
Lecture #5

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

Real-Time Systems

Real-Time Systems

Verification

Implementation

Specification •  Mutual exclusion
•  Call-back functionality

Mutual exclusion

Systems with cooperating concurrent tasks often work
with shared data structures.

•  A problem that has to be solved is then how to guarantee
that the data structure is always kept in a consistent state.
 Data structures such as queues, lists and data bases will
not work as intended if their state becomes inconsistent.

•  A working solution is achieved if one makes sure that only
one task at a time receive access to the data structure.

•  Exclusive access to a data structure can be achieved by
making sure that the program code (i.e., the critical region)
that manipulates the data structure can execute without
being preempted in the most critical moment.

Example: circular buffer in TinyTimber
// Define a class Circular_Buffer with space for 8 natural numbers (≥ 0)

#define BSize 8

typedef struct {
 Object super;
 int count;
 int I;
 int J;
 int A[BSize];
} Circular_Buffer;

// If the buffer is full, Put should return the value -1.
// If the buffer is empty, Get should return the value -1.

int Put(Circular_Buffer*, int); // Insert new element
int Get(Circular_Buffer*, int); // Remove old element

// Define an instance of the buffer

Circular_Buffer Buf = { initObject(), 0, 0, 0 }; // empty buffer

I J

Unused slots

Stored data

Example: circular buffer in TinyTimber
int Put(Circular_Buffer *self, int data) {
 if (self->count < BSize) {
 self->A[self->I] = data;
 self->I = (self->I + 1) % BSize;
 self->count = self->count + 1;
 return 0;
 }
 else
 return -1;
}

int Get(Circular_Buffer *self, int unused) {
 if (self->count > 0) {
 int data = self->A[self->J];
 self->J = (self->J + 1) % BSize;
 self->count = self->count - 1;
 return data;
 }
 else
 return -1;
}

I J

Unused slots

Stored data

Mutual exclusion

In TinyTimber the methods Put or Get must be called
using SYNC() in order to guarantee mutual exclusion.

If Put or Get would be called as regular functions in C,
mutual exclusion can not be guaranteed.

In the latter case, the buffer data structure could very easily

become corrupt and give rise to data inconsistencies.

The following example demonstrates one such case ...

Mutual exclusion

Assume that the buffer has the following state:

 Now, investigate what happens if Put is called as a regular
C function by two concurrent tasks:
void T1(App *self, int c) { void T2(App *self, int c) {

 Put(&Buf,X); Put(&Buf,Y);

 ASYNC(self,T1,c); ASYNC(self,T2,c);
} }

I J

Mutual exclusion

The following execution order causes data inconsistency:

 Put(&Buf,X): Put(&Buf,Y): Comment:
 A(I) = X;
 A(I) = Y; // X is overwritten
 I = (I + 1) % BSize;
 count = count + 1;

 I = (I + 1) % BSize; // old value remains
 count = count + 1; // in last data slot

I

Y X

consistent data:

I

? Y

inconsistent data:
What we want is What we get is

J J

Mutual exclusion

Again, assume that the buffer has the following state:

 This time observe the result when Put is called using SYNC()
(synchronous method call) by the two concurrent tasks:
void T1(App *self, int c) { void T2(App *self, int c) {

 SYNC(&Buf,Put,X); SYNC(&Buf,Put,Y);

 ASYNC(self,T1,c); ASYNC(self,T2,c);
} }

I J

Mutual exclusion

With SYNC() we get data consistency:

 SYNC(&Buf,Put,X): SYNC(&Buf,Put,Y): Comment:
 A(I) = X; // data store is done
 I = (I + 1) % BSize; // correctly
 count = count + 1;
 A(I) = Y; // data store is done
 I = (I + 1) % BSize; // correctly

 count = count + 1;

I

Y X

consistent data:

I

Y X

consistent data:
What we want is What we get is

J J

To guarantee mutual exclusion in the critical regions of
e.g. semaphore operations or mutex methods some
even more fundamental support is needed.

For this purpose there are two mechanisms offered at the
lowest (machine-code) level:

•  Disabling the processor’s interrupt service mechanism
–  Should involve any interrupt that may lead to a task switch
–  Only suitable for single-processor systems

•  Atomic processor instructions
For example: the test-and-set instruction
–  Variables can be tested and updated in one operation
–  Necessary for systems with two or more processors

Machine-level mutual exclusion

Disabling processor interrupts

In single-processor systems, the mutual exclusion is guaranteed
by disabling the processor’s interrupt service mechanism
(”interrupt masking”) while the critical region is executed.

