

Introduction

Banking Airline Web N —
system reservation browser PP prog
. . Command
Compllers Edliors interpreter | |{ System
programs
Operating system
Machine language
Microarchitecture » Hardware

Physical devices

A computer system consists of
hardware
system programs
application programs

Operating System

Provides a set of services to system users (collection
of service programs)

Shield between the user and the hardware

Resource manager:
CPU(s)
memory and I/0 devices

A control program

Controls execution of programs to prevent errors and
improper use of the computer

Operating System Definition (Cont)

No universally accepted definition

"Everything a vendor ships when you order an
operating system" is good approximation

But varies wildly
"The one program running at all times on the
computer” is the kernel. Everything else is
either a system program (ships with the
operating system) or an application program

Basic functionality of a computer system:
Instruction Cycle

Fetch Cycle Execute Cycle

Figure 1.2 Basic Instruction Cycle

Parenthesis:
A closer-to-reality-view of todays' processors

Execute
unit
Fetch Decode
unit unit
Holdin Execute
D d g i
ecode Execute buffer unit
Fetch Decode
unit unit
Execute
unit

(a) A three-stage pipeline
(b) A superscalar CPU
(c) Multicore CPUs

Basic Elements of a Computer System

CPU

PC MAR

IR MBR

I/0 AR

I/O Module

Bulfers

System
Bus

Main Memory

[

Instruction

Instruction

Instruction

Data
Data
Data
Data

Program counter

Instruction reglster

Memory address register
Memory buffer reglster
Inputfoutput address reglster
Inputfoutput buffer register

Figure 1.1 Computer Components: Top-Level View

Processor + registers

Main Memory (“real” or
primary memory)

- volatile
I/0 modules

- secondary memory
devices

- communications
equipment

- terminals
System bus

- communication among
processors, memory,
and I/0 modules

Registers: 1. User-Visible

* May be referenced by machine lang.
- By both application and system

CPU Main Memory programs
System : .+ Enable programmer to minimize main-
PC VAR Bus ==m— Mmemory references by optimizing
iwindim_|. register use
IR MER Instruction
/O AR I]a:ta ¢ TypeS Of USZI’"VlSlbI@ r'egISTer'S
/0 BR o - Data
o - Address
1/0 Module : ica - Index: for indexed addressing,
n-1 offset

- Stack pointer: for procedure calling

PrC
IR
MAR
MER

Program counter

Instructlon reglster

Memory address register
Memory buffer reglster

VO AR = Input/output address register
VO BR = Input/output buffer reglster

Buffers

Figure 1.1 Computer Components: Top-Level View

CPU

PC

MAR

IR

MBR

I/0 AR

I/0 BR

1/0 Module

Buffers

Registers: 2. Control and Status

System
Bus

= A
nm um nmn

Main Memory

Instruction

Instruction

Instruction

Data
Data
Data
Data

Program counter

Instructlon register

Memory address reglster
Memory buffer register
Input/output address register
Input/output buffer reglster

Figure 1.1 Computer Components: Top-Level View

Used by
processor to control execution

operating-system to control the
execution of programs

Basic C&S registers:
Program Counter (PC)

Contains the address of an
instruction to be fetched

Instruction Register (IR)

Contains the instruction most
recently fetched

Program Status Word (PSW)

condition codes (positive/negative/
zero result, overflow, ...)

Interrupt enable/disable
Supervisor/user mode

Instruction Cycle revisit

Processor fetches instruction from memory

Program counter (PC) holds address of instruction to be
fetched next; PC is incremented after each fetch

Fetched instruction is placed in the instruction register

Types of instructions
Processor-memory
Processor-I/0
Data processing
Control: alter sequence of execution

Fetch Cycle Execute Cycle

< Fetch Next Execute SR
START o T TR P EERTE AL

10

mouse keyboard printer

e gy s |
graphics
USB controller adapter

disk

CPU controller

memory

- Components of a simple personal computer

11

Interrupts!

* An interruption of the normal sequence of
executionl Why?

- Something went wrong (div. by O, reference
outside user's memory space, hardware failure,...)

- Timer
- I/0

- and then?

