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Multiprocessor scheduling 

How are tasks assigned to processors? 
•  Static assignment 

–  The processor(s) used for executing a task are determined  
before system is put in mission (“off-line”) 

–  Approach: Partitioned scheduling 

•  Dynamic assignment 
–  The processor(s) used for executing a task are determined 

during system operation “on-line” 
–  Approach: Global scheduling 



Multiprocessor scheduling 

How are tasks allowed to migrate? 
•  Partitioned scheduling 

–  No migration! 
–  Each instance of a task must execute on the same processor 
–  Equivalent to multiple uniprocessor systems! 

•  Global scheduling 
–  Full migration! 
–  A task is allowed to execute on an arbitrary processor  
–  Migration can occur even during execution of an instance of  

a task (for example, after being preempted) 



A fundamental limit: (Andersson, Baruah & Jonsson, 2001) 

Multiprocessor scheduling 

The utilization guarantee bound for multiprocessor 
scheduling (partitioned or global), using task 

priorities only, cannot be higher than 50% 
of the capacity of the processors.  

•  Hence, we should not expect to utilize more than half the 
processing capacity if hard real-time constraints exist. 

•  A way to circumvent this limit is to use p-fair (priorities +  
time quanta) scheduling and dynamic task priorities. 



Partitioned scheduling 

General characteristics: 
•  Each processor has its own queue for ready tasks 
•  Tasks are organized in groups, and each task group is 

assigned to a specific processor 
–  For example, using a bin-packing algorithm 

•  When selected for execution, a task can only be  
dispatched to its assigned processor 



Partitioned scheduling 

Advantages: 
•  Mature scheduling framework 

–  Most uniprocessor scheduling theory also applicable here  
–  Uniprocessor resource-management protocols can be used 

•  Supported by automotive industry 
–  AUTOSAR prescribes partitioned scheduling 

Disadvantages: 
•  Cannot exploit all unused execution time 

–  Surplus capacity cannot be shared among processors 
–  Will suffer from overly-pessimistic WCET derivation 



Partitioned scheduling 

Bin-packing algorithms: 
•  Basic idea: 

–  The problem concerns packing objects of varying sizes in boxes 
(”bins”) with the objective of minimizing number of used boxes. 

•  Application to multiprocessor systems: 
–  Bins are represented by processors and objects by tasks.  
–  The decision whether a processor is ”full” or not is derived  

from a utilization-based feasibility test. 

•  Assumptions: 
–  Independent, periodic tasks 
–  Preemptive, uniprocessor scheduling (RM) 



Partitioned scheduling 

Bin-packing algorithms: 
Rate-Monotonic-First-Fit (RMFF): (Dhall and Liu, 1978) 

–  Let the processors be indexed as 
–  Assign tasks in order of increasing periods (i.e., RM order). 
–  For each task    , choose the lowest previously-used j such 

that    , together with all tasks that have already been 
assigned to processor     , can be feasibly scheduled 
according to the utilization-based RM-feasibility test. 

iτ

µ1,µ2 ,…,µm

 
µ j
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If all tasks are successfully assigned using RMFF, then  
the tasks are schedulable on m processors. 



Partitioned scheduling 

Processor utilization analysis for RMFF: 
•  A sufficient condition for partitioned RMFF scheduling of 

synchronous task sets with n tasks on m processors is 

  
U =

Ci

Tii=1

n

∑ ≤ m 21/2 −1( ) (Oh & Baker, 1998) 

Note: 

Thus: task sets whose utilization do not exceed ≈ 41% of  
the total processor capacity is always RMFF-schedulable. 

  
U RMFF = m 21/2 −1( ) ≈ 0.41m



Partitioned scheduling 

Processor utilization analysis for RMFF:  
 1. All tasks are independent. 
 2. All tasks are periodic or sporadic. 
 3. All tasks have identical offsets. 
 4. Task deadline equals the period (           ). 
 5. Task preemptions are allowed. 

 6. All processors are identical. 
 7. Task migrations are not allowed. 
 

Di = Ti



Global scheduling 

General characteristics: 
•  All ready tasks are kept in a common (global) queue  

that is shared among the processors 
•  Whenever a processor becomes idle, a task from the  

global queue is selected for execution on that processor. 
•  After being preempted, a task may be dispatched to  

a processor other than the one that started executing  
the task. 



Global scheduling 

Advantages: 
•  Supported by most multiprocessor operating systems 

–  Windows 10, MacOS X, Linux, ...  
•  Effective utilization of processing resources 

–  Unused processor time can easily be reclaimed, for example 
when a task does not execute its full WCET.   

Disadvantages: 
•  Weak theoretical framework 

–  Few results from the uniprocessor analysis can be used 



Weak theoretical framework 

The ”root of all evil” in global scheduling: (Liu, 1969) 

Few of the results obtained for a single processor 
generalize directly to the multiple processor case; bringing 
in additional processors adds a new dimension to the 
scheduling problem. The simple fact that a task can use 
only one processor even when several processors are 
free at the same time adds a surprising amount of difficulty 
to the scheduling of multiple processors.   



Underlying causes: 
•  Dhall’s effect: 

–  With RM, DM and EDF, some low-utilization task sets can be 
non-schedulable regardless of how many processors are used. 
Thus, any utilization guarantee bound would become so low 
that it would be useless in practice. 

–  This is in contrast to the uniprocessor case, where we have 
utilization guarantee bounds of 69.3% (RM) and 100% (EDF). 

•  Hard-to-find critical instant: 
–  A critical instant does not always occur when a task arrives at 

the same time as all its higher-priority tasks. 
–  This is in contrast to the uniprocessor case with RM and DM 

(and any other static-priority policy).  

Weak theoretical framework 



Weak theoretical framework 

Dhall’s effect: (Dhall & Liu, 1978) 
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Weak theoretical framework 

Dhall’s effect: 
•  Applies for RM, DM and EDF scheduling 
•  The utilization of a non-schedulable task set can be as low  

as to 1 (= 100%) no matter how many processors are used. 

Uglobal = m
2ε
1

+ 1
1+ ε

→1

0ε →when 

Consequence: 
New multiprocessor priority-assignment schemes are needed! 

Note: Total available processor capacity is m (= m • 100%) 



Weak theoretical framework 

Hard-to-find critical instant: 
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Weak theoretical framework 

Hard-to-find critical instant: 
•  A critical instant does not always occur when a task arrives  

at the same time as all its higher-priority tasks. 
•  Finding the critical instant is, in general, a problem with 

exponential time complexity 
•  Note: recall that knowledge about an easy-to-find critical 

instant is a fundamental assumption in the uniprocessor 
feasibility tests for static priority scheduling.  

Consequence: 
New methods for constructing effective multiprocessor 

feasibility tests are needed! 



Weak theoretical framework 

Dhall’s effect: (Dhall & Liu, 1978) 
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New priority-assignment scheme 

How to avoid Dhall’s effect: 
•  Problem: RM, DM & EDF only account for task deadlines!  

Actual computation demands are not accounted for. 
•  Solution: Dhall’s effect can easily be avoided by letting tasks 

with high utilization receive higher priority: 
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New priority-assignment scheme 

RM-US[m/(3m-2)]: (Andersson, Baruah & Jonsson, 2001) 
•  RM-US[m/(3m-2)] assigns (static) priorities to tasks 

according to the following rule: 

If                            then     has the highest priority  
(ties broken arbitrarily) 

/(3 2)iU m m> − iτ

If                            then     has RM priority /(3 2)iU m m≤ − iτ

•  Clearly, tasks with higher utilization                    get  
higher priority. 

/i i iU C T=



Example: RM-US[m/(3m-2)] 

 
Assign priorities according to RM-US[m/(3m-2)], assuming  
the following task set to be scheduled on 3 processors: 

  τ1 : C1 = 1,T1 = 7{ }   τ 2 : C2 = 2,T2 = 10{ }

  τ 3 : C3 = 9,T3 = 20{ }   τ 4 : C4 = 11,T4 = 22{ }

  τ 5 : C5 = 2,T5 = 25{ }

RM-US[m/(3m-2)] example: 



 
For  

Example: RM-US[m/(3m-2)] 

RM-US[m/(3m-2)] example: 

3:m =
/(3 2) 3/ 7 0.4286m m− = ≈

•  Hence, tasks     and    will be assigned higher priorities, and 
the remaining tasks will be assigned RM priorities. 

3τ 4τ

•  The possible priority assignments are therefore as follows 
(highest-priority task listed first): 

τ 3,τ 4 ,τ1,τ 2 ,τ 5 τ 4 ,τ 3,τ1,τ 2 ,τ 5or 

•  The utilizations of these tasks are: 0.143, 0.2, 0.45, 0.5 and 
0.08, respectively. 



