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Real-Time Systems 

Verification 

Implementation 

Specification 

•  Scheduling 
•  Optimality 
•  Feasibility tests 
•  Computational complexity 



Scheduling 

A schedule is a reservation of spatial (e.g., processor, 
shared objects) and temporal (time) resources for a 
given set of tasks. 
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Scheduling 

•  The scheduling algorithm is implemented by a scheduler 
in the run-time system, that decides in what order the 
tasks should be executed. 

•  Note that the scheduler decides which task should be 
executed next, whereas the dispatcher is responsible  
for starting the selected task. 

A scheduling algorithm is used for generating a 
schedule for a given set of tasks for a particular 
type of run-time system.  



Scheduling 

How is scheduling implemented?  
•  Cyclic executive: 

–  The schedule is generated ”off-line” before the tasks becomes 
ready, sometimes even before the system is in mission. 

–  The schedule consists of a time table, containing explicit start 
and completion times for each task instance, that controls the 
order of execution at run-time. 

•  Pseudo-parallel execution: 
–  The schedule is generated ”on-line” as a side effect of tasks 

being executed, that is, when the system is in mission. 
–  Ready tasks are sorted in a queue and receive access to the 

processor based on priority and/or time quanta (”round-robin”). 



Scheduling 

How is scheduling implemented? (cont’d)  
•  Cyclic executive: 

–  The implementation of the scheduler is relatively simple 
because the next task is chosen with a table look-up. 

–  However, the time table must be generated off-line (before  
the system is in mission) by a more advanced algorithm. 

•  Pseudo-parallel execution: 
–  The implementation of the scheduler is more sophisticated 

because it consists of a decision algorithm that must be 
activated regularly (at each system event). 

–  If shared resources are used the scheduler must also handle 
protocols for avoiding priority/deadline inversion. 



Scheduling 

When are scheduling decisions taken?  
•  Non-preemptive scheduling: 

–  Scheduling decisions are taken when no task executes. 
–  Mutual exclusion can be automatically guaranteed. 
–  Corresponds to fundamental assumption in WCET analysis. 

•  Preemptive scheduling: 
–  Scheduling decisions may be taken as soon as the system 

state changes (that is, even during an ongoing task execution). 
–  Mutual exclusion may have to be guaranteed with semaphores 

(or similar primitives). 
–  WCET analysis becomes more complicated, because the state 

in caches and pipelines will change at a task switch. 



Scheduling 

When are scheduling decisions taken? (cont’d)  
•  Myopic scheduling: 

–  Scheduling algorithm only knows about tasks that are ready. 
–  Scheduling decisions are only taken when system state changes. 
–  On-line myopic scheduling is state-of-the-art in run-time systems.  

•  Clairvoyant scheduling: 
–  Scheduling algorithm ”knows the future”; that is, it knows in 

advance all the arrival times of all the tasks. 
–  Scheduling decisions may be taken at any time, not necessarily 

when system state changes. 
–  On-line clairvoyant scheduling is very difficult (often impossible) 

to realize in practice. 



Scheduling 

A schedule is said to be feasible if it fulfills all application 
constraints for a given set of tasks. 

A set of tasks is said to be schedulable if there exists at 
least one scheduling algorithm that can generate a 
feasible schedule. 



Scheduling 

A scheduling algorithm is said to be optimal with respect 
to schedulability if it can always find a feasible schedule 
whenever any other scheduling algorithm can do so. 

A scheduling algorithm is said to be optimal with respect 
to a performance metric if it can always find a schedule 
that maximizes/minimizes that metric value. 



Feasibility tests 

A feasibility test is used for deciding whether a set of 
tasks is feasible or not for a given scheduler. 

Important characteristics of feasibility tests: 
•  Exactness 

–  What conclusions can be drawn regarding feasibility based  
on the outcome of the test? 

•  Computational complexity 
–  How long time does it take for the test to produce an outcome 

with a decision regarding feasibility? 



Feasibility tests 

Exactness of a feasibility test 
•  The outcome of a feasibility test is binary: 

–  Positive or Negative 
–  True or False 
–  Yes or No 

•  The conclusions that can be drawn depends on  
whether the test is: 
–  Sufficient 
–  Necessary 
–  Exact (= sufficient and necessary) 



Feasibility tests 

•  A feasibility test is sufficient if it with a positive outcome 
shows that a set of tasks is definitely schedulable. 
–  A negative outcome says nothing! A set of tasks can still be 

schedulable despite a negative outcome. 

Negative test 
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Feasibility tests 

•  A feasibility test is necessary if it with a negative outcome 
shows that a set of tasks is definitely not schedulable. 
–  A positive outcome says nothing! A set of tasks can still be 

impossible to schedule despite a positive outcome. 
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Not schedulable 

Positive test 

Negative test 

? 



Feasibility tests 

•  An exact feasibility test is both sufficient and necessary.  
If the outcome of the test is positive the set of tasks is 
definitely schedulable, and if the outcome is negative  
the set of tasks is definitely not schedulable. 
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Feasibility tests 

Computational complexity of a feasibility test: 
•  For some schedulers the feasibility test can be done with 

polynomial time complexity. 
–  These feasibility tests typically have relaxed assumptions 

regarding the task model, for example: independent tasks  
(with no shared resources) or tasks with deadline = period. 

•  For most schedulers the feasibility test cannot be done 
with polynomial time complexity. 
–  These feasibility tests are either NP-complete problems or  

have exponential time complexity because all possible 
schedules must be considered in the worst case. 



Feasibility tests 

What types of feasibility tests exist? 
•  Hyper period analysis (for any type of scheduler) 

–  In an existing schedule no task execution may miss its deadline  

•  Processor utilization analysis (static/dynamic priority scheduling) 
–  The fraction of processor time that is used for executing the  

task set must not exceed a given bound 

•  Response time analysis (static priority scheduling) 
–  The worst-case response time for each task must not exceed  

the deadline of the task 

•  Processor demand analysis (dynamic priority scheduling) 
–  The accumulated computation demand for the task set under  

a given time interval must not exceed the length of the interval 



Feasibility tests 

What types of feasibility tests exist? 
•  Hyper period analysis (exponential time complexity) 

–  In an existing schedule no task execution may miss its deadline  

•  Processor utilization analysis (polynomial time complexity) 
–  The fraction of processor time that is used for executing the  

task set must not exceed a given bound 

•  Response time analysis (NP-complete problem) 
–  The worst-case response time for each task must not exceed  

the deadline of the task 

•  Processor demand analysis (NP-complete problem) 
–  The accumulated computation demand for the task set under  

a given time interval must not exceed the length of the interval 



Why NP-completeness matters 

Assume that your boss gives you the following problem: 
 Find a good algorithm (method) for determining whether 
or not any given set of specifications for your company’s 
new bandersnatch component can be met and, if so, find 
a good algorithm for constructing a design that meets 
those specifications. 

The bandersnatch example is taken from 
“A Guide to the Theory of NP-Completeness” 

by M. R. Garey and D. S. Johnson 



Why NP-completeness matters 

Initial attempt: 
 Pull down your reference books and plunge into the task 
with great enthusiasm.  

Some weeks later ... 
 Your office is filled with crumpled-up scratch paper, and 
your enthusiasm has lessened considerable because … 

 … the solution seems to be to examine all possible designs! 
 
You now have a new problem: 

 How do you convey the bad information to your boss?   



Why NP-completeness matters 

Approach #1: Take the loser’s way out   

Drawback: Could seriously damage your position within the company 



Why NP-completeness matters 

Approach #2: Prove that the problem is inherently intractable
  

Drawback: Proving inherent intractability can be as hard as finding 
efficient algorithms. Even the best theoreticians have failed! 



Why NP-completeness matters 

Approach #3: Prove that the problem is NP-complete  

Advantage: This would inform your boss that it is no good to fire you 
and hire another expert on algorithms. 



NP-complete problems: 
Problems that are “just as hard” as a large number of 
other problems that are widely recognized as being 
difficult by algorithmic experts. 

NP-complete problems 

NP-complete problems can (most likely) 
only be solved by an exponential-time 
algorithm in the general case. 



NP-complete problems 

Problem: 
•  A general question to be answered 

Example: The “traveling salesman optimization problem” 

Parameters: 
•  Free problem variables, whose values are left unspecified 

Example: A set of “cities”                       and a “distance”                 
between each pair of cities     and    

d ci ,c j( )
 ci  

c j

C = c1,...,cn{ }

Instance: 
•  An instance of a problem is obtained by specifying 

particular values for all the problem parameters 
Example:   

C = c1,c2 ,c3,c4{ },d c1,c2( ) =10,d c1,c3( ) = 5,d c1,c4( ) = 9,

  d c2 ,c3( ) = 6,d c2 ,c4( ) = 9,d c3,c4( ) = 3
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NP-complete problems 

The Traveling Salesman Optimization Problem: 

Minimum “tour” length = 27 

Minimize the length of the “tour” that visits each city in 
sequence, and then returns to the first city. 



NP-complete problems 

The theory of NP-completeness applies only to decision problems, 
where the solution is either a “Yes” or a “No”. 

