clusters
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Cluster Computer Architecturep
• Network

Middl  l t  id  • Middleware layer to provide 
– single-system image
– fault-tolerance, load balancing, parallelism, g, p
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IPC

• Client-Server Computing
• Remote Procedure Calls
• P2P collaboration (related to overlays, cf. advanced 

k  d d   )networks and distr. Sys course)
• Distributed shared memory (cf. advanced distr. Sys course)
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Distributed Shared Memory (1)

• Note layers where it can be implemented
– hardware

29

hardware
– operating system
– user-level software



Distributed Shared Memory (2)y ( )

• False Sharingg
• Must also achieve consistency
• Both issues also in cache protocols

30

• Both issues also in cache protocols



Multicomputer Scheduling
L d B l n in  (1)Load Balancing (1)

Process

G h th ti  d t i i ti  l ith

Process

• Graph-theoretic deterministic algorithm
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Load Balancing (2)Load Balancing (2)

• Sender-initiated distributed heuristic 
algorithm

32

algorithm
– overloaded sender



Load Balancing (3)Load Balancing (3)

• Receiver-initiated distributed heuristic 
algorithm
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algorithm
– under loaded receiver



Document-Based Middleware 

• E.g. The Web
– a big directed graph of documents
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a big directed graph of documents



File System-Based Middleware 

• Needs consistency: local updates vs centralized updatesNeeds consistency: local updates vs centralized updates
• Some issues similar to cache coherence
• Semantics of File sharing and trade-offs
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g
– (a) single processor gives sequential consistency
– (b) distributed system may return obsolete value



Shared Object-Based Middleware

• E.g. CORBA based system
– Common Object Request Broker Architecture; 

IIOP: Internet InterORB protocol
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Coordination-Based Middleware 
• E.g. via Linda system for communication  & synch

– independent processesndependent processes
– communicate via abstract tuple space
– Tuple

lik   st t  in C  d in P s l• like a structure in C, record in Pascal

O ti  t (i t)  i  ( )  d ( ith t – Operations: out (insert), in (remove), read (without 
removing) , eval (evaluate parameters)

• E.g. Jini - based on Linda modelE.g. Jini based on Linda model
– devices plugged into a network
– offer, use services

37
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That’s all folks! ☺ (for now)f (f )

• Summary: OS takes cares of processes needs 
– memory, CPU, data, files, IO, synchronization, 

resources,

• We have seen methods and instantaitions in 
maistream OS

• Recall ...
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Recall ...

• After successful completion of the course 
students will be able to demonstrate knowledge 
and understanding of: 
- The core functionality of modern operating systems. 
- Key concepts and algorithms in operating system y p g p g y

implementations. 
- Implementation of simple OS components. 

The students will also be able to: 
- Write programs that interface to the operating p g p g

system at the system-call level. 
- Implement a piece of system-level code. 
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Exam 

• 15 march, 8.30-12.30 M building 

• Welcome and best wishes from the course Welcome and best wishes from the course 
support team! 

• Thank you!
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Extra notes on distr/multiproc OSp
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Also of relevance to Distributed Systems (and more):
Microkernel OS organizationMicrokernel OS organization

• Small OS core; contains only essential OS functions:m ; y f
– Low-level memory management (address space mapping)
– Process scheduling
– I/O and interrupt managementI/O and interrupt management

• Many services traditionally included in the OS kernel are now 
external subsystems

device drivers  file systems  virtual memory manager  windowing – device drivers, file systems, virtual memory manager, windowing 
system, security services
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Benefits of a Microkernel Organizationg

• Uniform interface on request made by a process
– All services are provided by means of message passingAll services are provided by means of message passing

• Distributed system support
– Messages are sent without knowing what the target machine is

• ExtensibilityExtensibility
– Allows the addition/removal of services and features

• Portability
– Changes needed to port the system to a new processor is changed in Changes needed to port the system to a new processor is changed in 

the microkernel  - not in the other services
• Object-oriented operating system

– Components are objects with clearly defined interfaces that can be p j y
interconnected