- Interrupt handler takes control:

* a program that determines the nature of the
interrupt and performs whatever actions are
needed

- generally part of the operating system
12

Interrupt Cycle

Processor checks for interrupts

If no interrupts fetch the next instruction for the
current program

If an interrupt is pending, suspend execution of the
current program, and execute the interrupt handler

Fetch Cycle Execute Cycle Interrupt Cycle

Interrupts
Disabled

Check for
Interrupt;

Fetch MNext
Instruction

Figure 1.7 Instruction Cycle with Interrupts 13

Control flow with interrupts

User Progtam Interrupt Handler

'

[

L L
L L
' '
1
Interrupl —e
occurs hete 7+ 1 4

Figure 1.6 Transfer of Control via Interrupts

Hardware

————A—

Device controller or
other system hardware
issues an interrupt

Processor linishes
execution of current
instruction

Processor signals
acknowledgment
of interrupt

Processor pushes PSW
and PC onto control
stack

Processor loads new
PC value based on
interrupt

Software

—————A—

|

Save remainder of
process state
information

Process interrupt

Reslore process stale
information

Restore old PSW
and PC

Figure 1.10 Simple Interrupt Processing

What happens

Disk drive

? / Current instruction

Next instruction
o 3 | Interrupt Disk
| controller controller 3. Return
1. Interrupt

L J_2
1 , \ /
2. Dispatch f
to handler \T

Interrupt handler il

(a) (b)

(a) Steps in starting an I/0 device and getting interrupt
(b) How the CPU is interrupted

15

Interrupts as support for I/0

Note:

- Interrupts allow the processor to execute other
instructions while an I/O operation is in progress

- Improve processing efficiency

Liser LA Liser LA
Provsram Provzram Provsram Provrram
B A -t - s 1 - —_—
i -‘ILP'-' | 1 ;IH -~
{D ! .r"rl : @ {D 1 | ! @‘
[] rf.-"' P | I I .r__.r f I |

i) [— e ——
— I‘_F_"'"H K : I L — 1 - ‘J'r_..":___ —— L
- [- f [— r 8 -
WRITE E, : NS gl WRITE "~ =7 7, Command
—r— ™ i | e K ’
i Lﬁp"‘-: : & ! 'y
i’ 1 ’
1 ; il e Ga) : My
1 42 4 NI 3 iy
1 F r 4
@ 1 ¥ - :: i -
1 r _"" I_.{;--.. -
L L E Imterrupt
1 ! ;"' @' Ly, =~ =~ .. Handler
14 - I - G e
] e . P @_
WERITE » WRITE & # l‘k i
] - —_ 1 ’ I N
i I 5% s NI
! ® @
1 Ly »
1 o
@ ! S
|] L]
1 1
' Go -
1 i
WRITE WRITE

(a) No intermupts (B Imterrupts: short TACY wail

Interrupt-Driven I/0

* Processor is interrupted when I/0
module ready to exchange data

- Processor is free to do other work
* No needless waiting

BUT:
» Still consumes a lot of processor
time because every word read or

written passes through the
processor

How about using DMA ...

[ssue Read PU — 11O
= command to Do something
O module B~ Pelse

Read status
of /O
module

=== Inierrupt

'O — CPU

Error
condition

Read word
from YO
Module

'O — CPU

Write word

CPU — memory
into memory

MNext instruction
(b} Interrupt-driven O

17

* The processor is only involved at
the beginning and end of the
transfer

- Processor grants I/0 (DMA) module
authority to read from or write to

I/0 using Direct Memory Access (DMA)

memory a block of data

complete

Processor is free to do other
things

- An interrupt is sent when the task is

Issue Read PU — DMA

block command Do something
O module @™ " T else

Read status - = = Interrupt

of DMA

module DMA — CPU

MNext instruction

(¢} Direct memory access

mouse keyboard printer monitor

—_—

CPU

disk graphics
controller Lelbeoninla adapter

memory

18

Multiple Interrupts

Q: To interrupt an interrupt?