If an optimization problem asks for a solution that has minimum 
“cost”, we can associate with that problem a decision problem that 
includes a numerical bound B as an additional parameter and that 
asks whether there exists a solution having cost no more than B. 
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NP-complete problems 

The Traveling Salesman Decision Problem: 

Is there a “tour” of all the cities in C having a total 
length of no more than B? 
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NP-complete problems 

The Traveling Salesman Decision Problem: 

Is there a “tour” of all the cities in C having a total 
length of no more than 30? Yes! At least one (of length 27). 
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NP-complete problems 

The Traveling Salesman Decision Problem: 

Is there a “tour” of all the cities in C having a total 
length of no more than 20? No! The shortest is of length 27. 



Input length: 
•  The number of information symbols (e.g. bits)  

needed for representing a problem instance  
of a given size. 

Time-complexity function: 
•  Expresses an algorithm’s worst-case run-time  

requirements giving, for each possible input  
length, the largest amount of time needed  
by the algorithm to solve a problem instance  
of that size. 

Intractability 



Polynomial-time algorithm: 
•  An algorithm whose time-complexity function is proportional 

to p(n) for some polynomial function p, where n is the input 
length. 

Exponential-time algorithm: 
•  Any algorithm whose time-complexity function cannot be 

bounded as above. 

A problem is said to be intractable if it is so hard that no 
polynomial-time algorithm can possibly solve it. 

Intractability 



Class P 

Deterministic algorithm: (Deterministic Turing Machine) 
•  Finite-state control:  

–  The algorithm can pursue only one computation at a time 
–  Given a problem instance I, some solution S  

is derived by the algorithm 
–  The correctness of S is inherent in the algorithm 

The class P is the class of all decision problems Π  
that can be solved by polynomial-time  

deterministic algorithms. 

Alan Turing 



Class NP 

Non-deterministic algorithm: (Non-Deterministic Turing Machine) 
  1. Guessing stage:  

–  Given a problem instance I, some solution S is “guessed”. 
–  The algorithm can pursue an unbounded number of  

independent computational sequences in parallel. 

  2. Checking stage:  
–  The correctness of S is verified in a normal deterministic manner 

The class NP is the class of all decision problems Π 
that can be solved by polynomial-time  

non-deterministic algorithms. 



NP-complete problems 

Reducibility: 
•  A problem Π’ is reducible to problem Π if, for any 

instance of Π’, an instance of Π can be constructed in 
polynomial time such that solving the instance of Π will 
solve the instance of Π’ as well. 

 

A decision problem Π is said to be NP-complete  
if Π ∈ NP and, for all other decision problems 
 Π’ ∈ NP, Π’ reduces to Π in polynomial time . 



Some original NP-complete problems 

3-SATISFIABILITY 

SATISFIABILITY 

3-DIMENSIONAL  
MATCHING 

CLIQUE 

VERTEX COVER HAMILTONIAN 
CIRCUIT 

PARTITION 

MINIMUM COVER 

KNAPSACK 

MULTIPROCESSOR 
SCHEDULING 

LONGEST PATH 

3-PARTITION 

TRAVELING 
SALESMAN 

MAX CUT 

CLUSTERING 

PREEMPTIVE 
SCHEDULING 

BIN PACKING 

GRAPH 
COLORABILITY 

INTEGER 
PROGRAMMING 

DEADLOCK 
AVOIDANCE 

REGISTER 
SUFFICIENCY 

JOB-SHOP 
SCHEDULING 

ANNIHILATION 



NP-completeness in practice 

Pseudo-polynomial time complexity: 
•  Number problems 

–  This is a special type of NP-complete problems for which 
the largest number (parameter value) in a problem instance  
is not bounded by the input length (size) of the problem. 

•  Number problems are often quite tractable 
–  If the time complexity of a number problem can be shown to  

be a polynomial-time function of both the input length and  
the largest number, that number problem is said to have  
pseudo-polynomial time complexity. 
That is, the time-complexity function is proportional to p(max,n) for 
some polynomial function p, where max is the largest number and  
n is the input length. 



Feasibility tests 

What types of feasibility tests exist? (revisited) 
•  Hyper period analysis (exponential time complexity) 

–  In an existing schedule no task execution may miss its deadline  

•  Processor utilization analysis (polynomial time complexity) 
–  The fraction of processor time that is used for executing the  

task set must not exceed a given bound 

•  Response time analysis (pseudo-polynomial complexity) 
–  The worst-case response time for each task must not exceed  

the deadline of the task 

•  Processor demand analysis (pseudo-polynomial complexity) 
–  The accumulated computation demand for the task set under  

a given time interval must not exceed the length of the interval 