This way, unwanted task switches in the critical region (caused
by e.g. timer interrupts) are avoided. However, all other tasks
are unable to execute during this time.

Therefore, critical regions should only contain such instructions
that really require mutual exclusion (e.g., code that handles
the operations wait and signal for semaphores).

Note: this method is not used in multi-processor systems
since interrupt management is typically not synchronized
between the processors.

Disabling processor interrupts

task A;
task B;

task body A is
begin
 Disable_Interrupts; -- turn off interrupt handling
 ... -- critical region
 Enable_Interrupts; -- A leaves critical region
 ... -- remaining program code
end A;

task body B is
begin
 Disable_Interrupts; -- turn off interrupt handling
 ... -- critical region
 Enable_Interrupts; -- B leaves critical region
 ... -- remaining program code
end B;

Atomic processor instruction

In multi-processor systems with shared memory, a test-and-set
instruction is used for handling critical regions.

A test-and-set instruction is a processor instruction that reads
from and writes to a variable in one atomic operation.

The functionality of the test-and-set instruction can be illustrated
by the following Ada procedure:

procedure testandset(lock, previous : in out Boolean) is
 begin
 previous := lock; -- lock is read and its value saved
 lock := true; -- lock is set to ”true”
 end testandset;

The combined read and write of lock must be atomic. In a multi-
processor system, this is guaranteed by locking (disabling
access to) the memory bus during the entire operation.

Atomic processor instruction
 lock : Boolean := false; -- shared flag

task A, B;

task body A is
 previous : Boolean;
begin
 loop
 testandset(lock, previous); -- A waits if critical region is busy
 exit when not previous;
 end loop;
 ... -- critical region
 lock := false; -- A leaves critical region
 ... -- remaining program code
end A;

task body B is
 previous : Boolean;
begin
 loop
 testandset(lock, previous); -- B waits if critical region is busy
 exit when not previous;
 end loop;
 ... -- critical region
 lock := false; -- B leaves critical region
 ... -- remaining program code
end B;

Atomic processor instruction
 lock : Boolean := false; -- shared flag

task A, B;

task body A is
 previous : Boolean;
begin
 loop
 testandset(lock, previous); -- A waits if critical region is busy
 exit when not previous;
 end loop;
 ... -- critical region
 lock := false; -- A leaves critical region
 ... -- remaining program code
end A;

task body B is
 previous : Boolean;
begin
 loop
 testandset(lock, previous); -- B waits if critical region is busy
 exit when not previous;
 end loop;
 ... -- critical region
 lock := false; -- B leaves critical region
 ... -- remaining program code
end B;

Operations for resource management:
•  acquire: to request access to a resource
•  release: to release a previously acquired resource

The acquire operation can be either blocking or non-blocking:
•  Blocking: the task that calls acquire is blocked if the resource

is not available. Blocked tasks are stored in a queue, in FIFO or
priority order. When the requested resource becomes available
one of the blocked tasks is unblocked and is activated via a call-
back functionality.

•  Non-blocking: acquire returns a status code to the calling task
indicating whether access to the resource was granted or not.

Call-back functionality

To support the reactive programming paradigm (that is, no
“busy waiting” code) we should use the blocking approach.

Protected objects:

protected type Exclusive_Resource is
 entry Acquire;
 procedure Release;
private
 Busy : Boolean := false;
end Exclusive_Resource;

protected body Exclusive_Resource is
 entry Acquire when not Busy is
 begin
 Busy := true;
 end Acquire;

 procedure Release is
 begin
 Busy := false;
 end Release;
end Exclusive_Resource;

Call-back functionality

If task blocks here, call-back
information must be saved in
order to wake up the task later.

Call-back functionality

 public void Acquire() {
 lock.lock();
 try {
 while (busy)
 notBusy.await(); // block the task if resource busy

 Busy = true;
 } finally {
 lock.unlock();
 }
 }

 public void Release() {
 lock.lock();

 Busy = false; // manipulate internal state of monitor
 notBusy.signal(); // then wake up a blocked task (if one exists)

 lock.unlock();
 }
} // class Exclusive_Resource

Monitors:

If task blocks here, call-back
information must be saved in
order to wake up the task later.

Call-back functionality

Semaphores:

protected type Semaphore (InitialValue : Natural := 0) is
 entry Wait;
 procedure Signal;

private
 Value : Natural := InitialValue;
end Semaphore;

protected body Semaphore is
 entry Wait when Value > 0 is
 begin
 Value := Value - 1;
 end Wait;

 procedure Signal is
 begin
 Value := Value + 1;
 end Signal;
end Semaphore;

If task blocks here, call-back
information must be saved in
order to wake up the task later.

