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Mutual exclusion 

Systems with cooperating concurrent tasks often work 
with shared data structures. 

•  A problem that has to be solved is then how to guarantee 
that the data structure is always kept in a consistent state. 
 Data structures such as queues, lists and data bases will 
not work as intended if their state becomes inconsistent. 

•  A working solution is achieved if one makes sure that only 
one task at a time receive access to the data structure. 

•  Exclusive access to a data structure can be achieved by 
making sure that the program code (i.e., the critical region) 
that manipulates the data structure can execute without 
being preempted in the most critical moment. 



Example: circular buffer in TinyTimber 
// Define a class Circular_Buffer with space for 8 natural numbers (≥ 0) 
 
#define BSize 8 
 
typedef struct { 
    Object  super; 
    int  count;     
    int  I; 
    int  J; 
    int  A[BSize]; 
} Circular_Buffer; 
 
// If the buffer is full, Put should return the value -1. 
// If the buffer is empty, Get should return the value -1. 
 
int Put(Circular_Buffer*, int); // Insert new element 
int Get(Circular_Buffer*, int); // Remove old element 
  
// Define an instance of the buffer 
 
Circular_Buffer Buf = { initObject(), 0, 0, 0 };  // empty buffer 
 
 

I J 

Unused slots 

Stored data 



Example: circular buffer in TinyTimber 
int Put(Circular_Buffer *self, int data) { 
    if (self->count < BSize) { 
        self->A[self->I] = data; 
        self->I = (self->I + 1) % BSize; 
        self->count = self->count + 1; 
        return 0; 
    } 
    else 
        return -1; 
} 
 
int Get(Circular_Buffer *self, int unused) { 
    if (self->count > 0) { 
        int data = self->A[self->J]; 
        self->J = (self->J + 1) % BSize; 
        self->count = self->count - 1; 
        return data; 
    } 
    else 
        return -1; 
} 
 

I J 

Unused slots 

Stored data 



Mutual exclusion 

In TinyTimber the methods Put or Get must be called 
using SYNC() in order to guarantee mutual exclusion.  

If Put or Get would be called as regular functions in C, 
mutual exclusion can not be guaranteed. 

 
In the latter case, the buffer data structure could very easily 

become corrupt and give rise to data inconsistencies. 
 
The following example demonstrates one such case ... 



Mutual exclusion 

Assume that the buffer has the following state: 
 

 
 
 
 
 
 
 
 

 Now, investigate what happens if Put is called as a regular 
C function by two concurrent tasks:  
void T1(App *self, int c) {   void T2(App *self, int c) {   
    ...              ... 

    Put(&Buf,X);            Put(&Buf,Y); 
    ...              ... 

    ASYNC(self,T1,c);             ASYNC(self,T2,c); 
}        }   

I J 



Mutual exclusion 

The following execution order causes data inconsistency: 
 
  Put(&Buf,X):    Put(&Buf,Y):    Comment:  
  A(I) = X; 
          A(I) = Y;      // X is overwritten 
          I = (I + 1) % BSize;   
          count = count + 1;   

  I = (I + 1) % BSize;                               // old value remains 
  count = count + 1;                                 // in last data slot
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consistent data: 
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inconsistent data: 
What we want is What we get is 

J J 



Mutual exclusion 

Again, assume that the buffer has the following state: 
 

 
 
 
 
 
 
 
 

 This time observe the result when Put is called using SYNC() 
(synchronous method call) by the two concurrent tasks:  
void T1(App *self, int c) {   void T2(App *self, int c) {   
    ...              ... 

    SYNC(&Buf,Put,X);            SYNC(&Buf,Put,Y); 
    ...              ... 

    ASYNC(self,T1,c);             ASYNC(self,T2,c); 
}        }   

I J 



Mutual exclusion 

With SYNC() we get data consistency: 
 
  SYNC(&Buf,Put,X):   SYNC(&Buf,Put,Y):   Comment:  
  A(I) = X;          // data store is done 
  I = (I + 1) % BSize;            // correctly 
  count = count + 1;         
          A(I) = Y;        // data store is done 
          I = (I + 1) % BSize;    // correctly 

         count = count + 1; 
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consistent data: 
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consistent data: 
What we want is What we get is 

J J 



To guarantee mutual exclusion in the critical regions of  
e.g. semaphore operations or mutex methods some 
even more fundamental support is needed. 

For this purpose there are two mechanisms offered at the 
lowest (machine-code) level:  

•  Disabling the processor’s interrupt service mechanism 
–  Should involve any interrupt that may lead to a task switch 
–  Only suitable for single-processor systems 

•  Atomic processor instructions 
For example: the test-and-set instruction 
–  Variables can be tested and updated in one operation 
–  Necessary for systems with two or more processors 

Machine-level mutual exclusion 



Disabling processor interrupts 

In single-processor systems, the mutual exclusion is guaranteed 
by disabling the processor’s interrupt service mechanism 
(”interrupt masking”) while the critical region is executed.  