• Reliability
– Modular design; 
– Small microkernel can be rigorously tested
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Schematic View of Virtual File Systemy
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Schematic View of NFS ArchitectureSchematic View of NFS Architecture

Network interface: Network interface: 
client-server protocol
• Uses UDP (over IP 

 t lover –most commonly-
ethernet)
• Mounting and caching
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Solution 2 readers writers
Writers have “priority” …
readers should not build long queue on r, so that writers can overtake => g q
mutex3 Reader::

P(mutex3);
P(r);

Writer::
P(mutex2);

+ 1P(r);
P(mutex1);
rc := rc + 1;
if rc = 1 then P(w) fi;

wc := wc + 1;
if wc = 1 then P(r) fi;

V(mutex2);
if rc = 1 then P(w) fi;
V(mutex1);

V(r);
V( 3)

P(w);
CS;

V(w);
V(mutex3);
CS;
P(mutex1);

P(mutex2);
wc := wc − 1;
if wc = 0 then V(r) fi;

rc := rc − 1;
if rc = 0 then V(w) fi;

V(mutex1)

( ) ;
V(mutex2)
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Propertiesp

• If several writers try to enter their critical 
sections, one will execute P(r), blocking readers.

• Works assuming V(r) has the effect of picking a • Works assuming V(r) has the effect of picking a 
process waiting to execute P(r) to proceed.

• Due to mutex3, if a reader executes V(r) and a 
writer is at P(r), then the writer is picked to p
proceed.
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On Lamport’s R/Wp

48



Theorem 1
If v is always written from right to left, then a read from left to right obtains a value

[k1 l1] [k2 l2] [k l ]v1
[k1,l1] v2

[k2,l2] … vm
[km,lm]

where k1 ≤ l1 ≤ k2 ≤ l2 ≤ … ≤ km ≤ lm.

read v1 read read v3

Example: v = v1v2v3 = d1d2d3

read: z
ead v1

read d1
zv2

read d2
z

3

read d3

wv3 wv2 wv1wv3 wv2 wv1
wv3 wv2 wv1write:1 z z z

2 1

wd3 wd2 wd1

write:0 z z z
3 2 wv1

wd3 wd2 wd1

write:2 z z z
2 1

wd3 wd2 wd1

49
Read reads v1

[0,0] v2
[1,1] v3

[2,2].



Another Examplep

v =  v1 v2

read: z

read v1

rd
z
rd

z

read v2

rd
z
rd

d1d2 d3d4

rd1 rd2 rd4 rd3

wv2 wv1 wv2 wv1

z z z
wv2 wv1

z

write:0

z z z
wd3 wd4 wd1

z
wd2

write:1

z z z
wd3 wd4 wd1

z
wd2

write:2

z z z
wd3 wd4 wd1

z
wd2

write:0

Read reads v [0,1] v [1,2]
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Read reads v1
[ , ] v2

[ , ].



Proof Obligationf g

• Assume reader reads V2[k1, l1] D[k2, l2] V1[k3, l3].

• Proof Obligation: V2[k1, l1] = V1[k3, l3] ⇒ k2 = l2.
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Prooff
By Theorem 2,

V2[k1,l1]  ≤ V2[l1] and   V1[k3]  ≤V1[k3,l3].                                  (1)

Applying Theorem 1 to V2 D V1,

k1 ≤ l1 ≤ k2 ≤ l2 ≤ k3 ≤ l3 . (2)

By the writer program,

l1 ≤ k3 ⇒ V2[l1]  ≤V1[k3].                                                (3)

(1), (2), and (3) imply

V2[k1,l1]  ≤ V2[l1] ≤ V1[k3]  ≤V1[k3,l3].

Hence, V2[k1,l1] = V1[k3,l3]  ⇒ V2[l1]  = V1[k3]

⇒ l1 = k3 , by the writer’s program.

52
⇒ k2 = l2 by (2).