Sequential Order: after
interrupt handler completes,
processor checks for additional
Interrupts

Priorities: High priority
Interrupts:
cause lower-priority
Interrupts to wait

cause a lower-priority
interrupt handler to be
interrupted

Example: when input arrives
from communication line, it
heeds to be absorbed quickly
to make room for more input

Interrupt
User Program Handler X

Sk e

G AR

AR RARARARIN
1

]
L J

{a) Sequentlal Interrupt processing

Interrupt
User Program Handler X

=
1 -1
-

=
s

1
+

() Nested Interrupt processing,

-

Interrupt

s Handler Y

-

I

. I

it |
-

i

Interrupt
~~ Handler Y

F

Figure 1.12 Transfer of Control with Multiple Interrupts

19

Cache Memory

* Increase the speed of memory
- Processor speed is higher than memory speed

Hit: the information was in cache; else, miss
- Invisible to operating system

Block Transfer

Word Transfer e
{'\—k./"‘

CPU Cache I :

20
Figure 1.16 Cache and Main Memory

Cache Design: Important issues

_ 1. Cache size

Line Memory .

Number Tag Block address 2. Block size
: 0 3. Mapping function

: ' wi ° determines which cache location the
; ey block will occupy

' 4. Replacement algorithm

determines which block to replace

(e.g. Least-Recently-Used (LRU)
. Block Length a|90r|Thm)

(K Words) ' 5. Write pOllCY
) Cae ' Can occur every time block is updated
Can occur only when block is replaced
- Minimizes memory operations

- Leaves memory in an obsolete
state

Block

2"-1

Wond
Length

(0) Main memory
Figure 1.17 Cache/Main-Memory Structure

21

Memory Hierarchy

Going Down the Hierarchy
- Increasing capacity, Increasing access

time

- Decreasing cost per bit, Decreasing
frequency of access of the memory

- locality of reference: during program
execution memory addresses tend to

| registers

a Il
i v
‘ cache

H Il

I v
main memory

£ Il

| v
electronic disk

H I

I v
magnetic disk

o |

i vV

optical disk

il vV

cluster (iteration loops, subrou’riners, oy

magnetic tapes

Level 1 2 3 4
Name registers cache main memory disk storage
Typical size <1KB > 16 MB > 16 GB > 100 GB

Implementation

custom memory with

on-chip or off-chip

CMOS DRAM

magnetic disk

technology multiple ports, CMOS | CMOS SRAM

Access time (ns) 0.25-05 05-25 80 -250 5,000.000
Bandwidth (MB/sec) | 20,000 — 100,000 5000 - 10,000 1000 - 5000 20-150
Managed by compiler hardware operating system | operating system
Backed by cache main memory disk CD or tape

22

1senbal O/

elep

1dniieul

instruction execution
cycle

data movement

DMA

Computer Hardware Review

Cache bus Local bus Memory bus

Level 2 PCI l Main
cache <£> GRU &D bridge < >memory

TIT r I

Graphics
SCSI USB ISA <:> IDE adaptor Available
¥ bridge disk * PCI slot
<£:> = \ g Mon-
Y itor
Mouse ey
board W ISA bus
¢ pd HEREN >
I I |
Sound . ;
Modem Printer Available
card ISA slot

Structure of a large Pentium system (Fig, ,,
from Modern OS, A. Tanenbaum)

registers registers

cache cache cache

registers

registers

cache

registers

cache

memory

Programmer

Application Programs

Utilities

Operating System

Computer Hardware

Figure 2.1 Layers and Views of a Computer System 28

Operating System - OS objectives

Provides services to system
users - Convenience

- Makes the computer more
convenient to use

- Efficiency

- Allows computer system
resources to be used in an

Shield between the user and
the hardware

Resource manager: efficient manner
- CPU(s) * Ability to evolve
- memory and I/0O devices - Permit introduction of new

system functions without

A conhtrol program intferfering with service

- Controls execution of programs
to prevent errors and improper
use of the computer 29

Services Provided by the Operating System

Program execution:

- CPU scheduling, resource (memory) allocation and management,
synchronization

Access to I/0 devices

- Uniform interfaces, hide details, optimise resources (disk scheduling)
Controlled access to files

- And structure of data
System/resource access

- Authorization, protection, allocation

Utilities, e.g. for program development
- Editors, compilers, debuggers
Error detection and response, when, e.g.
- hardware, software errors
- operating system cannot grant request of application

Monitoring, accounting
30

Operating System: ...