This way, unwanted task switches in the critical region (caused 
by e.g. timer interrupts) are avoided. However, all other tasks 
are unable to execute during this time.  

Therefore, critical regions should only contain such instructions 
that really require mutual exclusion (e.g., code that handles 
the operations wait and signal for semaphores).  

Note: this method is not used in multi-processor systems  
since interrupt management is typically not synchronized 
between the processors. 



Disabling processor interrupts 
     
task A;       
task B;       
 
task body A is 
begin 
  Disable_Interrupts;  -- turn off interrupt handling 
  ...     -- critical region 
  Enable_Interrupts;   -- A leaves critical region 
  ...     -- remaining program code 
end A; 
 
task body B is 
begin 
  Disable_Interrupts;  -- turn off interrupt handling 
  ...     -- critical region 
  Enable_Interrupts;   -- B leaves critical region 
  ...     -- remaining program code 
end B;  



Atomic processor instruction 

In multi-processor systems with shared memory, a test-and-set 
instruction is used for handling critical regions.  

A test-and-set instruction is a processor instruction that reads 
from and writes to a variable in one atomic operation. 

The functionality of the test-and-set instruction can be illustrated 
by the following Ada procedure: 

 
procedure testandset(lock, previous : in out Boolean) is 
 begin 
   previous := lock;   -- lock is read and its value saved 
   lock := true;   -- lock is set to ”true” 
 end testandset;   

The combined read and write of lock must be atomic. In a multi-
processor system, this is guaranteed by locking (disabling 
access to) the memory bus during the entire operation. 



Atomic processor instruction 
 lock : Boolean := false;   -- shared flag 
 
task A, B;       
 
task body A is 
  previous : Boolean; 
begin 
  loop 
    testandset(lock, previous);  -- A waits if critical region is busy 
   exit when not previous;     
  end loop;  
  ...      -- critical region 
  lock := false;    -- A leaves critical region 
  ...      -- remaining program code 
end A; 
 
task body B is 
  previous : Boolean; 
begin 
  loop 
    testandset(lock, previous);  -- B waits if critical region is busy 
   exit when not previous;     
  end loop;  
  ...      -- critical region 
  lock := false;    -- B leaves critical region 
  ...      -- remaining program code 
end B; 



Atomic processor instruction 
 lock : Boolean := false;   -- shared flag 
 
task A, B;       
 
task body A is 
  previous : Boolean; 
begin 
  loop 
    testandset(lock, previous);  -- A waits if critical region is busy 
   exit when not previous;     
  end loop;  
  ...      -- critical region 
  lock := false;    -- A leaves critical region 
  ...      -- remaining program code 
end A; 
 
task body B is 
  previous : Boolean; 
begin 
  loop 
    testandset(lock, previous);  -- B waits if critical region is busy 
   exit when not previous;     
  end loop;  
  ...      -- critical region 
  lock := false;    -- B leaves critical region 
  ...      -- remaining program code 
end B; 



Operations for resource management:  
•  acquire: to request access to a resource 
•  release: to release a previously acquired resource 

The acquire operation can be either blocking or non-blocking: 
•  Blocking: the task that calls acquire is blocked if the resource  

is not available. Blocked tasks are stored in a queue, in FIFO or 
priority order. When the requested resource becomes available  
one of the blocked tasks is unblocked and is activated via a call-
back functionality. 

•  Non-blocking: acquire returns a status code to the calling task 
indicating whether access to the resource was granted or not. 

Call-back functionality 

To support the reactive programming paradigm (that is, no 
“busy waiting” code) we should use the blocking approach. 



Protected objects: 
 
protected type Exclusive_Resource is 
  entry Acquire; 
  procedure Release; 
private 
  Busy : Boolean := false; 
end Exclusive_Resource;  
 
protected body Exclusive_Resource is 
  entry Acquire when not Busy is 
  begin 
    Busy := true; 
  end Acquire; 
 
  procedure Release is 
  begin 
    Busy := false; 
  end Release; 
end Exclusive_Resource; 
 

Call-back functionality 

If task blocks here, call-back  
information must be saved in  
order to wake up the task later. 



Call-back functionality 

  public void Acquire() { 
    lock.lock(); 
    try { 
      while (busy)  
        notBusy.await();  // block the task if resource busy 

      Busy = true; 
    } finally { 
      lock.unlock(); 
    } 
  } 

  public void Release() { 
    lock.lock(); 

    Busy = false;   // manipulate internal state of monitor 
    notBusy.signal();  // then wake up a blocked task (if one exists) 

    lock.unlock(); 
  } 
} // class Exclusive_Resource 
 

Monitors: 
 

If task blocks here, call-back  
information must be saved in  
order to wake up the task later. 



