
Lecture #14

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

Real-Time Systems

Real-Time Systems

Verification

Implementation

Specification

•  Multiprocessor scheduling
 -- Partitioned scheduling
 -- Global scheduling

Multiprocessor scheduling

How are tasks assigned to processors?
•  Static assignment

–  The processor(s) used for executing a task are determined
before system is put in mission (“off-line”)

–  Approach: Partitioned scheduling

•  Dynamic assignment
–  The processor(s) used for executing a task are determined

during system operation “on-line”
–  Approach: Global scheduling

Multiprocessor scheduling

How are tasks allowed to migrate?
•  Partitioned scheduling

–  No migration!
–  Each instance of a task must execute on the same processor
–  Equivalent to multiple uniprocessor systems!

•  Global scheduling
–  Full migration!
–  A task is allowed to execute on an arbitrary processor
–  Migration can occur even during execution of an instance of

a task (for example, after being preempted)

A fundamental limit: (Andersson, Baruah & Jonsson, 2001)

Multiprocessor scheduling

The utilization guarantee bound for multiprocessor
scheduling (partitioned or global), using task

priorities only, cannot be higher than 50%
of the capacity of the processors.

•  Hence, we should not expect to utilize more than half the
processing capacity if hard real-time constraints exist.

•  A way to circumvent this limit is to use p-fair (priorities +
time quanta) scheduling and dynamic task priorities.

Partitioned scheduling

General characteristics:
•  Each processor has its own queue for ready tasks
•  Tasks are organized in groups, and each task group is

assigned to a specific processor
–  For example, using a bin-packing algorithm

•  When selected for execution, a task can only be
dispatched to its assigned processor

Partitioned scheduling

Advantages:
•  Mature scheduling framework

–  Most uniprocessor scheduling theory also applicable here
–  Uniprocessor resource-management protocols can be used

•  Supported by automotive industry
–  AUTOSAR prescribes partitioned scheduling

Disadvantages:
•  Cannot exploit all unused execution time

–  Surplus capacity cannot be shared among processors
–  Will suffer from overly-pessimistic WCET derivation

Partitioned scheduling

Bin-packing algorithms:
•  Basic idea:

–  The problem concerns packing objects of varying sizes in boxes
(”bins”) with the objective of minimizing number of used boxes.

•  Application to multiprocessor systems:
–  Bins are represented by processors and objects by tasks.
–  The decision whether a processor is ”full” or not is derived

from a utilization-based feasibility test.

•  Assumptions:
–  Independent, periodic tasks
–  Preemptive, uniprocessor scheduling (RM)

Partitioned scheduling

Bin-packing algorithms:
Rate-Monotonic-First-Fit (RMFF): (Dhall and Liu, 1978)

–  Let the processors be indexed as
–  Assign tasks in order of increasing periods (i.e., RM order).
–  For each task , choose the lowest previously-used j such

that , together with all tasks that have already been
assigned to processor , can be feasibly scheduled
according to the utilization-based RM-feasibility test.

iτ

µ1,µ2 ,…,µm

µ j

iτ

If all tasks are successfully assigned using RMFF, then
the tasks are schedulable on m processors.

Partitioned scheduling

Processor utilization analysis for RMFF:
•  A sufficient condition for partitioned RMFF scheduling of

synchronous task sets with n tasks on m processors is

U =

Ci

Tii=1

n

∑ ≤ m 21/2 −1() (Oh & Baker, 1998)

Note:

Thus: task sets whose utilization do not exceed ≈ 41% of
the total processor capacity is always RMFF-schedulable.

U RMFF = m 21/2 −1() ≈ 0.41m

Partitioned scheduling

Processor utilization analysis for RMFF:
 1. All tasks are independent.
 2. All tasks are periodic or sporadic.
 3. All tasks have identical offsets.
 4. Task deadline equals the period ().
 5. Task preemptions are allowed.

 6. All processors are identical.
 7. Task migrations are not allowed.

Di = Ti

Global scheduling

General characteristics:
•  All ready tasks are kept in a common (global) queue

that is shared among the processors
•  Whenever a processor becomes idle, a task from the

global queue is selected for execution on that processor.
•  After being preempted, a task may be dispatched to

a processor other than the one that started executing
the task.

Global scheduling

Advantages:
•  Supported by most multiprocessor operating systems

–  Windows 10, MacOS X, Linux, ...
•  Effective utilization of processing resources

–  Unused processor time can easily be reclaimed, for example
when a task does not execute its full WCET.

Disadvantages:
•  Weak theoretical framework

–  Few results from the uniprocessor analysis can be used

Weak theoretical framework

The ”root of all evil” in global scheduling: (Liu, 1969)

Few of the results obtained for a single processor
generalize directly to the multiple processor case; bringing
in additional processors adds a new dimension to the
scheduling problem. The simple fact that a task can use
only one processor even when several processors are
free at the same time adds a surprising amount of difficulty
to the scheduling of multiple processors.