Example of (a) in main theoremp f ( )
v = d1d2d3

read: z
read d1

z

read 
d2 z

read d3

z z z
wd3 wd2 wd1

9 9 3
z z z

wd3 wd2 wd1

8 9 3
z z z

wd3 wd2 wd1

0 0 4

write:1(399)

9 9 3

write:0(398)
8 9 3

write:2(400)

0 0 4

Read obtains v[0,2] = 390 < 400 = v[2].
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Example of (b) in main theoremp f ( )
v = d1d2d3

read: z
read d3

z

read 
d2 z

read d1

z z z
wd1 wd2 wd3

3 9 9
z z z

wd1 wd2 wd3

3 9 8
z z z

wd1 wd2 wd3

4 0 0

write:1(399)

3 9 9

write:0(398)
3 9 8

write:2(400)

4 0 0

Read obtains v[0,2] = 498 > 398 = v[0].
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Supplemental Reading lock-free synchpp g f y

• check:
– G.L. Peterson, “Concurrent Reading While Writing”, 

ACM TOPLAS, Vol. 5, No. 1, 1983, pp. 46-55.

– Solves the same problem in a wait-free manner:
• guarantees consistency without locks andg y
• the unbounded reader loop is eliminated.

– First paper on wait-free synchronization.F rst paper on wa t free synchron zat on.

• Now  very rich literature on the topic  Check • Now, very rich literature on the topic. Check 
also:

PhD th i  A  Gid t  2006  CTH
55

– PhD thesis A. Gidenstam, 2006, CTH
– PhD Thesis H. Sundell, 2005, CTH



Using Locks in Real-time Systemsng L  n a m  y m
The Priority Inversion Problem

Uncontrolled use of locks in RT systems Solution: Limit priority inversionsUncontrolled use of locks in RT systems
can result in unbounded blocking due to
priority inversions.

Solution: Limit priority inversions
by modifying task priorities.

High High

Med Med

Low Low

Timet t t0 1 2

Shared Object Access Priority  Inversion

Time t0 t1 t 2

Computation not involving object accesses
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Dealing with Priority Inversions

Common Approach: Use lock based schemes that bound their • Common Approach: Use lock-based schemes that bound their 
duration (as shown).
– Examples: Priority-inheritance protocols.
– Disadvantages: Kernel support, very inefficient on 

multiprocessors.
• Alternative: Use non-blocking objects.g j

– No priority inversions or kernel support.
– Wait-free algorithms are clearly applicable here.

What about lock free algorithms?– What about lock-free algorithms?
• Advantage: Usually simpler than wait-free algorithms.
• Disadvantage: Access times are potentially unbounded.
• But for periodic task sets access times are also 

predictable!! (check further-reading-pointers)
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Key issue in load balancing: 
P ss Mi ti nProcess Migration

• Transfer of sufficient amount of the state of a process from one machine to 
another; process continues execution on the target machine (processor)another; process continues execution on the target machine (processor)

Why to migrate?
• Load sharing/balancing

Communications performance• Communications performance
– Processes that interact intensively can be moved to the same node to reduce 

communications cost
– move process to where the data reside when the data is largemove process to where the data reside when the data is large

• Availability
– Long-running process may need to move if the machine it is running on will 

be downbe down
• Utilizing special capabilities

– Process can take advantage of unique hardware or software capabilities
Initiation of MigrationInitiation of Migration

– Operating system: When goal is load balancing, performance optimization,
– Process: When goal is to reach a particular resource
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What is Migrated?g

• Must destroy the process on source system and create it on  target 
 PCB f  d dd    d dsystem; PCB info and address space are needed

– Transfer-all:Transfer entire address space
• expensive if address space is large and if the process does not need p p g p

most of it
• Modification: Precopy: Process continues to execute on source node 

while address space is copied
– Pages modified on source during pre-copy have to be copied again
– Reduces the time a process cannot execute during migration

– Transfer-dirty: Transfer only the portion of the address space
h      d h  b  d f dthat is in main memory and has been modified
• additional blocks of the virtual address space are transferred on 

demand
• source machine is involved throughout the life of the process
• Variation: Copy-on-reference: Pages are brought on demand

– Has lowest initial cost of process migration
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