
Multipr cess r/Multic re SystemsMultiprocessor/Multicore Systems
Scheduling, Synchronization, cont

Recall:
Multiprocessor Scheduling: a problemMultiprocessor Scheduling: a problem

P bl m ith mm ni ti n b t n t th ds• Problem with communication between two threads
– both belong to process A
– both running out of phase

2

g f p
• Scheduling and synchronization inter-related in

multiprocessors

The Priority Inversion Problem

Uncontrolled use of locks in RT systems Possible solution: Limit priorityUncontrolled use of locks in RT systems
can result in unbounded blocking due to
priority inversions.

Possible solution: Limit priority
Inversions by modifying task
priorities.

High High

Med Med

Low Low

Timet t t0 1 2

lock Priority Inversion

Time t0 t1 t 2

Computation not involving shared object accesses

3

Scheduling and Synchronizationg y

Priorities + locks may result in:y
priority inversion: To cope/avoid this:

– use priority inheritance
id l k i h i i (i f l k f – Avoid locks in synchronization (wait-free, lock-free,

optimistic synchronization)
convoy effect: processes need a resource for short c n y ff ct pr c n a r urc f r h rt

time, the process holding it may block them for long
time (hence, poor utilization)

A idi l k is d h t– Avoiding locks is good here, too

4

Readers Writers and Readers-Writers and
non-blocking synchronization

(some slides are adapted from J. Anderson’s slides on
same topic)

5

The Mutual Exclusion Problem
Locking Synchronization

hil t d

• N processes, each
ith this st t :

while true do
Noncritical Section;
Entry Section;

with this structure: Critical Section;
Exit Section

odBasic Requirements:• Basic Requirements:
– Exclusion: Invariant(# in CS ≤ 1).

St ti f d : (ss i i E t) l ds t – Starvation-freedom: (process i in Entry) leads-to
(process i in CS).

• Can implement by “busy waiting” (spin locks) or using
kernel calls.

6

Synchronization without locksy

• The problem:
– Implement a shared object without mutual mp m nt a har j ct w th ut mutua

exclusion.
• Shared Object: A data structure (e.g., queue) shared

b

Locking
by concurrent processes.

– Why?
T v id p rf rm nc pr bl ms th t r sult h n • To avoid performance problems that result when a
lock-holding task is delayed.

• To enable more interleaving (enhancing parallelism)g g p
• To avoid priority inversions

7

Synchronization without locksy

• Two variants:
– Lock-free:L c fr

• system-wide progress is guaranteed.
• Usually implemented using “retry loops.”

– Wait-free:
• Individual progress is guaranteed.

 l d l h h d• More involved algorithmic methods

8

Readers/Writers ProblemReaders/Writers Problem

[Courtois et al 1971][Courtois, et al. 1971.]
• Similar to mutual exclusion, but several readers

 t “ iti l s ti ” t th s tican execute “critical section” at the same time.
• If a writer is in its critical section, then no

other process can be in its critical section.
• + no starvation, fairness

9

Solution 1
Readers have “priority”…

Reader::
P(mutex);

w, mutex: boolean semaphore
Initially 1 P(mutex);

rc := rc + 1;
if rc = 1 then P(w) fi;

Initially 1

V(mutex);
CS;
P(t)

Writer::
P(w);
CS P(mutex);

rc := rc − 1;
if rc = 0 then V(w) fi;

CS;
V(w)

if rc 0 then V(w) fi;
V(mutex)

10
“First” reader executes P(w). “Last” one executes V(w).

Concurrent Reading and Writing
[L t ‘77][Lamport ‘77]

Previous solutions to the readers/writers • Previous solutions to the readers/writers
problem use some form of mutual exclusion.

• Lamport considers solutions in which readers
and writers access a shared object j
concurrently.

M ti ti• Motivation:
– Don’t want writers to wait for readers.

/ l – Readers/writers solution may be needed to
implement mutual exclusion (circularity problem).

11

Interesting Factoidsg

• This is the first ever lock-free algorithm: This is the first ever lock free algorithm:
guarantees consistency without locks

• An algorithm very similar to this has been
i l t d ithi b dd d t ll i implemented within an embedded controller in
Mercedes automobiles

12

The Problem

• Let v be a data item, consisting of one or more
sub-items.
– For example,

• v = 256 consists of three digits, “2”, “5”, and “6”.
• String “I love spring” consists of 3 words (or 13 characters)

A b k i t f l h t• A book consists of several chapters
• ….