Computer System

Memory

Operating
System
Software

Programs
and Dala

Processor

¥YY¥

(roughly) it is a program ...

1/O Devices

1Y Controller

O

Y Controller

¥
¥
¥

O
¥
¥
¥

I/ Controller

Processor

Printers,
keyboards,

digital camera,

elc.

relinquishes
control of the
processor to
execute other
programs

OS Kernel:

(roughly) portion
of OS that is in
main memory

Contains most-
frequently used
functions

31

* Hardware upgrades, new types of hardware, enabled
features

- New services, new needs

32

Basic OS structures: intro in his’ror'ical order
1. before the stone age
Serial Processing
No operating system

Machines run from a console with display lights and
toggle switches, input device, and printer

Schedule tome
Setup included

- loading the compiler, source program,
- saving compiled program

- loading

- linking

33

Basic OS structures: intro in historical order

2 .C:.,,n-l- LA Ry Y [b A aa
. 1119l 10019 UIJIJCUI
Simple Batch Systems: (Interrupt
. Processing
¢ N\OHITOF‘S Device
- Software that controls the running youior _< Drivers
pr'ogr.ams ‘;eqi:::cing
- Batch jobs together Control Langunge
- Program branches back to monitor , \ | [mterpreter
when finished
- Resident monitor is in main memory
and available for execution
User
» Job Control Language (JCL) Program
. . . . Area
- Provides instruction to the monitor
- what compiler to use
- what data to use

ure 2.3 Memory Layout for a Resident Moni

* Memory protection

- do not allow the memory area containing the monitor to be
altered

* Priviledged instructions
- Only for monitor, e.g. for interface with I/O devices

- Interrupts
- Mechanisms for the OS to relinquish control and regain it

- Timer
- prevents a job from monopolizing the system

35

Basic OS structures: intro in historical order
2. Uni/multi-programming

from uniprogramming....

Processor must wait for I/0 instruction tfo complete
before proceeding

Program A Run Walt Run Walt

Timee =

{a) Uniprogramming

.. Yo Multiprogramming
When one job needs to wait for I/0, the processor
can switch to the other job

Program A Run Walt Rumn Walt

Program E Walt] Run Walt Run Walt
Kun | Kun > Run | Kun ’

Combilmed A B Walt A B Walt

36

Early batch system

System
Input tape Output

2 Printer
O TEN
fHAREHHIE

1401

1401

7094

bring cards to 1401

read cards to tape

put tape on 7094 which does computing
put tape on 1401 which prints output

Basic OS structures: intro in historical order

nm-u\n

R E=C AT I eSS Tim
2,5 Muitiprogramming, Time Sharing

Time sharing systems use multiprogramming to handle
multiple interactive jobs

Processor’'s time is shared among multiple users

Multiple users simultaneously access the system
through terminals

Batch Multiprogramming Time Sharing

Principal objective Maximize processor use Minimize response time

Job control language
commands provided with the

job

Commands entered at the
terminal

Source of directives to
operating system

38

Basic OS structures: intro in historical order
(2 & 2,5) multiprogramming needs ...

. memory management!

5000

32000

5000

20000
25000

32000

MNonltor

JOB 1

%)

Fr

(a)

MNonltor

JOB 1

(JOB 2)

WY

(d)

5000

25000

32000

5000

15000
20000
25000

32000

Monltor

JOB 2

Z45

(b}

Monltor

JOB 4

{(JOB 1)

(JOB 2)

W

()

5000
10000

25000

32000

000

25000

32000

Nonltor

JOB 3

(JOB 2}

07

c)

Nonltor

JORB 2

07

(f)

39

Summary: evolution

First generation 1945 - 1955
vacuum tubes, plug boards

Second generation 1955 - 1965
transistors, batch systems

Third generation 1965 - 1980
ICs and multiprogramming

Fourth generation 1980 - present
personal computers

More contemporary present:

Personal computers become parallel,

portable/embedded OS's

40

The main job of OS is to:
run processes! ...