Underlying causes:
•  Dhall’s effect:

–  With RM, DM and EDF, some low-utilization task sets can be
non-schedulable regardless of how many processors are used.
Thus, any utilization guarantee bound would become so low
that it would be useless in practice.

–  This is in contrast to the uniprocessor case, where we have
utilization guarantee bounds of 69.3% (RM) and 100% (EDF).

•  Hard-to-find critical instant:
–  A critical instant does not always occur when a task arrives at

the same time as all its higher-priority tasks.
–  This is in contrast to the uniprocessor case with RM and DM

(and any other static-priority policy).

Weak theoretical framework

Weak theoretical framework

Dhall’s effect: (Dhall & Liu, 1978)

4τ

1τ 1τ

2τ 2τ

3τ 3τ
1 ε+2ε 1

 µ1

 µ2

 µ3

0

4 misses its deadlineτ

 τ1 : C1 = 2ε ,T1 = 1{ }
 τ 2 : C2 = 2ε ,T2 = 1{ }
 τ 3 : C3 = 2ε ,T3 = 1{ }
 τ 4 : C4 = 1,T4 = 1+ ε{ }(RM scheduling)

Weak theoretical framework

Dhall’s effect:
•  Applies for RM, DM and EDF scheduling
•  The utilization of a non-schedulable task set can be as low

as to 1 (= 100%) no matter how many processors are used.

Uglobal = m
2ε
1

+ 1
1+ ε

→1

0ε →when

Consequence:
New multiprocessor priority-assignment schemes are needed!

Note: Total available processor capacity is m (= m • 100%)

Weak theoretical framework

Hard-to-find critical instant:

 µ1

 µ2

0 4 8 12 16

1τ
2τ
3τ

 response time of τ 3 is maximized for second instance

2,1τ 2,2τ 2,3τ 2,4τ 2,5τ

1,1τ 1,2τ 1,3τ 1,7τ 1,8τ1,4τ 1,5τ 1,6τ3,1τ

3,1τ 3,2τ 3,3τ 3,4τ

3,4τ3,2τ 3,3τ

 τ1 : C1 = 1,T1 = 2{ }
 τ 2 : C2 = 2,T2 = 3{ }
 τ 3 : C3 = 2,T3 = 4{ }(RM scheduling)

Weak theoretical framework

Hard-to-find critical instant:
•  A critical instant does not always occur when a task arrives

at the same time as all its higher-priority tasks.
•  Finding the critical instant is, in general, a problem with

exponential time complexity
•  Note: recall that knowledge about an easy-to-find critical

instant is a fundamental assumption in the uniprocessor
feasibility tests for static priority scheduling.

Consequence:
New methods for constructing effective multiprocessor

feasibility tests are needed!

Weak theoretical framework

Dhall’s effect: (Dhall & Liu, 1978)

4τ

1τ 1τ

2τ 2τ

3τ 3τ
1 ε+2ε 1

 µ1

 µ2

 µ3

0

4 misses its deadlineτ

(RM scheduling)

 τ1 : C1 = 2ε ,T1 = 1{ }
 τ 2 : C2 = 2ε ,T2 = 1{ }
 τ 3 : C3 = 2ε ,T3 = 1{ }
 τ 4 : C4 = 1,T4 = 1+ ε{ }

New priority-assignment scheme

How to avoid Dhall’s effect:
•  Problem: RM, DM & EDF only account for task deadlines!

Actual computation demands are not accounted for.
•  Solution: Dhall’s effect can easily be avoided by letting tasks

with high utilization receive higher priority:

2τ 2τ1τ 1τ

3τ 3τ
1 1 ε+2ε

 µ1

 µ2

 µ3

0

4τ 4τ

New priority-assignment scheme

RM-US[m/(3m-2)]: (Andersson, Baruah & Jonsson, 2001)
•  RM-US[m/(3m-2)] assigns (static) priorities to tasks

according to the following rule:

If then has the highest priority
(ties broken arbitrarily)

/(3 2)iU m m> − iτ

If then has RM priority /(3 2)iU m m≤ − iτ

•  Clearly, tasks with higher utilization get
higher priority.

/i i iU C T=

Example: RM-US[m/(3m-2)]

Assign priorities according to RM-US[m/(3m-2)], assuming
the following task set to be scheduled on 3 processors:

 τ1 : C1 = 1,T1 = 7{ } τ 2 : C2 = 2,T2 = 10{ }

 τ 3 : C3 = 9,T3 = 20{ } τ 4 : C4 = 11,T4 = 22{ }

 τ 5 : C5 = 2,T5 = 25{ }

RM-US[m/(3m-2)] example:

For

Example: RM-US[m/(3m-2)]

RM-US[m/(3m-2)] example:

3:m =
/(3 2) 3/ 7 0.4286m m− = ≈

•  Hence, tasks and will be assigned higher priorities, and
the remaining tasks will be assigned RM priorities.