• Underlying model: subitems can be read and
written atomically.m y

• Objective: Simulate atomic reads and writes of
13

the data item v.

Preliminaries

• Definition: v[i], where i ≥ 0, denotes the ith value
written to v. (v[0] is v’s initial value.)

• Note: No concurrent writing of v• Note: No concurrent writing of v.

• Partitioning of v: v1 L vm.g 1 m
– To start, focus on v being a number
– vi may consist of multiple digits.i y p g

• To read v: Read each vi (in some order).

• To write v: Write each vi (in some order).

14

More Preliminaries

read r:

z z z z z
read v3 read

v2

read vm-1read v1 read vmL

write:k write:k+i write:l
L L

We say: r reads v[k,l].

Value is consistent if k = l.

15

Main Theorem

Assume that i ≤ j implies that v[i] ≤ v[j] where v = d dAssume that i ≤ j implies that v[] ≤ v[j], where v = d1 … dm.

(a) If v is always written from right to left, then a read from left to() y g ,
right obtains a value v[k,l] ≤ v[l].

(b) If i l i f l f i h h d f i h(b) If v is always written from left to right, then a read from right to
left obtains a value v[k,l] ≥ v[k].

discuss why

16

Readers/Writers Solution

Writer::
→

Reader::
→→

V1 :> V1;
write D;
←

→
repeat temp := V2

read D
←
V2 := V1

←
until V1 = temp

:> means assign larger value.

→
V1 means “left to right”.

←
V2 means “right to left”.

17

Useful Synchronization Primitivesy
Usually Necessary in Nonblocking Algorithms

CAS2CAS(var, old, new) CAS2
extends
this

(, ,)
〈 if var ≠ old then return false fi;
var := new;
return true 〉return true 〉

LL(var)
〈 establish “link” to var;〈 establish link to var;

return var 〉

SC(var, val)(,)
〈 if “link” to var still exists then

break all current links of all processes;
var := val;var : val;
return true

else
return false

18

return false
fi 〉

Another Lock-free Examplen r L fr E amp
Shared Queue

type Qtype = record v: valtype; next: pointer to Qtype end
shared var Tail: pointer to Qtype;
local var old new: pointer to Qtypelocal var old, new: pointer to Qtype

procedure Enqueue (input: valtype)
new := (input NIL);new := (input, NIL);
repeat old := Tail
until CAS2(Tail, old->next, old, NIL, new, new) retry loop

ld ldne

Tail

old

Tail

oldnew new

19

Cache-coherence

cache coherency
protocols are based
on a set of (cache
block) states and
state transitions : 2
main types of
protocols

• write-update
• write-invalidatewrite invalidate

R i d
20

• Reminds
readers/writers?

Multiprocessor architectures, memory
nsist nconsistency

• Memory access protocols and cache coherence
protocols define memory consistency models

• Examples:p
– Sequential consistency: e.g. SGI Origin (more and

more seldom found now...)
– Weak consistency: sequential consistency for special

synchronization variables and actions before/after
access to such variables. No ordering of other
actions. e.g. SPARC architectures

M i l l il• Memory consistency also relevant at compiler-
level
– i.e. The latter may reorder for optimization purposes

21

Distributed OS issues:
IPC: Client/Server, RPC mechanisms
Clusters load balncing MiddlewareClusters, load balncing, Middleware

Multicomputersp

• Definition:• Definition:
Tightly-coupled CPUs that do not share memory

• Also known as
clust c mput s– cluster computers

– clusters of workstations (COWs)

– illusion is one machine
Alt ti t t i lti i (SMP)– Alternative to symmetric multiprocessing (SMP)

23

Clusters

Benefits of Clusters
• Scalability

– Can have dozens of machines each of which is a multiprocessor
– Add new systems in small incrementsy

• Availability
– Failure of one node does not mean loss of service (well, not

necessarily at least… why?)necessarily at least… why?)
• Superior price/performance

– Cluster can offer equal or greater computing power than a single
large machine at a much lower costlarge machine at a much lower cost

BUT:
• think about communication!!!

