
Lecture #3 

Professor Jan Jonsson 

Department of Computer Science and Engineering 
Chalmers University of Technology 

Real-Time Systems 



Real-time systems 

Verification 

Implementation 

Specification •  The TinyTimber kernel 
•  The object-oriented  
    programming paradigm 



Timber – the programming language:  
•  Full-featured language: 

–  Higher-order and strongly typed language 
–  Semantics in the purely functional tradition (non-lazy) 
–  Features time-constrained concurrent reactive objects 

•  International research project: 
–  Participants: Chalmers, Luleå University of Technology,  

Oregon Graduate Institute, Portland State University and 
Kansas State University (project period: 2000–2003).  

•  Direct descendant of O’Haskell: 
–  An object-oriented extension of the Haskell language 
–  Result of PhD work at Chalmers (J. Nordlander, 1999) 

TinyTimber – the context 



Timber – the programming language:  
•  Salient feature #1: “CORT” properties 

–  Concurrent: Code execution concurrency is implicit, by means 
of the Timber object, and thus does not require the use of any 
dedicated concurrency constructs (e.g. threads or tasks). 

–  Object oriented: Timber uses objects to encapsulate a local 
state and methods to manipulate this state. 

–  Reactive: a Timber object is a passive entity, and the relative 
execution order of its methods is solely determined by events  
(e.g. hardware interrupts or invocations from other methods). 

–  Timing aware: each reaction (method invocation) is associated 
with a programmable timing window, that can optionally be used 
to constrain start time and/or completion time of the reaction. 

TinyTimber – the context 



Timber – the programming language:  
•  Salient feature #2: “Deterministic” properties 

–  Through its language design Timber code is free from 
indefinitely blocking language constructs. Thus, an object is 
always fully responsive when not actively executing code. 

This is in contrast to the common infinite event-loop pattern  
in other languages, where blocking calls are used to partition  
a linear thread of execution into event-handling fragments. 

–  Through its language design Timber methods that belong to  
the same object are mutually exclusive. Consequently, object 
state is guaranteed to always be consistent. 

TinyTimber – the context 



Timber – the programming language:  
•  Recall the desired properties of a RT language: 

–  Concurrent 
–  Reactive 
–  Timing aware 

•  What does the object-oriented (OO) approach offer? 
–  Encapsulation (entity with data and code) 
–  Reliability and maintainability (of object data and code) 
–  Natural unit of concurrency (object with run-time context) 
–  Natural place to implement mutual exclusion (“mutex”). 

TinyTimber – the context 



Prominent features of OO programming:  
•  Encapsulation: 

–  Encapsulation implies the existence of an entity that binds 
together data and a set of operations that manipulate the data. 

–  The operations are referred to as methods. 
–  The conventions for calling a method (e.g. parameter types,  

return value type) is referred to as the interface of the method. 

–  The strongest form of encapsulation does not allow external 
code to directly access the data in the entity, but stipulates 
access through methods only. Thus, the data is for all practical 
purposes considered to be hidden from the external code. 

OO programming 



Prominent features of OO programming:  
•  Classes: 

–  A detailed description of the internal format of encapsulated 
data (members) and set of methods (code) is called a class.  

–  A class may be composed of members that refer to a class. 
–  A class may be defined by extending the functionality of an 

existing class by means of class inheritance. 

•  Objects: 
–  An instantiation of a class (i.e. memory storage is allocated 

to its members) is called an object.  
–  The contents (values) of the object members is referred to 

as the state of the object. 

OO programming 



Advantages with OO programming:  
•  Reliability and maintainability: 

–  Encapsulation means that the object state is safe from outside 
(deliberate or unintentional) interference and misuse. 

–  Encapsulation means that calling code does not need to be 
edited even if the internal format (data or code) of the class  
should change, as long as method interfaces stay the same. 

•  Natural unit of concurrency: 
–  The object state can include run-time context of its methods. 
–  Methods belonging to different objects thereby get independent 

run-time contexts, and may therefore execute concurrently. 
–  Offered by Java (thread objects) and Timber (reactive objects). 

OO programming 



Advantages with OO programming:  
•  Natural place to implement mutual exclusion: 

–  Encapsulation facilitates “locking” the object while manipulating  
it via method calls, thereby guaranteeing state consistency. 

–  Among an object’s methods only one may execute at a time, 
and must also complete its code before the object is unlocked 
(such code is commonly referred to as a “critical region”). 

–  Methods belonging to the same object can therefore not 
execute concurrently (i.e., they are mutually exclusive)  

–  Offered by Ada 95 (protected objects), Java (synchronized 
methods) and Timber (mutex methods). 