41

Process = a program in execution

- Example processes:
- OS kernel
- OS shell
- Program executing after compilation
- www-browser

* What do processes do? What do they need?

42

Processes create other processes

A process Tree

A (e.g. shell) created two child processes, B
(e.g. browser) and C (print)

B created three child processes, D, E, and
F (various browser services/windows) 4

Processes need... to get memory

Memory Management
Important issues:

Process isolation
- Prevent interference between different processes
- Protection and access control when sharing memory

Allocation

- Create, destroy modules dynamically
- Support for modular programming

- Efficiency, good utilization

44

Virtual Memory

Allows programmers to address memory from a logical
point of view (without worrying about the physical
availability/location)

Transfer memory «>disk: transparent to the
processes

Real
bl Address
Processor Management
Virtual Unit

Address Main
Memory

Disk
Address

(processes also need) ... get CPU time and
other r‘esour es,

—+
ﬁ»

Goals when allocating resources to processes:

Fairness and Differential responsiveness
- give fair access to all processes
- Allocate to different classes of jobs accordingly

Efficiency

- maximize throughput, minimize response time, and
accommodate as many users as possible

46

... Synchronization, communication...

Process Process

Pipe
A B

More: mutual exclusion, producer-
consumer, signal upon dependent tasks,
dealing with/preventing/avoiding
deadlocks ...

47

.... Yo do IO, access files, ...

Root directory

[~
Student/ \Faculiy
) /
4
RobbenAtty y Leo Prof.Brown/.Green Prof.White
Y

f Pl /1 //
/ 7
i 7\ S /
' Y Y \ Y
Courses Papers Grants Committees
i I}

Important issues: \ "/O\b‘g "\}? fsose \cost
- Organization of information
Efficient access
Memory management of IO
drivers, interfaces

~l

\

P~

48

Protection and Security

Protection - controlling access of processes or users
to resources defined by the OS

Security - defense of the system against internal and
external attacks
Huge range, including denial-of-service, worms, viruses,
identity theft, theft of service
Systems generally first distinguish among users, to
determine who can do what

User identities (user IDs, security IDs) include name and
associated number, one per user

User ID then associated with all files, processes of that user
to determine access control

Group identifier (group ID) allows set of users to be defined
and controls managed, then also associated with each process,
file

Privilege escalation allows user to change to effective ID
with more rights

Process: Implementation

Main Processor

Consists of three i
components .
* An executable program "
- Associated data needed
by the program F_ =
° EXZCUTiOH context Of : Program context
+he nroaram = of the progran
rne program I
- All the book-keeping i)
information the system e o
needs o manage the | |Lfcode) [
process

Figure 2.8 Typical Process Implement,

Major Elements of an Operating System

user and other system programs OS = Ver'y

GUI batch command line © Iar'ge piece
user interfaces Of
software!
system calls N \
- L
| - User
el A R | | D= T || Rt
arror prote(érion
) an
detection S security
operating system N User or
hardware SYSTem
Components: decompose a problem into more manageable programs
subproblems (process manager, file manager, etc) make

direct use

: of the OS

Bootstrap program activates OS kernel (permanent vifa system

system process) calls
- Shell (# kernel): program to let the user initiate processes 51

User Operating System Interface

Command Line Interface (CLI) or command interpreter
Can be implemented in kernel, sometimes by systems program
Sometimes multiple flavors implemented - shells
Primarily fetches a command from user and executes it

Graphical User Interface: User-friendly desktop
metaphor interface

Usually mouse, keyboard, and monitor

Icons represent files, programs, actions, etc

Invented at Xerox PARC

Many systems now include both CLI and GUT interfaces
Microsoft Windows is GUI with CLI "command” shell

Apple Mac OS X as "Aqua” GUT interface with UNIX kernel
underneath and shells available

Solaris is CLI with optional GUT interfaces (Java Desktop,
KDE)

user mode
(mode bit = 1)

user process
user process executing —l- calls system call return from system call
\ /
L V4
karhel trap return
erne mode bit = 0 mode bit = 1

execute system call

kernel mode

(mode bit = 0)