Th b i i h i i h l i • The above picture is changing with multicore systems

24

Multicomputer Hardware examplep p

Network interface boards in a multicomputer
25

Network interface boards in a multicomputer

Clusters:
Op tin S st m D si n Iss sOperating System Design Issues

Failure management
• offers a high probability that all resources will be in service
• Fault-tolerant cluster ensures that all resources are always

available (replication needed)available (replication needed)
Load balancing
• When new computer added to the cluster, automatically include this p , y

computer in scheduling applications
Parallelism
• parallelizing compiler or application
e.g. beowulf, linux clusters

26

Cluster Computer Architecturep
• Network

Middl l t id • Middleware layer to provide
– single-system image
– fault-tolerance, load balancing, parallelism, g, p

27

IPC

• Client-Server Computing
• Remote Procedure Calls
• P2P collaboration (related to overlays, cf. advanced

k d d)networks and distr. Sys course)
• Distributed shared memory (cf. advanced distr. Sys course)

28

Distributed Shared Memory (1)

• Note layers where it can be implemented
– hardware

29

hardware
– operating system
– user-level software

Distributed Shared Memory (2)y ()

• False Sharingg
• Must also achieve consistency
• Both issues also in cache protocols

30

• Both issues also in cache protocols

Multicomputer Scheduling
L d B l n in (1)Load Balancing (1)

Process

G h th ti d t i i ti l ith

Process

• Graph-theoretic deterministic algorithm

31

Load Balancing (2)Load Balancing (2)

• Sender-initiated distributed heuristic
algorithm

32

algorithm
– overloaded sender

Load Balancing (3)Load Balancing (3)

• Receiver-initiated distributed heuristic
algorithm

33

algorithm
– under loaded receiver

Document-Based Middleware

• E.g. The Web
– a big directed graph of documents

34

a big directed graph of documents

File System-Based Middleware

• Needs consistency: local updates vs centralized updatesNeeds consistency: local updates vs centralized updates
• Some issues similar to cache coherence
• Semantics of File sharing and trade-offs

35

g
– (a) single processor gives sequential consistency
– (b) distributed system may return obsolete value

Shared Object-Based Middleware

• E.g. CORBA based system
– Common Object Request Broker Architecture;

IIOP: Internet InterORB protocol

36

Coordination-Based Middleware
• E.g. via Linda system for communication & synch

– independent processesndependent processes
– communicate via abstract tuple space
– Tuple

lik st t in C d in P s l• like a structure in C, record in Pascal

O ti t (i t) i () d (ith t – Operations: out (insert), in (remove), read (without
removing) , eval (evaluate parameters)

• E.g. Jini - based on Linda modelE.g. Jini based on Linda model
– devices plugged into a network
– offer, use services

37

,

That’s all folks! ☺ (for now)f (f)

• Summary: OS takes cares of processes needs
– memory, CPU, data, files, IO, synchronization,

resources,

• We have seen methods and instantaitions in
maistream OS

• Recall ...

38

Recall ...

• After successful completion of the course
students will be able to demonstrate knowledge
and understanding of:
- The core functionality of modern operating systems.
- Key concepts and algorithms in operating system y p g p g y

implementations.
- Implementation of simple OS components.

The students will also be able to:
- Write programs that interface to the operating p g p g

system at the system-call level.
- Implement a piece of system-level code.

39

Exam

• 15 march, 8.30-12.30 M building

• Welcome and best wishes from the course Welcome and best wishes from the course
support team!

• Thank you!

40

Extra notes on distr/multiproc OSp

41

Also of relevance to Distributed Systems (and more):
Microkernel OS organizationMicrokernel OS organization

• Small OS core; contains only essential OS functions:m ; y f
– Low-level memory management (address space mapping)
– Process scheduling
– I/O and interrupt managementI/O and interrupt management

• Many services traditionally included in the OS kernel are now
external subsystems

device drivers file systems virtual memory manager windowing – device drivers, file systems, virtual memory manager, windowing
system, security services

42

Benefits of a Microkernel Organizationg

• Uniform interface on request made by a process
– All services are provided by means of message passingAll services are provided by means of message passing

• Distributed system support
– Messages are sent without knowing what the target machine is

• ExtensibilityExtensibility
– Allows the addition/removal of services and features

• Portability
– Changes needed to port the system to a new processor is changed in Changes needed to port the system to a new processor is changed in

the microkernel - not in the other services
• Object-oriented operating system

– Components are objects with clearly defined interfaces that can be p j y
interconnected

• Reliability
– Modular design;
– Small microkernel can be rigorously tested

43

Schematic View of Virtual File Systemy

44

Schematic View of NFS ArchitectureSchematic View of NFS Architecture

Network interface: Network interface:
client-server protocol
• Uses UDP (over IP

 t lover –most commonly-
ethernet)
• Mounting and caching

45

Solution 2 readers writers
Writers have “priority” …
readers should not build long queue on r, so that writers can overtake => g q
mutex3 Reader::

P(mutex3);
P(r);

Writer::
P(mutex2);

+ 1P(r);
P(mutex1);
rc := rc + 1;
if rc = 1 then P(w) fi;

wc := wc + 1;
if wc = 1 then P(r) fi;

V(mutex2);
if rc = 1 then P(w) fi;
V(mutex1);

V(r);
V(3)

P(w);
CS;

V(w);
V(mutex3);
CS;
P(mutex1);

P(mutex2);
wc := wc − 1;
if wc = 0 then V(r) fi;

rc := rc − 1;
if rc = 0 then V(w) fi;

V(mutex1)

() ;
V(mutex2)

46

()

Propertiesp

• If several writers try to enter their critical
sections, one will execute P(r), blocking readers.

• Works assuming V(r) has the effect of picking a • Works assuming V(r) has the effect of picking a
process waiting to execute P(r) to proceed.

• Due to mutex3, if a reader executes V(r) and a
writer is at P(r), then the writer is picked to p
proceed.

47

On Lamport’s R/Wp

48

Theorem 1
If v is always written from right to left, then a read from left to right obtains a value

[k1 l1] [k2 l2] [k l]v1
[k1,l1] v2

[k2,l2] … vm
[km,lm]

where k1 ≤ l1 ≤ k2 ≤ l2 ≤ … ≤ km ≤ lm.

read v1 read read v3

Example: v = v1v2v3 = d1d2d3

read: z
ead v1

read d1
zv2

read d2
z

3

read d3

wv3 wv2 wv1wv3 wv2 wv1
wv3 wv2 wv1write:1 z z z

2 1

wd3 wd2 wd1

write:0 z z z
3 2 wv1

wd3 wd2 wd1

write:2 z z z
2 1

wd3 wd2 wd1

49
Read reads v1

[0,0] v2
[1,1] v3

[2,2].

Another Examplep

v = v1 v2

read: z

read v1

rd
z
rd

z

read v2

rd
z
rd

d1d2 d3d4

rd1 rd2 rd4 rd3

wv2 wv1 wv2 wv1

z z z
wv2 wv1

z

write:0

z z z
wd3 wd4 wd1

z
wd2

write:1

z z z
wd3 wd4 wd1

z
wd2

write:2

z z z
wd3 wd4 wd1

z
wd2

write:0

Read reads v [0,1] v [1,2]

50

Read reads v1
[,] v2

[,].

Proof Obligationf g

• Assume reader reads V2[k1, l1] D[k2, l2] V1[k3, l3].

• Proof Obligation: V2[k1, l1] = V1[k3, l3] ⇒ k2 = l2.

51

Prooff
By Theorem 2,

V2[k1,l1] ≤ V2[l1] and V1[k3] ≤V1[k3,l3]. (1)

Applying Theorem 1 to V2 D V1,

k1 ≤ l1 ≤ k2 ≤ l2 ≤ k3 ≤ l3 . (2)

By the writer program,

l1 ≤ k3 ⇒ V2[l1] ≤V1[k3]. (3)

(1), (2), and (3) imply

V2[k1,l1] ≤ V2[l1] ≤ V1[k3] ≤V1[k3,l3].

Hence, V2[k1,l1] = V1[k3,l3] ⇒ V2[l1] = V1[k3]

⇒ l1 = k3 , by the writer’s program.