Call-back functionality

Call-back information:
•  As shown in the previous examples, the implementation

of resource management mechanisms such as protected
objects, monitors and semaphores make use of call-back
information to be able to wake up a blocked task when the
requested resource becomes available.

•  Since multiple tasks may want to request access to a
resource that is currently unavailable, call-back information
for each of these tasks must be stored in a suitable data
structure, e.g., a queue.

Call-back functionality

Call-back functionality in TinyTimber:
•  TinyTimber has inherent method call blocking and call-back

functionality, via the SYNC() call, in its implementation of an
object (with its internal state) as an exclusive resource.

•  However, TinyTimber cannot perform blocking or call back
based on conditions relating to the contents of an object.
If a generic acquire/release type of mechanism for
shared resources, such as semaphores, is to be added
to TinyTimber a separate call-back functionality must be
implemented for that mechanism (= this week’s exercise).

•  TinyTimber also has call-back functionality in the device
drivers for the serial port and CAN interfaces, in support
of the reactive programming paradigm.

Call-back functionality

Device driver programming:
•  A device driver is a software module that allows the user

to interact with peripheral devices, such as serial ports or
network interfaces, in a hardware-independent fashion.

•  The device driver conceals the details in the cooperation
between software and hardware by defining a set of
operations on the device, e.g., initialize, read, and write.

•  The device driver also contains handler code for any
hardware interrupt that may be associated with the
peripheral device. If a task may block while waiting for
an event to happen on the device, e.g., data becomes
available, the interrupt handler will require call-back
information from the user of the device.

Guidelines for interrupt handling in TinyTimber:
•  Interrupts must be handled using objects.
•  An interrupt handler must be written as a method in

the object.
•  Data being processed by the interrupt handler must

be stored in state variables in the object.
•  Reading and writing such data from the user’s program

code must be done via synchronous calls to methods in
the object, i.e., SYNC() calls.

Interrupt handlers in TinyTimber

We will now study the device driver for the serial port (SCI)
in more detail.

Interrupt handlers in TinyTimber

Example: implementing an SCI interrupt handler:
1. Define class Serial, and add state variables for:

•  the hardware base address of the device
•  call-back information for a method if data received by the

handler needs to be taken care of by the user-level code
(the call back should be done using an ASYNC() call)

•  necessary local storage (buffers, queues, etc)

2. Define a symbol SCI_PORT0 representing the hardware
 base address of the device.
 #define SCI_PORT0 device_hardware_address

3. Create an object sci0 of class Serial, and initialize it with:
•  the hardware base address SCI_PORT0
•  any possible call-back information

Interrupt handlers in TinyTimber

Example: implementing an SCI interrupt handler (cont’d):

App app = { initObject(), 0, 'X' };

void reader(App*, int);

Serial sci0 = initSerial(SCI_PORT0, &app, reader);

void reader(App *self, int c) { // call-back function
 SCI_WRITE(&sci0, "Rcv: \'");
 SCI_WRITECHAR(&sci0, c);
 SCI_WRITE(&sci0, "\'\n");
}

In file ‘application.c’:

Interrupt handlers in TinyTimber

Example: implementing an SCI interrupt handler (cont’d):
4. Write an interrupt handler as a method sci_interrupt

and associate it with the object.
5. Declare a symbol SCI_IRQ0 and assign to it the TinyTimber

kernel’s logical number of the hardware interrupt:
#define SCI_IRQ0 interrupt_logical_number

6. Inform the TinyTimber kernel that the method is a handler
for interrupt SCI_IRQ0, by making a call to

INSTALL(&sci0, sci_interrupt, SCI_IRQ0);

 This should be done before the call to TINYTIMBER()

Interrupt handlers in TinyTimber

Example: implementing an SCI interrupt handler (cont’d):
7. Provide an operation SCI_INIT() that takes care of

performing any remaining initialization of the device.
8. Call SCI_INIT() in the “kick-off” method that was supplied

as argument to the TINYTIMBER() call.

Interrupt handlers in TinyTimber

Example: implementing an SCI interrupt handler (cont’d):

void startApp(App *self, int arg) {
 SCI_INIT(&sci0);
 SCI_WRITE(&sci0, "Hello, hello...\n");

 …
}

int main() {
 INSTALL(&sci0, sci_interrupt, SCI_IRQ0);
 TINYTIMBER(&app, startApp, 0);
}

In file ‘application.c’:

