
Lecture #13

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

Real-Time Systems

Real-Time Systems

Verification

Implementation

Specification

•  Pseudo-parallel execution
 -- Earliest-deadline-first
 scheduling
•  Processor-demand analysis

Example: scheduling using EDF

Problem: Assume a system with tasks according to the figure
below. The timing properties of the tasks are given in the table.
All tasks arrive the first time at time 0.

 Investigate the schedulability of the tasks when EDF is used.
 (Note that Di < Ti for all tasks)

1τ 2τ 3τ
 Task Ci Di Ti

1 1τ
2τ
3τ

1
1

1
2
3

2
4
8

Example: scheduling using EDF

Simulate an execution of the tasks:

 The tasks are not schedulable even though

U =

1
2
+

1
4
+

1
8
=

7
8
= 0.875 < 1

 misses its deadline! 3τ

t 0 6 8 4 2

1τ

2τ

3τ

Feasibility analysis for EDF

What analysis methods are suitable for general EDF:
•  Utilization-based analysis?

 Not suitable! Not general enough or exact enough
–  Does not work well for the case of Di < Ti

•  Response-time analysis?
 Not suitable! Analysis much more complex than for DM
–  Critical instant does not necessarily occur when all tasks arrive

at the same time for the first time.
–  Instead, response time of a task is maximized at some scenario

where all other tasks arrive at the same time; the worst such
scenario has to be identified for each task before the response
time of that task can be calculated.

Feasibility tests

What types of feasibility tests exist?
•  Hyper period analysis (for any type of scheduler)

–  In an existing schedule no task execution may miss its deadline

•  Processor utilization analysis (static/dynamic priority scheduling)
–  The fraction of processor time that is used for executing the

task set must not exceed a given bound

•  Response time analysis (static priority scheduling)
–  The worst-case response time for each task must not exceed

the deadline of the task

•  Processor demand analysis (dynamic priority scheduling)
–  The accumulated computation demand for the task set under

a given time interval must not exceed the length of the interval

Processor-demand analysis

Processor demand:
•  The processor demand for a task in a given time

interval is the amount of processor time that the
task needs in the interval in order to meet the deadlines
that fall within the interval.

iτ
[]0,L

•  Let represent the number of instances of that must
complete execution before .

L
iN iτ

L

•  The total processor demand up to is L

CP (0,L) = Ni
LCi

i=1

n

∑

Processor-demand analysis

Processor demand:
•  We can calculate by counting how many times task

has arrived during the interval .
τ i

0,L − Di⎡⎣ ⎤⎦
Ni
L

•  We can ignore instances of the task that arrived during
the interval since for these instances. Di > LL − Di ,L⎡⎣ ⎤⎦

1 2LN =

2 3LN =

t 0 L

τ1

τ 2

Instance with Di > L

Processor-demand analysis

Processor-demand analysis:
•  We can express as

•  The total processor demand is thus

L
iN

Ni
L = L − Di

Ti
⎢
⎣⎢

⎥
⎦⎥
+1

CP (0,L) =
L − Di
Ti

⎢
⎣⎢

⎥
⎦⎥
+1⎛

⎝⎜
⎞
⎠⎟
Ci

i=1

n

∑

Exact feasibility test for EDF
(Sufficient and necessary condition)

A sufficient and necessary condition for EDF scheduling
of synchronous task sets, for which , is Di ≤ Ti

∀L :CP (0,L) ≤ L

where is the total processor demand in . CP (0, L) []0,L

The processor-demand analysis and associated feasibility test
was presented by S. Baruah, L. Rosier and R. Howell in 1990.

 In other words: for the task set to be schedulable with EDF there
must not exist an interval of length L in the schedule where the
processor demand in that interval exceeds the length L.

Exact feasibility test for EDF
(Sufficient and necessary condition)

How many intervals must be examined?
•  Only intervals coinciding with the absolute deadlines of

tasks need to be examined
•  The set of deadlines that need to be examined can be further

reduced (see book excerpt)

What is the largest interval that must be examined?
•  For synchronous task sets the largest interval can be

bounded by the hyper period (LCM of task periods)
⇒ the analysis will in general have exponential time complexity

•  For most synchronous task sets the largest interval to examine
will be shorter than the hyper period. The analysis will then have
pseudo-polynomial time complexity (see book excerpt)

Exact feasibility test for EDF
(Sufficient and necessary condition)

For synchronous task sets the feasibility test can
consequently be rewritten as follows:

∀L ∈K :CP (0,L) ≤ L

 K = Di
k | Di

k = kTi + Di , Di
k ≤ LCM T1,…,Tn{ }, 1 ≤ i ≤ n, k ≥ 0{ }

Exact feasibility test for EDF
(Sufficient and necessary condition)

The test is valid under the following assumptions:
 1. All tasks are independent.