52
⇒ k2 = l2 by (2).

Example of (a) in main theoremp f ()
v = d1d2d3

read: z
read d1

z

read
d2 z

read d3

z z z
wd3 wd2 wd1

9 9 3
z z z

wd3 wd2 wd1

8 9 3
z z z

wd3 wd2 wd1

0 0 4

write:1(399)

9 9 3

write:0(398)
8 9 3

write:2(400)

0 0 4

Read obtains v[0,2] = 390 < 400 = v[2].

53

Example of (b) in main theoremp f ()
v = d1d2d3

read: z
read d3

z

read
d2 z

read d1

z z z
wd1 wd2 wd3

3 9 9
z z z

wd1 wd2 wd3

3 9 8
z z z

wd1 wd2 wd3

4 0 0

write:1(399)

3 9 9

write:0(398)
3 9 8

write:2(400)

4 0 0

Read obtains v[0,2] = 498 > 398 = v[0].

54

Supplemental Reading lock-free synchpp g f y

• check:
– G.L. Peterson, “Concurrent Reading While Writing”,

ACM TOPLAS, Vol. 5, No. 1, 1983, pp. 46-55.

– Solves the same problem in a wait-free manner:
• guarantees consistency without locks andg y
• the unbounded reader loop is eliminated.

– First paper on wait-free synchronization.F rst paper on wa t free synchron zat on.

• Now very rich literature on the topic Check • Now, very rich literature on the topic. Check
also:

PhD th i A Gid t 2006 CTH
55

– PhD thesis A. Gidenstam, 2006, CTH
– PhD Thesis H. Sundell, 2005, CTH

Using Locks in Real-time Systemsng L n a m y m
The Priority Inversion Problem

Uncontrolled use of locks in RT systems Solution: Limit priority inversionsUncontrolled use of locks in RT systems
can result in unbounded blocking due to
priority inversions.

Solution: Limit priority inversions
by modifying task priorities.

High High

Med Med

Low Low

Timet t t0 1 2

Shared Object Access Priority Inversion

Time t0 t1 t 2

Computation not involving object accesses

56

Dealing with Priority Inversions

Common Approach: Use lock based schemes that bound their • Common Approach: Use lock-based schemes that bound their
duration (as shown).
– Examples: Priority-inheritance protocols.
– Disadvantages: Kernel support, very inefficient on

multiprocessors.
• Alternative: Use non-blocking objects.g j

– No priority inversions or kernel support.
– Wait-free algorithms are clearly applicable here.

What about lock free algorithms?– What about lock-free algorithms?
• Advantage: Usually simpler than wait-free algorithms.
• Disadvantage: Access times are potentially unbounded.
• But for periodic task sets access times are also

predictable!! (check further-reading-pointers)

57

Key issue in load balancing:
P ss Mi ti nProcess Migration

• Transfer of sufficient amount of the state of a process from one machine to
another; process continues execution on the target machine (processor)another; process continues execution on the target machine (processor)

Why to migrate?
• Load sharing/balancing

Communications performance• Communications performance
– Processes that interact intensively can be moved to the same node to reduce

communications cost
– move process to where the data reside when the data is largemove process to where the data reside when the data is large

• Availability
– Long-running process may need to move if the machine it is running on will

be downbe down
• Utilizing special capabilities

– Process can take advantage of unique hardware or software capabilities
Initiation of MigrationInitiation of Migration

– Operating system: When goal is load balancing, performance optimization,
– Process: When goal is to reach a particular resource

58

What is Migrated?g

• Must destroy the process on source system and create it on target
 PCB f d dd d dsystem; PCB info and address space are needed

– Transfer-all:Transfer entire address space
• expensive if address space is large and if the process does not need p p g p

most of it
• Modification: Precopy: Process continues to execute on source node

while address space is copied
– Pages modified on source during pre-copy have to be copied again
– Reduces the time a process cannot execute during migration

– Transfer-dirty: Transfer only the portion of the address space
h d h b d f dthat is in main memory and has been modified
• additional blocks of the virtual address space are transferred on

demand
• source machine is involved throughout the life of the process
• Variation: Copy-on-reference: Pages are brought on demand

– Has lowest initial cost of process migration

59

