
Lecture #9

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

Real-Time Systems

Real-Time Systems

Verification

Implementation

Specification

•  Scheduling
•  Optimality
•  Feasibility tests
•  Computational complexity

Scheduling

A schedule is a reservation of spatial (e.g., processor,
shared objects) and temporal (time) resources for a
given set of tasks.

t

t
processor

shared
object

1τ 2τ 3τ3τ2τ1τ1τ 2τ 3τ

Scheduling

•  The scheduling algorithm is implemented by a scheduler
in the run-time system, that decides in what order the
tasks should be executed.

•  Note that the scheduler decides which task should be
executed next, whereas the dispatcher is responsible
for starting the selected task.

A scheduling algorithm is used for generating a
schedule for a given set of tasks for a particular
type of run-time system.

Scheduling

How is scheduling implemented?
•  Cyclic executive:

–  The schedule is generated ”off-line” before the tasks becomes
ready, sometimes even before the system is in mission.

–  The schedule consists of a time table, containing explicit start
and completion times for each task instance, that controls the
order of execution at run-time.

•  Pseudo-parallel execution:
–  The schedule is generated ”on-line” as a side effect of tasks

being executed, that is, when the system is in mission.
–  Ready tasks are sorted in a queue and receive access to the

processor based on priority and/or time quanta (”round-robin”).

Scheduling

How is scheduling implemented? (cont’d)
•  Cyclic executive:

–  The implementation of the scheduler is relatively simple
because the next task is chosen with a table look-up.

–  However, the time table must be generated off-line (before
the system is in mission) by a more advanced algorithm.

•  Pseudo-parallel execution:
–  The implementation of the scheduler is more sophisticated

because it consists of a decision algorithm that must be
activated regularly (at each system event).

–  If shared resources are used the scheduler must also handle
protocols for avoiding priority/deadline inversion.

Scheduling

When are scheduling decisions taken?
•  Non-preemptive scheduling:

–  Scheduling decisions are taken when no task executes.
–  Mutual exclusion can be automatically guaranteed.
–  Corresponds to fundamental assumption in WCET analysis.

•  Preemptive scheduling:
–  Scheduling decisions may be taken as soon as the system

state changes (that is, even during an ongoing task execution).
–  Mutual exclusion may have to be guaranteed with semaphores

(or similar primitives).
–  WCET analysis becomes more complicated, because the state

in caches and pipelines will change at a task switch.

Scheduling

When are scheduling decisions taken? (cont’d)
•  Myopic scheduling:

–  Scheduling algorithm only knows about tasks that are ready.
–  Scheduling decisions are only taken when system state changes.
–  On-line myopic scheduling is state-of-the-art in run-time systems.

•  Clairvoyant scheduling:
–  Scheduling algorithm ”knows the future”; that is, it knows in

advance all the arrival times of all the tasks.
–  Scheduling decisions may be taken at any time, not necessarily

when system state changes.
–  On-line clairvoyant scheduling is very difficult (often impossible)

to realize in practice.

Scheduling

A schedule is said to be feasible if it fulfills all application
constraints for a given set of tasks.

A set of tasks is said to be schedulable if there exists at
least one scheduling algorithm that can generate a
feasible schedule.

Scheduling

A scheduling algorithm is said to be optimal with respect
to schedulability if it can always find a feasible schedule
whenever any other scheduling algorithm can do so.

A scheduling algorithm is said to be optimal with respect
to a performance metric if it can always find a schedule
that maximizes/minimizes that metric value.

Feasibility tests

A feasibility test is used for deciding whether a set of
tasks is feasible or not for a given scheduler.

Important characteristics of feasibility tests:
•  Exactness

–  What conclusions can be drawn regarding feasibility based
on the outcome of the test?

•  Computational complexity
–  How long time does it take for the test to produce an outcome

with a decision regarding feasibility?

Feasibility tests

Exactness of a feasibility test
•  The outcome of a feasibility test is binary:

–  Positive or Negative
–  True or False
–  Yes or No

•  The conclusions that can be drawn depends on
whether the test is:
–  Sufficient
–  Necessary
–  Exact (= sufficient and necessary)

Feasibility tests

•  A feasibility test is sufficient if it with a positive outcome
shows that a set of tasks is definitely schedulable.
–  A negative outcome says nothing! A set of tasks can still be

schedulable despite a negative outcome.

Negative test

Task set

Schedulable

Not schedulable

Positive test

?