OO programming 



OO programming – visualized as an access graph: 

TinyTimber – the context 

Local state

Run-time execution model
Concurrent

Mutually 
exclusive

Object A

Object B

Method 4

Method 3

External 
events

External 
reactions

Asynchronous

Synchronous

Method calls

↪

Local state

Method 2

Method 1

Asynchronous         delayed

An OO program is a collection of objects that act on each other via method calls 



Timber – the compiler workflow: 

TinyTimber – the context Compiling Timber

Timber 
source 
code

Timber 
compiler

C source 
code

RTS

C compiler and 
linker

011001101
001000

C source 
codeCompiling Timber

Note: C language back-end



TinyTimber – the real-time kernel: 

TinyTimber – the context Compiling Timber

Timber 
source 
code

Timber 
compiler

C source 
code

RTS

C compiler and 
linker

011001101
001000

C source 
code

Compiling Timber

TinyTimber: C API and 
programming model

C source 
code

Compiling Timber

TinyTimber: C API and 
programming model

C source 
code



TinyTimber – the real-time kernel:  
•  Originates from the Timber run-time system: 

–  TinyTimber was redesigned to make it a standalone run-time 
system, thereby not requiring the use of the Timber language. 

–  TinyTimber is completely written in the C language. 

•  Retains the API of the Timber run-time system: 
–  Caveat: requires special C coding conventions for the method 

interface. 

•  Fully supports the salient features #1 and #2 of Timber: 
–  Caveat: requires special C coding conventions to retain these  

features of Timber. 

TinyTimber – the context 



TinyTimber – C coding conventions (OO programming):  
•  Use a C struct to define the members of a class: 

–  The first member in the C struct must be of type Object, a 
predefined parent class containing run-time information. 

•  Use a C function to define a method: 
–  The function must have two parameters, and a return type of 

either int or void. 
–  The first parameter must be a pointer to the class to which the 

method belongs. The second parameter must be of type int. 
 (Work-arounds for these restrictions will be given in Exercise #2) 

•  Use a variable of the C struct type to create an object: 
–  The predefined initObject() macro should be used as a 

constructor for the first member in the class. 

TinyTimber – the context 



TinyTimber – the context 

Example – C coding conventions (OO programming): 
// TinyTimber class 
typedef struct {   
  Object super;   // NOTE: ‘Object’ type makes struct a TinyTimber class 
  int theData;    // NOTE: ‘theData’ cannot be encapsulated (hidden) 
} SharedInteger; 
 
// TinyTimber methods 
int Read(SharedInteger *self, int unused) {     // NOTE: methods are not 
    return self->theData;                       //  part of the class ... 
} 

void Write(SharedInteger *self, int newValue) { // ... and therefore need 
    self->theData = newValue;        //  a pointer to the class 
} 

// TinyTimber object constructor (NOTE: not part of the class) 
#define initSharedInteger(initialValue) { initObject(), initialValue }  
 
SharedInteger myData = initSharedInteger(42);  // Create TinyTimber object 
 



OO programming 

// Java class 
class SharedInteger 
{ 
  private int theData;    // NOTE: ‘theData’ can be encapsulated (hidden)

     

  public SharedInteger(int initialValue) {   // Java object constructor 
    theData = initialValue;      // NOTE: part of the class 
  } 

  public synchronized int Read() {     // Java methods (mutex) 
    return theData;       // NOTE: part of the class 
  } 

  public synchronized void Write(int newValue) { 
    theData = newValue; 
  } 
} 
 
SharedInteger myData = new SharedInteger(42);  // Create Java object 

Compare with Java implementation (OO programming): 



TinyTimber – C coding conventions (OO programming):  
•  Ensure encapsulation: 

–  Access to class members should be done via methods calls 
only, even if the C language does not provide any mechanism 
for hiding the members in the corresponding C struct. 

•  Ensure determinism (mutex methods): 
–  Mutex method calls are done synchronously or asynchronously. 
–  A synchronous call is done via the predefined SYNC() macro; 

the calling code waits until the method call returns. 
–  An asynchronous call is done via the predefined ASYNC() 

macro; this spawns a concurrent execution of the method code, 
and the calling code continues to execute (without waiting).  

TinyTimber – the context 



TinyTimber – C coding conventions (OO programming):  
•  Ensure determinism (non-blocking property): 

–  The object methods cannot contain indefinitely blocking code 
–  No-no #1: infinite loops (e.g. ‘while (1)’) must not be used  
–  No-no #2: synchronous calls to a method within the same object 

as the calling code must not be used (as it will lead to deadlock)   

•  Ensure concurrency: 
–  Program code that should execute concurrently must reside in 

methods that belong to separate objects. 
–  Recall that code in methods that belong to the same object can 

never execute concurrently (due to mutex methods). 