53

user application

open ()
user
mode
system call interface
kernel
mode A
L > - open ()
Implementation
i » of open ()

system call

return

Standard C Library Example

» C program invoking printf() library call,
which calls write() system call

#include <stdio.h>
int main ()

{

printf ("Greetings"); |«

return O;

}

user

node Y
standard C library
ernel
node
write ()

write ()
system call

Some System Calls

Process management

Call

Description

pid = fork()

Create a child process identical to the parent

pid = waitpid(pid, &statloc, options)

Wait for a child to terminate

S = execve(hame, argv, environp)

Replace a process’ core image

exit(status)

Terminate process execution and return status

File management

Call

Description

fd = open(file, how, ...)

Open a file for reading, writing or both

s = close(fd)

Close an open file

n = read(fd, buffer, nbytes)

Read data from a file into a buffer

n = write(fd, buffer, nbytes)

Write data from a buffer into a file

position = Iseek(fd, offset, whence)

Move the file pointer

s = stat(name, &buf)

Get a file’s status information

Miscellaneous

Call

Description

s = chdir(dirname)

Change the working directory

s = chmod(name, mode)

Change a file’s protection bits

s = kill(pid, signal)

Send a signal to a process

seconds = time(&seconds)

Get the elapsed time since Jan. 1, 1970

A stripped down shell

while (TRUE) {

type_prompt();
read_command (command, parameters)

if (fork() 1= 0) {

/* Parent code */
waitpid(-1, &status, 0);

} else {

}
}

/* Child code */
execve (command, parameters, 0);

/* repeat forever */
/* display prompt */
/* input from terminal */

/* fork off child process */

/* wait for child to exit */

/* execute command */

57

System Programs

System programs provide a convenient environment
for program development and execution. The can be
divided into:

File manipulation

Status information

File modification

Programming language support

Program loading and execution

Communications

Application programs
Most users’ view of the operation system is defined by
system programs, not the actual system calls

59

Operating System Desigh and Implementation

Internal structure of different Operating Systems
can vary widely

Start by defining goals and specifications
Affected by choice of hardware, type of system

User goals and System goals

User goals - operating system should be convenient to use,
easy to learn, reliable, safe, and fast

System goals - operating system should be easy to design,
implement, and maintain, as well as flexible, reliable, error-
free, and efficient

Traditional UNIX System Structure

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

i signals terminal file system CPU scheduling

g | handling swapping block I/O page replacement

O character |/O system system demand paging
terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

Issues in Modern Operating Systems

Microkernel architecture
Only few essential functions in kernel; OO design

Multithreading

A process may consist of several sequential threads of
execution

Concurrent computer systems
Symmetric multi-processor systems
Multi-threaded/multicore processors
Distributed systems

provide the illusion of a single main memory and single
secondary memory space in cluster-based platforms

Real-time Operating Systems
For time-critical applications, multimedig, ...

Embedded Operating Systems

Constraints: limited resources, special functionalities
62

Microkernel

Small OS core; contains only essential OS functions:
- Low-level memory management (address space mapping)
- Process scheduling
- I/0 and interrupt management

Many services traditionally included in the OS kernel are now
external subsystems

- device drivers, file systems, virtual memory manager, windowing
system, security services

LUser
Mode

==

Users

File System

Lser
Mode

AT mDf ==

Interprocess Communication

EmE =RBEmg ==

Kernel

Mode /O and Device Management

= o =AW o=y

pEAE =R AR

L wwa s

wow s n
Ty

Virtual Memory

Kernel
Mode

Primitive Process Management

HARDWARE

63

(a) Layered kernel (b)) Microkernel

Benefits of a Microkernel Organization

Uniform interface on request made by a process

All services are provided by means of message passing
Distributed system support

Message are sent without knowing what the target machine is
Extensibility

Allows the addition/removal of services and features
Portability

Changes needed to port the system to a new processor is changed in
the microkernel - not in the other services

Object-oriented operating system

Components are objects with clearly defined interfaces that can be
interconnected

