
Lecture #7

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

Real-Time Systems

Real-Time Systems

Verification

Implementation

Specification

•  System models
•  Execution-time analysis

Verification by testing

Free translation from Swedish by J. Jonsson

Dad? How do they know
how much weight a bridge
can handle?

They drive bigger and
bigger trucks over the
bridge until it collapses!

Oh, I guess
I should have
known that!

Honey, if you
don't know the
answer, just
SAY so!

Then they take the
weight of the last truck
and rebuild the bridge

Verification by testing

So, is this how bridges (or other mechanical constructions) are built?

Congratulations, Builder Bob!
It seems to be strong enough this time.

Let’s open the bridge.

Of course not! There are models (properties of materials) and
theories (laws of mechanics) involved to determine in advance
that a construction will withstand the predicted load.

Verification by models & theory

So, why cannot computer systems be built and verified in advance
using models and theories?
Well, they can … using system models and schedulability analysis

Verification

How do we perform schedulability analysis?

•  Introduce abstract models of system components:
–  Task model (computation requirements, timing constraints)
–  Processor model (resource capacities)
–  Run-time model (task states, dispatching)

•  Predict whether task executions will meet constraints
–  Use timing-correct abstract system models
–  Make sure that computation requirements never exceed

resource capacities
–  Generate a (partial or complete) run-time schedule resulting

from task executions and detect worst-case scenarios

Verification

How do we simplify schedulability analysis?

•  Concurrent and reactive programming paradigm
–  Suitable schedulable entity (thread, method, …)
–  Language constructs for expressing application constraints

for schedulable entities (data types, annotations, macros, …)
–  Estimated WCET for schedulable entities

•  Deterministic task execution
–  Time tables or static/dynamic task priorities
–  Preemptive task execution
–  Run-time protocols for access to shared resources (dynamic

priority adjustment and non-preemptable code sections)

Designing a real-time system

Verification

Implementation

Specification

 How should it be done?

 What should be done &
 When should it be done?

Can it be done with the
given implementation?

New design!

•  Abstract system models
•  Schedulability analysis

•  Logical function
•  Temporal function

•  System implementation

The run-time model expresses the state of a task:

Run-time model

Running: Currently executing task
Ready: Task that is available for execution
Waiting: Task that cannot execute because it is needs access to a

 resource other than the processor

running

waiting ready
signal

interrupt

dispatch wait

Task model

void task1(Object *self, int p) {
Action1();
SEND(Period1, Deadline1, self, task1, p);

}

void task2(Object *self, int p) {
Action2();
SEND(Period2, Deadline2, self, task2, p);

}

void kickoff(Object *self, int p) {
AFTER(Offset1, &app1, p);
AFTER(Offset2, &app2, p);

}

main() {
TINYTIMBER(&app_main, kickoff, 0);

}

Implementation Abstract model

1τ

2τ

{ }1 1 1 1 1, , ,C T D Oτ =

{ }2 2 2 2 2, , ,C T D Oτ =

Task model

The task model expresses the timing behavior of a task:
•  The static parameters describe characteristics of a task

that apply independent of other tasks.
–  These parameters are derived from the specification or the

implementation of the system
–  For example: period, deadline, WCET

•  The dynamic parameters describe effects that occur during
the execution of a task.
–  These parameters are a function of the run-time system and

the characteristics of other tasks
–  For example: start time, completion time, response time

Task model

Static task parameters:

iT

iD

iC

iO

:iC (undisturbed) WCET

:iT period

:iD (relative) deadline

:iO (absolute) time offset
{ }, , ,i i i i iC T D Oτ =iτ

t 0

Task model

Dynamic task parameters:
si ,k : start time of k th instance

fi ,k :completion time of k th instance

Ri ,k : response time of k th instance

ai ,k :arrival time of k th instance

τ i,k : the kth instance of τ i

fi ,ksi ,k

ai ,k Ri ,k

τ i,1

τ i,2
τ i,3

Ri = maxτ i∈T,k≥1
Ri ,k{ }

ai ,k =Oi + (k −1) ⋅Ti Ri ,k = fi ,k − ai ,k

(worst-case response time)

0 t

{ }, , ,i i i i iC T D Oτ =iτ

Task model

Synchronous and asynchronous task sets:
•  In a synchronous task set the offsets of tasks are

identical, that is:
 ∀i, j :Oi =Oj

•  In an asynchronous task set the offsets of at least one
pair of tasks are not identical, that is:

 ∃i, j : i≠ j,Oi ≠Oj

Asynchronous task sets are typically used to reduce local skew
(jitter) or to remove the need for resource access protocols.