3τ 4τ

•  The possible priority assignments are therefore as follows
(highest-priority task listed first):

τ 3,τ 4 ,τ1,τ 2 ,τ 5 τ 4 ,τ 3,τ1,τ 2 ,τ 5or

•  The utilizations of these tasks are: 0.143, 0.2, 0.45, 0.5 and
0.08, respectively.

New feasibility tests

Processor utilization analysis for RM-US[m/(3m-2)]:
•  A sufficient condition for RM-US[m/(3m-2)] scheduling of

synchronous task sets with n tasks on m processors is

U =

Ci

Tii=1

n

∑ ≤ m2

3m− 2

Question: does RM-US[m/(3m-2)] avoid Dhall’s effect?

(Andersson, Baruah
 & Jonsson, 2001)

New feasibility tests

Processor utilization analysis for RM-US[m/(3m-2)]:
•  We observe that, regardless of the number of processors,

the task set will always meet its deadlines as long as no
more than one third of the processing capacity is used:

2

[/(3 2)] lim
3 2 3RM US m m m

m mU
m− − →∞

= =
−

•  RM-US[m/(3m-2)] thus avoids Dhall’s effect since we can
always add more processors if deadlines were missed.

•  Note that this remedy was not possible with traditional RM.

New feasibility tests

Processor utilization analysis for RM-US[m/(3m-2)]:
 1. All tasks are independent.
 2. All tasks are periodic (i.e. not applicable for sporadic tasks)
 3. All tasks have identical offsets.
 4. Task deadline equals the period ().
 5. Task preemptions are allowed.

 6. All processors are identical.
 7. Task migrations are allowed.

Di = Ti

New feasibility tests

Response-time analysis for multiprocessors:
•  Uses the same principle as the uniprocessor case, where

the response time for a task consists of:
 The task’s uninterrupted execution time (WCET)

 Interference from higher-priority tasks
iC

iτ

iI

iii ICR +=

•  The difference is that the calculation of interference now
has to account for the fact that higher-priority tasks can
execute in parallel on the processors.

New feasibility tests

Response-time analysis for multiprocessors:
•  For the multiprocessor case, with n tasks and m processors,

we observe two things:

 1. Interference can only occur when . n m>
 2. Interference can only affect the n −m tasks with lowest

priority since the m highest-priority tasks will always
execute in parallel without contention on the m processors.

•  Consequently, interference of a task is a function of the
execution overlap of its higher-priority tasks.

New feasibility tests

Response-time analysis for multiprocessors:
•  The following two observations give us the secret to

analyzing the interference of a task:

 With respect to the execution overlap it can be shown
that the interference is maximized when the higher-priority
tasks completely overlap their execution.

 Compared to the uniprocessor case, one extra instance
of each higher-priority task must be accounted for in the
interference analysis.
 (due to the uncertainty regarding the critical instant).

New feasibility tests

Response-time analysis for multiprocessors:
•  The worst-case interference term is

()

1 i
i j j

j hp i j

RI C C
m T∀ ∈

⎛ ⎞⎡ ⎤
= ⋅ +⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠

∑
where is the set of tasks with higher priority than . iτ)(ihp

•  The worst-case response time for a task is thus: iτ

()

1 i
i i j j

j hp i j

RR C C C
m T∀ ∈

⎛ ⎞⎡ ⎤
= + ⋅ +⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠

∑

New feasibility tests

Response-time analysis for multiprocessors:
•  As before, an iterative approach can be used for finding

the worst-case response time:

ii DRi ≤∀ :

•  We now have a sufficient condition for static-priority
scheduling of periodic tasks on identical processors:

1

()

1 n
n i
i i j j

j hp i j

RR C C C
m T

+

∀ ∈

⎛ ⎞⎡ ⎤
= + ⋅ +⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠

∑

New feasibility tests

Response-time analysis for multiprocessors:
 1. All tasks are independent.
 2. All tasks are periodic (i.e. not applicable for sporadic tasks)
 3. All tasks have identical offsets.
 4. Task deadline does not exceed the period ().
 5. Task preemptions are allowed.

 6. All processors are identical.
 7. Task migrations are allowed.

ii TD ≤

Early breakthrough results in global scheduling:
•  Static priorities:

–  2001: RM-US[m/(3m-2)] circumvents Dhall’s effect and has non-
zero resource utilization guarantee bound of m/(3m-2) ≥ 33.3%.

–  2003: Baker generalized the RM-US results to DM.

•  Dynamic priorities:
–  2002: Srinivasan & Baruah proposed the EDF-US[m/(2m-1)]

scheme with a corresponding non-zero resource utilization
guarantee bound of m/(2m-1) ≥ 50%.

•  Optimal multiprocessor scheduling:
–  1996: Baruah et al. proposed p-fair (priorities + time quanta)

scheduling and dynamic priorities as an approach to achieve
100% resource guarantee bound on a multiprocessor.

Global scheduling