New feasibility tests 

Processor utilization analysis for RM-US[m/(3m-2)]: 
•  A sufficient condition for RM-US[m/(3m-2)] scheduling of 

synchronous task sets with n tasks on m processors is 

  
U =

Ci

Tii=1

n

∑ ≤ m2

3m− 2

Question: does RM-US[m/(3m-2)] avoid Dhall’s effect? 

(Andersson, Baruah 
  & Jonsson, 2001) 



New feasibility tests 

Processor utilization analysis for RM-US[m/(3m-2)]:  
•  We observe that, regardless of the number of processors, 

the task set will always meet its deadlines as long as no 
more than one third of the processing capacity is used: 

2

[ /(3 2)] lim
3 2 3RM US m m m

m mU
m− − →∞

= =
−

•  RM-US[m/(3m-2)] thus avoids Dhall’s effect since we can 
always add more processors if deadlines were missed. 

•  Note that this remedy was not possible with traditional RM. 



New feasibility tests 

Processor utilization analysis for RM-US[m/(3m-2)]:  
 1. All tasks are independent. 
 2. All tasks are periodic (i.e. not applicable for sporadic tasks) 
 3. All tasks have identical offsets. 
 4. Task deadline equals the period (           ). 
 5. Task preemptions are allowed. 

 6. All processors are identical. 
 7. Task migrations are allowed. 
 

Di = Ti



New feasibility tests 

Response-time analysis for multiprocessors: 
•  Uses the same principle as the uniprocessor case, where 

the response time for a task     consists of: 
     The task’s uninterrupted execution time (WCET) 

       Interference from higher-priority tasks 
iC

iτ

iI

iii ICR +=

•  The difference is that the calculation of interference now  
has to account for the fact that higher-priority tasks can 
execute in parallel on the processors.  



New feasibility tests 

Response-time analysis for multiprocessors: 
•  For the multiprocessor case, with n tasks and m processors,  

we observe two things: 

      1. Interference can only occur when          . n m>
      2. Interference can only affect the n −m tasks with lowest 

priority since the m highest-priority tasks will always 
execute in parallel without contention on the m processors. 

•  Consequently, interference of a task is a function of the 
execution overlap of its higher-priority tasks.  



New feasibility tests 

Response-time analysis for multiprocessors: 
•  The following two observations give us the secret to 

analyzing the interference of a task: 

       With respect to the execution overlap it can be shown  
that the interference is maximized when the higher-priority 
tasks completely overlap their execution.  

 Compared to the uniprocessor case, one extra instance 
of each higher-priority task must be accounted for in the 
interference analysis. 
 (due to the uncertainty regarding the critical instant). 

 



New feasibility tests 

Response-time analysis for multiprocessors: 
•  The worst-case interference term is 

( )
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i j j
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where          is the set of tasks with higher priority than    . iτ)(ihp

•  The worst-case response time for a task    is thus: iτ
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New feasibility tests 

Response-time analysis for multiprocessors: 
•  As before, an iterative approach can be used for finding  

the worst-case response time: 

ii DRi ≤∀ :

•  We now have a sufficient condition for static-priority 
scheduling of periodic tasks on identical processors: 
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New feasibility tests 

Response-time analysis for multiprocessors:  
 1. All tasks are independent. 
 2. All tasks are periodic (i.e. not applicable for sporadic tasks) 
 3. All tasks have identical offsets. 
 4. Task deadline does not exceed the period (           ). 
 5. Task preemptions are allowed. 

 6. All processors are identical. 
 7. Task migrations are allowed. 
 

ii TD ≤



Early breakthrough results in global scheduling: 
•  Static priorities: 

–  2001: RM-US[m/(3m-2)] circumvents Dhall’s effect and has non-
zero resource utilization guarantee bound of m/(3m-2) ≥ 33.3%. 

–  2003: Baker generalized the RM-US results to DM. 

•  Dynamic priorities: 
–  2002: Srinivasan & Baruah proposed the EDF-US[m/(2m-1)] 

scheme with a corresponding non-zero resource utilization 
guarantee bound of m/(2m-1) ≥ 50%. 

•  Optimal multiprocessor scheduling: 
–  1996: Baruah et al. proposed p-fair (priorities + time quanta) 

scheduling and dynamic priorities as an approach to achieve  
100% resource guarantee bound on a multiprocessor. 

Global scheduling 