TinyTimber – the context 



TinyTimber – C coding conventions (OO programming):  
•  Ensure timing awareness: 

–  Programmable timing windows may be used for method calls  
by means of the following set of predefined macros. 

AFTER(): corresponds to an ASYNC() call that takes place 
after an initial delay (offset). 

BEFORE(): corresponds to an ASYNC() call with a deadline  
on the method code completion. 

SEND():  equal to a combined AFTER() and BEFORE() call. 

(More details regarding timing windows will be given in Lecture #6) 

TinyTimber – the context 



A simple control system (revisited) 

Thermometer 

Switch 

Pressure sensor 

Screen 

Heater 

S 

T 

ADC 

DAC 

P ADC 

Pump/valve 

 Objective: Keep temperature and 
pressure for a chemical process 

within given bounds. 



Concurrent solution 

Step 1: Make concurrent: 
–  Partition the software into units of concurrency 

TinyTimber:  
First declare a class Task with its first member being of predefined 
type Object, and define two methods associated with the declared 
class, T_Controller and P_Controller, containing the code for 
handling the data from respective sensor.  
Then, create two objects from the declared class, one for each of the 
defined methods. This will allow for concurrent execution of the code. 
Finally, create two interrupt handlers, one for each sensor, that will  
call the respective method when data becomes available on the 
sensor. 



Concurrent solution 

Step 2: Make reactive: 
–  Tasks should be idle if there is no work to be done 

TinyTimber:  
Since methods T_Controller and P_Controller must be called 
to be activated they are by default idle.  

–  Activate task as a reaction to an incoming event  

TinyTimber:  
An interrupt handler calls (activates) its respective method when 
data becomes available at a sensor.  

(More details on interrupt handlers and how to associate them with 
reactive objects will be given in Lecture #5) 



Concurrent solution (TinyTimber) 

typedef struct { 
  Object super;     // NOTE: ‘Object’ type makes struct a TinyTimber class 
} Task; 

#define initTask() { initObject() } 

Task T_Task = initTask();  // Create two new concurrent objects 
Task P_Task = initTask(); 

// Declare the methods for each new object 

void T_Controller(Task *, int); 
void P_Controller(Task *, int); 

// Define two new objects of class Sensor (definition not shown here), 
// representing the sensors  

Sensor sensor_t = initSensor(SENSOR_PORT0, &T_Task, T_Controller); 
Sensor sensor_p = initSensor(SENSOR_PORT1, &P_Task, P_Controller); 



Concurrent solution (TinyTimber) 

// Define the methods for handling the input data. Each method is 
// called with the data from the sensor as parameter. 
 
void T_Controller(Task *self, int data) { 
  int HS; 

  HS = Temp_Convert(data);   // convert to heater setting 
  T_Write(HS);        // set heater switch 
  PrintLine(“Temperature: ”, data); // write message on operator screen 
} 
 
void P_Controller(Task *self, int data) { 
  int PS; 

  PS = Pressure_Convert(data);  // convert to pump setting 
  P_Write(PS);        // set pump control 
  PrintLine(“Pressure: ”, data);  // write message on operator screen 
} 
 
... 



Concurrent solution (TinyTimber) 

... 
 
// Initialize the two sensor objects 
 
void kickoff(Task *self, int unused) { 
  SENSOR_INIT(&sensor_t); 
  SENSOR_INIT(&sensor_p); 
} 
 
// Install interrupt handlers for the sensors, and then kick off 
// the TinyTimber run-time system 
 
void main() { 
  INSTALL(&sensor_t, sensor_interrupt, SENSOR_INT0); 
  INSTALL(&sensor_p, sensor_interrupt, SENSOR_INT1); 
  TINYTIMBER(&P_Task, kickoff, 0); 
} 



Concurrent solution 

Advantages: 
–  the inherent parallelism of the application is fully exploited 

•  pressure and temperature control do not block each other 
•  the control functions can work at different frequencies 
•  no processor capacity are unnecessarily consumed 
•  the application becomes more reliable 

Drawbacks: 
–  the parallel tasks share a common resource 

•  the screen can only be used by one task at a time 
•  a resource handler must be implemented, for controlling the  

access to the screen (to avoid garbled text) 
•  the resource handler must guarantee mutual exclusion (mutex) 



Solid concurrent solution (TinyTimber) 