Feasibility tests

•  A feasibility test is necessary if it with a negative outcome
shows that a set of tasks is definitely not schedulable.
–  A positive outcome says nothing! A set of tasks can still be

impossible to schedule despite a positive outcome.

Task set

Schedulable

Not schedulable

Positive test

Negative test

?

Feasibility tests

•  An exact feasibility test is both sufficient and necessary.
If the outcome of the test is positive the set of tasks is
definitely schedulable, and if the outcome is negative
the set of tasks is definitely not schedulable.

Task set

Schedulable

Not schedulable

Negative test

Positive test

Feasibility tests

Computational complexity of a feasibility test:
•  For some schedulers the feasibility test can be done with

polynomial time complexity.
–  These feasibility tests typically have relaxed assumptions

regarding the task model, for example: independent tasks
(with no shared resources) or tasks with deadline = period.

•  For most schedulers the feasibility test cannot be done
with polynomial time complexity.
–  These feasibility tests are either NP-complete problems or

have exponential time complexity because all possible
schedules must be considered in the worst case.

Feasibility tests

What types of feasibility tests exist?
•  Hyper period analysis (for any type of scheduler)

–  In an existing schedule no task execution may miss its deadline

•  Processor utilization analysis (static/dynamic priority scheduling)
–  The fraction of processor time that is used for executing the

task set must not exceed a given bound

•  Response time analysis (static priority scheduling)
–  The worst-case response time for each task must not exceed

the deadline of the task

•  Processor demand analysis (dynamic priority scheduling)
–  The accumulated computation demand for the task set under

a given time interval must not exceed the length of the interval

Feasibility tests

What types of feasibility tests exist?
•  Hyper period analysis (exponential time complexity)

–  In an existing schedule no task execution may miss its deadline

•  Processor utilization analysis (polynomial time complexity)
–  The fraction of processor time that is used for executing the

task set must not exceed a given bound

•  Response time analysis (NP-complete problem)
–  The worst-case response time for each task must not exceed

the deadline of the task

•  Processor demand analysis (NP-complete problem)
–  The accumulated computation demand for the task set under

a given time interval must not exceed the length of the interval

Why NP-completeness matters

Assume that your boss gives you the following problem:
 Find a good algorithm (method) for determining whether
or not any given set of specifications for your company’s
new bandersnatch component can be met and, if so, find
a good algorithm for constructing a design that meets
those specifications.

The bandersnatch example is taken from
“A Guide to the Theory of NP-Completeness”

by M. R. Garey and D. S. Johnson

Why NP-completeness matters

Initial attempt:
 Pull down your reference books and plunge into the task
with great enthusiasm.

Some weeks later ...
 Your office is filled with crumpled-up scratch paper, and
your enthusiasm has lessened considerable because …

 … the solution seems to be to examine all possible designs!

You now have a new problem:

 How do you convey the bad information to your boss?

Why NP-completeness matters

Approach #1: Take the loser’s way out

Drawback: Could seriously damage your position within the company

Why NP-completeness matters

Approach #2: Prove that the problem is inherently intractable

Drawback: Proving inherent intractability can be as hard as finding
efficient algorithms. Even the best theoreticians have failed!

Why NP-completeness matters

Approach #3: Prove that the problem is NP-complete

Advantage: This would inform your boss that it is no good to fire you
and hire another expert on algorithms.

NP-complete problems:
Problems that are “just as hard” as a large number of
other problems that are widely recognized as being
difficult by algorithmic experts.

NP-complete problems

NP-complete problems can (most likely)
only be solved by an exponential-time
algorithm in the general case.

NP-complete problems

Problem:
•  A general question to be answered

Example: The “traveling salesman optimization problem”

Parameters:
•  Free problem variables, whose values are left unspecified

Example: A set of “cities” and a “distance”
between each pair of cities and

d ci ,c j()
 ci

c j

C = c1,...,cn{ }

Instance:
•  An instance of a problem is obtained by specifying

particular values for all the problem parameters
Example:

C = c1,c2 ,c3,c4{ },d c1,c2() =10,d c1,c3() = 5,d c1,c4() = 9,

 d c2 ,c3() = 6,d c2 ,c4() = 9,d c3,c4() = 3

10

9

9

5

6
3

1c

3c

4c
2c

NP-complete problems

The Traveling Salesman Optimization Problem:

Minimum “tour” length = 27

Minimize the length of the “tour” that visits each city in
sequence, and then returns to the first city.

NP-complete problems

The theory of NP-completeness applies only to decision problems,
where the solution is either a “Yes” or a “No”.

If an optimization problem asks for a solution that has minimum
“cost”, we can associate with that problem a decision problem that
includes a numerical bound B as an additional parameter and that
asks whether there exists a solution having cost no more than B.

10

9

9

5

6
3

1c

3c

4c
2c

NP-complete problems

The Traveling Salesman Decision Problem:

Is there a “tour” of all the cities in C having a total
length of no more than B?

10

9

9

5

6
3

1c

3c

4c
2c

NP-complete problems

The Traveling Salesman Decision Problem:

Is there a “tour” of all the cities in C having a total
length of no more than 30? Yes! At least one (of length 27).

10

9

9

5

6
3

1c

3c

4c
2c

NP-complete problems

The Traveling Salesman Decision Problem:

Is there a “tour” of all the cities in C having a total
length of no more than 20? No! The shortest is of length 27.

Input length:
•  The number of information symbols (e.g. bits)

needed for representing a problem instance
of a given size.

Time-complexity function:
•  Expresses an algorithm’s worst-case run-time

requirements giving, for each possible input
length, the largest amount of time needed
by the algorithm to solve a problem instance
of that size.

Intractability

Polynomial-time algorithm:
•  An algorithm whose time-complexity function is proportional

to p(n) for some polynomial function p, where n is the input
length.

Exponential-time algorithm:
•  Any algorithm whose time-complexity function cannot be

bounded as above.

A problem is said to be intractable if it is so hard that no
polynomial-time algorithm can possibly solve it.

Intractability

Class P

Deterministic algorithm: (Deterministic Turing Machine)
•  Finite-state control:

–  The algorithm can pursue only one computation at a time
–  Given a problem instance I, some solution S

is derived by the algorithm
–  The correctness of S is inherent in the algorithm

The class P is the class of all decision problems Π
that can be solved by polynomial-time

deterministic algorithms.

Alan Turing

Class NP

Non-deterministic algorithm: (Non-Deterministic Turing Machine)
 1. Guessing stage:

–  Given a problem instance I, some solution S is “guessed”.
–  The algorithm can pursue an unbounded number of

independent computational sequences in parallel.

 2. Checking stage:
–  The correctness of S is verified in a normal deterministic manner

The class NP is the class of all decision problems Π
that can be solved by polynomial-time

non-deterministic algorithms.

NP-complete problems

Reducibility:
•  A problem Π’ is reducible to problem Π if, for any

instance of Π’, an instance of Π can be constructed in
polynomial time such that solving the instance of Π will
solve the instance of Π’ as well.

A decision problem Π is said to be NP-complete
if Π ∈ NP and, for all other decision problems
 Π’ ∈ NP, Π’ reduces to Π in polynomial time .

Some original NP-complete problems

3-SATISFIABILITY

SATISFIABILITY

3-DIMENSIONAL
MATCHING

CLIQUE

VERTEX COVER HAMILTONIAN
CIRCUIT

PARTITION

MINIMUM COVER

KNAPSACK

MULTIPROCESSOR
SCHEDULING

LONGEST PATH

3-PARTITION

TRAVELING
SALESMAN

MAX CUT

CLUSTERING

PREEMPTIVE
SCHEDULING

BIN PACKING

GRAPH
COLORABILITY

INTEGER
PROGRAMMING

DEADLOCK
AVOIDANCE

REGISTER
SUFFICIENCY

JOB-SHOP
SCHEDULING

ANNIHILATION

NP-completeness in practice

Pseudo-polynomial time complexity:
•  Number problems

–  This is a special type of NP-complete problems for which
the largest number (parameter value) in a problem instance
is not bounded by the input length (size) of the problem.

•  Number problems are often quite tractable
–  If the time complexity of a number problem can be shown to

be a polynomial-time function of both the input length and
the largest number, that number problem is said to have
pseudo-polynomial time complexity.
That is, the time-complexity function is proportional to p(max,n) for
some polynomial function p, where max is the largest number and
n is the input length.

Feasibility tests

What types of feasibility tests exist? (revisited)
•  Hyper period analysis (exponential time complexity)

–  In an existing schedule no task execution may miss its deadline

•  Processor utilization analysis (polynomial time complexity)
–  The fraction of processor time that is used for executing the

task set must not exceed a given bound

•  Response time analysis (pseudo-polynomial complexity)
–  The worst-case response time for each task must not exceed

the deadline of the task

•  Processor demand analysis (pseudo-polynomial complexity)
–  The accumulated computation demand for the task set under

a given time interval must not exceed the length of the interval