Reliability
Modular design;
Small microkernel can be rigorously tested

64

kernel
environment

application environments
and common services

BSD

Mach

Instantiation: Windows

System Processes Services | A Environment
Service subsystems .
controller P I POSIX ¢ CIIZHT/SZI"VZF‘
User 082 R
E‘,ERI::C application CompUTlng,' bC(SC fOf‘
. Win32 . . .
e Sthysen D distributed computing
Y Y Y Y o o .
I'E NTDLLDLL ° MOdlfled microkernel
e
-IEEUI;IUE; lll ar‘ChITeCTur'e
System .
" tiread - not a pure microkernel:
A Y Y Y many system functions
Executlve API (| C 4i
. outside of the
Windows 2000 | | VOManager | LPC | cacte | Procesy Socurlty § - tual - yyppgey . f .
wsl { facllity | manager ""m. ml’erencfz] manager mlCr'Oker‘ne| run in ker'nel
Executlve Tlle manager | monitor | manager
Systems Object management/Executive RTL m o d e
\
Device drivers Microkernel - mOdUIQS can be r'emoved,
e ke i T AT upgraded, or replaced
Hardware Interfaces (buses, V0, Inferrupts, timers, w | 'I' h (o) UT rewr |'|' | ng ‘|' he

clocks, DMA, cache control, etc,)

entire system

66
Figure 2.13 Windows 2000 Architecture

scheduling
classes

device and
bus drivers

" core Solaris
_ kernel

loadable

miscellaneous
system calls

modules

executable
formats

STREAMS
modules

Virtual Machine

treats hardware and the operating system
kernel as though they were all hardware

provides an interface /dentical to the
underlying bare hardware

The operating system host creates the

Y 2 VaVarlsYal <

I”UDIU” thl d IJI UOCCoo hUD IID own
processor and (virtual memory)

Each guest provided with a (virtual) copy
of underlying computer

processes

v

kernel

hardware

(a)

e

programming/
interface

processes
processes
processes
kernel kernel kernel
VM1 VM2 VM3

virtual-machine
implementation

hardware

(b)

Virtual Machines History and Benefits

commercially in IBM mainframes ,1972

multiple execution environments (different OSs)
share the same hardware, protect from each
other

Some file sharing permitted, controlled

Commutate with each other + other physical
systems via networking

Useful for development, testing

"Open Virtual Machine Format”, standard format
of virtual machines, allows a VM to run within
many different virtual machine (host) platforms

Concurrent Computer Systems

Parallel Processor
SIMD MIMD
(single instruction (multiple instruction

multiple data stream) multiple data stream)
each instruction i
executed on a
different set of
data by the differe
processors

Distributed-Memory
(loosely coupled)

(tightly cuupled

Master/Slave Symmetric Clusters

Multiprocessors
(SMP)

Symmetric Multiprocessors and multicores

Processors share the same memory and I/Os
Kernel can execute on any processor
Scheduling & synchronization, memory management &

consis’rencx- ?also research issues)
Processor ‘Prcn:e&snrl 2 ‘Prcn:e&mrl

L2 Cache | | W 'E:].L'III!' | L2 Cﬂcl:uf'

| P
Subsytem

Cluster Computer Platforms

Network

Middleware layer (part of OS) to provide

- single-system image (synchronization, consistency, global

states, file systems)

- fault-tolerance, load balancing, parallelism

]

—

.

S .

[LAN or WAN or
Internet
P

workstation
{client)

]

I 0

SEeErver 73

Open-Source Operating Systems

* Operating systems made available in source-
code format rather than just binary closed-
source

* Counter to the copy protection and Digital
Rights Management (DRM) movement

- Started by Free Software Foundation (FSF),

which has "copyleft” GNU Public License (GPL)

 Examples include GNU/Linux, BSD UNIX
(including core of Mac OS X), and Sun Solaris

Summary

OS: intfermediary between user and hardware
Execute programs in convenient + efficient manner
Software that manages/interacts with the hardware

Organization?

Define goals, find methods/strategies to reach them
Work piece by piece

We saw "trailers” of the movies, we have
context.

Next: piece by piece focus

75