/*  
 * TinyTimber objects guarantee mutual exclusion for their declared 
 * methods, if the caller uses a synchronous or asynchronous call: 
 * the call to the method will then be blocked if any of the methods 
 * in the object are currently being used.  
 */ 

typedef struct { 
  Object super;     // NOTE: ‘Object’ type makes struct a TinyTimber class 
} ScreenController; 

#define initScreenController() { initObject() }  

ScreenController myScreen = initScreenController();   // Create new object 

void T_Printline(ScreenController *self, int data) {  // NOTE: methods are 
    PrintLine(“Temperature: ”, data);       // not part of class 
}          

void P_Printline(ScreenController *self, int data) { 
    PrintLine(“Pressure: ”, data); 
} 
 



Solid concurrent solution (TinyTimber) 

/*  
 * In a TinyTimber synchronous call the caller will be blocked 
 * if any of the methods in the object are currently being used.  
 */ 

void T_Controller(Task *self, int data) { 
  Heater_Setting HS; 

  HS = Temp_Convert(data);   
  T_Write(HS);        
  SYNC(&myScreen, T_PrintLine, data);   // NOTE: calling code waits 
}    // for T_PrintLine to complete 

void P_Controller(Task *self, int data) { 
  Pressure_Setting PS; 

  PS = Pressure_Convert(data); 
  P_Write(PS);        
  SYNC(&myScreen, P_PrintLine, data);    // NOTE: calling code waits 
}    // for P_PrintLine to complete 



Solid concurrent solution (TinyTimber) 

/*  
 * In a TinyTimber asynchronous call the caller can continue executing 
 * immediately after posting the method call, regardless of whether 
 * any of the methods in the object are currently being used or not.  
 */ 

void T_Controller(Task *self, int data) { 
  Heater_Setting HS; 

  HS = Temp_Convert(data);   
  T_Write(HS);        
  ASYNC(&myScreen, T_PrintLine, data);  // NOTE: spawns a concurrent 
}        // call to T_PrintLine 

void P_Controller(Task *self, int data) { 
  Pressure_Setting PS; 

  PS = Pressure_Convert(data); 
  P_Write(PS);        
  ASYNC(&myScreen, P_PrintLine, data);  // NOTE: spawns a concurrent 
}        // call to P_PrintLine 
 



Solid concurrent solution (Ada95) 

-- In Ada95 protected objects can guarantee mutual exclusion for their 
-- declared procedures: a calling task will be blocked if any of the 
-- procedures in the object are currently being used. 

protected type Screen_Controller is 
  procedure T_Printline(data : Integer); 
  procedure P_Printline(data : Integer); 
end Screen_Controller; 

protected body Screen_Controller is 
begin 
  procedure T_Printline(data : Integer) is 
  begin 
    Printline(“Temperature: ”, data); 
  end T_Printline; 

  procedure P_Printline(data : Integer) is 
  begin 
    Printline(“Pressure: ”, data); 
  end P_Printline; 
end Screen_Controller; 
 
myScreen : Screen_Controller;   -- Create new object 
 
 



Solid concurrent solution (Ada95) 

... 
 
task body T_Controller is 
begin 
  loop 
     TR := T_Read;    
     HS := Temp_Convert(TR);  
     T_Write(HS);   
     myScreen.T_PrintLine(TR);   
  end loop; 
end T_Controller; 
 
task body P_Controller is 
begin 
  loop 
     PR := P_Read;   
     PS := Pressure_Convert(PR); 
     P_Write(PS);   
     myScreen.P_PrintLine(PR);   
  end loop; 
end P_Controller; 
 



Solid concurrent solution (Java) 

// Objects in Java can guarantee mutual exclusion if their methods are 
// declared as synchronized: a call to the method will then be blocked  
// if any of the methods in the object are currently being used. 
 
class ScreenController 
{      
  public synchronized void T_Printline(int data) { 
     Printline(“Temperature: ”, data); 
  } 

  public synchronized void P_Printline(int data) { 
     Printline(“Pressure: ”, data); 
} 
 
ScreenController myScreen = new ScreenController();   // Create new object 



Solid concurrent solution (Java) 

... 
 
public class T_Controller extends Thread {     
  public void run() {  
    while (true) { 
      TR = T_Read();         
      HS = Temp_Convert(TR);   
      T_Write(HS);         
      myScreen.T_PrintLine(TR); 
    } 
  } 
} 

public class P_Controller extends Thread {     
  public void run() {  
    while (true) { 
      PR = P_Read();         
      PS = Pressure_Convert(PR);   
      P_Write(PS);         
      myScreen.P_PrintLine(PR);   
    } 
  } 
} 