Note: Two tasks with identical periods, but different offsets, will
never arrive simultaneously during the lifetime of the system.
This means that the worst-case response times of the tasks will
be lower than if the offsets of the tasks were equal.

Task model

Task arrival patterns:
•  Periodic tasks

–  A periodic task arrives with a time interval Ti

•  Sporadic tasks
–  A sporadic task arrives with a time interval ≥ Ti

•  Aperiodic tasks
–  An aperiodic task has no guaranteed minimum time between

two subsequent arrivals

⇒ A priori schedulable (hard) real-time systems can only
contain periodic and sporadic tasks.

Execution-time analysis

Program
(no input

data)

Compiler +

WCET analysis

Code

WCET

Real-time compiler

for (i=1; i<=N; i++) {
 if (A > K)
 A = K-1;
 else
 A = K+1;
 if (A < K)
 A = K;
 else
 A = K-1;
}

42

Execution-time analysis

Background:
•  Worst-case execution time (WCET) is needed to

–  perform (hard) schedulability analysis
–  identify resource needs early in the design phase
–  perform program tuning (critical loops and interrupt handlers)

•  The WCET of a task depends on
–  program structure + initial system state + input data
–  temporal properties of the system (OS + hardware)
–  internal and external system events

•  WCET estimates can be obtained via
–  measurements
–  static analysis

Execution-time analysis

Requirements:
•  A WCET estimate must be pessimistic but tight

 0 ≤ ”Estimated WCET” – “Real WCET” < ε
 (ε small compared to real WCET)

Pessimistic:
to make sure assumptions made in the schedulability
analysis of hard real-time tasks also apply at run time

Tight:
to avoid unnecessary waste of resources during scheduling
of hard real-time tasks

Execution-time analysis

estimated WCET

real WCET

Input data

Execution time

Execution-time analysis

Estimating WCET via measurements:
•  Methodology:

–  identify potential worst-case scenario
–  run program code on hardware using worst-case scenario
–  measure the execution time
–  add a safety margin

•  Measuring techniques:
–  system clocks, cycle-level simulators, in-circuit emulators
–  observe hardware signals with oscilloscope or logic analyzer

•  Reflection:
–  measured execution time will never exceed real WCET
–  how large must safety margin be to get a pessimistic estimate?

Execution-time analysis

Estimating WCET via static analysis:
•  Methodology:

–  determine the longest execution time of the program code
without actually running it

–  uses models based on properties of software and hardware
–  typically integrated with the compiler tools

•  Analysis techniques:
–  Path analysis: bound the number of times that different

program parts may be executed
–  Timing analysis: bound the execution time of program parts

•  Reflection:
–  real WCET will never exceed estimated execution time
–  how accurate must the models be to get a tight estimate?

A simple (yet challenging) example

Derive WCET for the following program:

Issues to consider:
•  Input data is unknown

–  Iteration bounds must be known
to facilitate analysis

•  Path explosion
–  4N paths in this example

•  Exclusion of non-executable (false)
paths
–  T1 + E2 is a false path in the

example

for (i=1; i<=N; i++) {
 if (A > K)
 A = K-1; (T1)
 else
 A = K+1; (E1)
 if (A < K)
 A = K; (T2)
 else
 A = K-1; (E2)
}

A simpler (but non-trivial) example

Derive WCET for the following statement:

Issues to consider:
•  Execution time:

–  affected by cache misses, pipeline conflicts, exceptions ...
–  depends on previous and (!) subsequent instructions
–  also depends on (unknown) input data

•  Observations:
–  accurate estimation of WCET must be based on a detailed

timing model of the system architecture
–  uncertainties are handled by making worst-case assumptions

A = A / B;

Fundamental issues

•  In the path analysis:
–  how to bound the number of iterations in a loop / recursion
–  how to eliminate false (non-executable) paths cause by

e.g. if-then-else statements

•  In the timing analysis:
Everything that takes time must be modeled in a realistic

fashion (or at least not optimistically)
–  must accurately model the temporal behavior of hardware