Call-back functionality 

Semaphores: 
 
protected type Semaphore (InitialValue : Natural := 0) is 
    entry Wait;    
    procedure Signal;   
 
private 
    Value : Natural := InitialValue; 
end Semaphore; 
 
protected body Semaphore is 
    entry Wait when Value > 0 is 
    begin 
      Value := Value - 1; 
    end Wait; 
 
    procedure Signal is 
    begin 
      Value := Value + 1; 
    end Signal; 
end Semaphore; 

If task blocks here, call-back  
information must be saved in  
order to wake up the task later. 



Call-back functionality 

Call-back information:  
•  As shown in the previous examples, the implementation  

of resource management mechanisms such as protected 
objects, monitors and semaphores make use of call-back 
information to be able to wake up a blocked task when the 
requested resource becomes available. 

•  Since multiple tasks may want to request access to a 
resource that is currently unavailable, call-back information  
for each of these tasks must be stored in a suitable data 
structure, e.g., a queue. 



Call-back functionality 

Call-back functionality in TinyTimber:  
•  TinyTimber has inherent method call blocking and call-back 

functionality, via the SYNC() call, in its implementation of an 
object (with its internal state) as an exclusive resource. 

•  However, TinyTimber cannot perform blocking or call back 
based on conditions relating to the contents of an object. 
If a generic acquire/release type of mechanism for 
shared resources, such as semaphores, is to be added  
to TinyTimber a separate call-back functionality must be 
implemented for that mechanism (= this week’s exercise). 

•  TinyTimber also has call-back functionality in the device 
drivers for the serial port and CAN interfaces, in support  
of the reactive programming paradigm. 



Call-back functionality 

Device driver programming:  
•  A device driver is a software module that allows the user  

to interact with peripheral devices, such as serial ports or 
network interfaces, in a hardware-independent fashion. 

•  The device driver conceals the details in the cooperation 
between software and hardware by defining a set of 
operations on the device, e.g., initialize, read, and write. 

•  The device driver also contains handler code for any 
hardware interrupt that may be associated with the  
peripheral device. If a task may block while waiting for  
an event to happen on the device, e.g., data becomes 
available, the interrupt handler will require call-back 
information from the user of the device. 



Guidelines for interrupt handling in TinyTimber:  
•  Interrupts must be handled using objects. 
•  An interrupt handler must be written as a method in  

the object. 
•  Data being processed by the interrupt handler must  

be stored in state variables in the object. 
•  Reading and writing such data from the user’s program 

code must be done via synchronous calls to methods in 
the object, i.e., SYNC() calls. 

Interrupt handlers in TinyTimber 

We will now study the device driver for the serial port (SCI) 
in more detail. 



Interrupt handlers in TinyTimber 

Example: implementing an SCI interrupt handler: 
1. Define class Serial, and add state variables for: 

•  the hardware base address of the device 
•  call-back information for a method if data received by the 

handler needs to be taken care of by the user-level code  
(the call back should be done using an ASYNC() call) 

•  necessary local storage (buffers, queues, etc) 

2. Define a symbol SCI_PORT0 representing the hardware 
    base address of the device. 
       #define SCI_PORT0 device_hardware_address  

3. Create an object sci0 of class Serial, and initialize it with: 
•  the hardware base address SCI_PORT0  
•  any possible call-back information 



Interrupt handlers in TinyTimber 

Example: implementing an SCI interrupt handler (cont’d): 

App app = { initObject(), 0, 'X' }; 
 
void reader(App*, int); 
 
Serial sci0 = initSerial(SCI_PORT0, &app, reader); 
 
void reader(App *self, int c) {   // call-back function 
    SCI_WRITE(&sci0, "Rcv: \'"); 
    SCI_WRITECHAR(&sci0, c); 
    SCI_WRITE(&sci0, "\'\n"); 
} 
 

In file ‘application.c’: 



Interrupt handlers in TinyTimber 

Example: implementing an SCI interrupt handler (cont’d): 
4. Write an interrupt handler as a method sci_interrupt 

and associate it with the object. 
5. Declare a symbol SCI_IRQ0 and assign to it the TinyTimber 

kernel’s logical number of the hardware interrupt: 
#define SCI_IRQ0 interrupt_logical_number 

6. Inform the TinyTimber kernel that the method is a handler 
for interrupt SCI_IRQ0, by making a call to 

INSTALL(&sci0, sci_interrupt, SCI_IRQ0); 

    This should be done before the call to TINYTIMBER() 



Interrupt handlers in TinyTimber 

Example: implementing an SCI interrupt handler (cont’d): 
7. Provide an operation SCI_INIT() that takes care of 

performing any remaining initialization of the device. 
8. Call SCI_INIT() in the “kick-off” method that was supplied 

as argument to the TINYTIMBER() call. 



Interrupt handlers in TinyTimber 

Example: implementing an SCI interrupt handler (cont’d): 

 
void startApp(App *self, int arg) { 
    SCI_INIT(&sci0); 
    SCI_WRITE(&sci0, "Hello, hello...\n"); 

    … 
} 
 
int main() { 
    INSTALL(&sci0, sci_interrupt, SCI_IRQ0); 
    TINYTIMBER(&app, startApp, 0); 
} 

In file ‘application.c’: 