(influence of, e.g., cache memories, pipelining, …)
–  must account for consequences of run-time events

(e.g.: exceptions, interrupts, context switches)

Path analysis

A control flow graph (CFG) describes
the structure of the program

Path analysis problem:
Find the longest executable path in
the program’s CFG

Path analysis

Shaw’s Timing Schema (1989):

WCETe =
 N*(WCET(loop) +
 WCET(I1) +
 max(WCET(T1), WCET(E1)) +
 WCET(I2) +
 max(WCET(T2), WCET(E2)))

The estimated WCET (WCETe) is the
execution time of the longest structural
path through the program

for (i=1; i<=N; i++) {
 if (A > K)
 A = K-1; (T1)
 else
 A = K+1; (E1)
 if (A < K)
 A = K; (T2)
 else
 A = K-1; (E2)
}

Methods for path analysis

Manual method:

Programmer must provide information
Annotation of loop bounds:
•  Provide upper bounds on loop indices and catch potential

exceptions at run time

Elimination of false paths:
•  Enumerate all possible paths and list the set of false paths

so that these can be avoided in the analysis

 Requires very detailed knowledge of the program’s function,

and is therefore also very prone to errors!

Methods for path analysis

Automated method:

Support from the compiler
Derive upper bounds on loop indices:
•  Requires an explicit loop index
•  May not work for complicated termination conditions

Elimination of false paths:
•  Symbolically execute the program to detect non-executable

program statements

 Current methods are promising but only for fairly simple

programs where the analysis is trivial!

Methods for path analysis

The reality?

Shaw’s timing schema implicitly assume that the execution
time of each language statement is constant and known

This is a realistic assumption for older types of processors,
that:
–  lack execution pipelines
–  lack cache memories
–  do not generate exceptions

 However, for the RISC type processor architectures, these

methods yield very pessimistic results!

Timing analysis for RISC processors

RISC processors have several advanced mechanisms
(pipelining, caching, branch prediction, out-of-order
execution, …) that cause significant variation in the
execution time of a processor instruction.

We must therefore estimate the execution time for each
executable path through the program and at the same time
account for these mechanisms.

This can be solved by partitioning the program code into code
blocks and analyze each block separately.

Today, mature methods for timing analysis only exist for
pipelining and caching.

Timing analysis for RISC processors

Processor with pipeline:

Sources of time variations:
•  data conflicts
•  branch conflicts

IF ID EX M WB

ICACHE DCACHE

Sources of time variations:
•  cache misses

(have order-of-magnitude higher
access times than cache hits)

Timing analysis of cache memory

Issues:
•  Not enough to investigate an

isolated code block
–  miss/hit depends on previous

executions of the code

•  Instruction cache behavior is
predictable for each path
–  known sequence of code

•  Data cache behavior is more
difficult to analyze
–  data addresses can depend on

the program’s input data

Timing analysis of pipeline

Issues:
•  Not enough to investigate an

isolated code block
–  conflicts may occur on the

boundary between code blocks

•  Pipeline behavior is predictable
for each path
–  known sequence of code

Methods for timing analysis

Extension of Shaw’s Timing Schema
–  Analysis is performed at code block level
–  Merging of paths at certain code locations by estimating the

effects of worst-case situations (reduces path explosion)

Data flow analysis:
–  Analysis performed at code block level
–  Propagation of pipeline and cache states between blocks

Integer Linear Programming
–  Formulate an ILP problem as a function of execution time and

number of executions at code block level

Challenges

So far, non-preemptive execution of program code on a
single processor has been assumed.

In reality, pseudo-parallel execution is typically used,

something which requires preemptive execution.
–  Preemptions will affect system state (i.e., cache contents will

change and pipeline will be flushed) and must therefore be
accounted for in the analysis.

–  However, it is difficult to account for these effects in the analysis
of WCET, which means that it must be handled at a higher level
(i.e., in the schedulability analysis).

Challenges

So far, non-preemptive scheduling of program code on a
single processor has been assumed.

In reality, multicore processors are used in real-time systems,

something which presents new problems:
–  Several processors may have copies of the same code and data

in their local cache memories, and any updates will invalidate
the other copies. This must be accounted for in the analysis.

–  ...