–  There must not exist dependencies due to precedence
or mutual exclusion

 2. All tasks are periodic or sporadic.
 3. All tasks have identical offsets (= synchronous task set).
 4. Task deadline does not exceed the period ().
 5. Task preemptions are allowed.

ii TD ≤

Summary

Feasibility tests

 U ≤ n(21/ n − 1)

 U ≤ 1

∀i : Ri = Ci +
Ri
Tj

⎡

⎢
⎢

⎤

⎥
⎥C j ≤ Di

∀j∈hp(i)
∑

Static
priority

(RM/DM)

Dynamic
priority
(EDF)

 Di = Ti Di ≤ Ti

∀L : L − Di
Ti

⎢
⎣⎢

⎥
⎦⎥
+1⎛

⎝⎜
⎞
⎠⎟
Ci

i=1

n

∑ ≤ L

Example 1: scheduling using EDF

Problem: We once again assume the system with tasks given in the
beginning of this lecture.
 Show, by using processor-demand analysis, that the tasks are not
schedulable using EDF.

1τ 2τ 3τ
 Task Ci Di Ti

1 1τ
2τ
3τ

1
1

1
2
3

2
4
8

Example 1: scheduling using EDF
a) Determine the LCM for the tasks:

K1 = D1
k |D1

k = kT1 + D1, D1
k ≤ 8, k = 0,1,2,3{ } = 1,3,5,7{ }

 Determine the control points K:

K2 = D2
k |D2

k = kT2 + D2 , D2
k ≤ 8, k = 0,1{ } = 2,6{ }

K3 = D3
k |D3

k = kT3 + D3, D3
k ≤ 8, k = 0{ } = 3{ }

 The processor demand must be checked at the following
control points:

K = K1∪ K2∪ K3 = 1,2,3,5,6,7{ }

LCM T1,T2,T3{ } = LCM 2,4,8{ } = 8

 We define a table and examine every control point …

Example 1: scheduling using EDF

1−1
2

⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅1=1 1− 2

4
⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅1= 0

1− 3
8

⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅1= 0

L N1
L ⋅C1 N2

L ⋅C2 N3
L ⋅C3

CP 0, L()
CP 0, L() ≤ L

6 6 OK!

5 5 OK!

Not OK!

OK!

OK!

3

2

1 1

2

4

7 7 OK!

2−1
2

⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅1=1 2− 2

4
⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅1=1

2− 3
8

⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅1= 0

3−1
2

⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅1= 2 3− 2

4
⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅1=1

3− 3
8

⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅1=1

5−1
2

⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅1= 3 5− 2

4
⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅1=1

5− 3
8

⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅1=1

6−1
2

⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅1= 3 6− 2

4
⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅1= 2

6− 3
8

⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅1=1

7−1
2

⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅1= 4 7− 2

4
⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅1= 2

7− 3
8

⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅1=1

Example 1: scheduling using EDF

As we saw in the beginning of the lecture the resulting
schedule looks like this:

 misses its deadline! 3τ

t 0 6 8 4 2

1τ

2τ

3τ

The feasibility test can be extended to handle:

•  Blocking

•  Start-time variations (”release jitter”)

•  Time offsets (asynchronous task sets)

•  …

In this course, we only briefly describe how blocking is handled.

Extended processor-demand analysis

Blocking using deadline inheritance protocol (DIP):

Recollection from an earlier lecture

L inherits H’s deadline

L receives original deadline

H blocked

t
H

t
M

normal execution

critical region

t
L

H and L share mutex resource R

Extended processor-demand analysis

Accounting for blocking with EDF:
•  Which tasks can block the task being analyzed?

 Dynamic relationship! Depends on which tasks with longer
deadlines are active when the task is ready for execution.
–  With static priorities (RM, DM) this was much easier to determine

•  Simple method is the Deadline Inheritance Protocol (DIP):
–  When a task blocks one or more tasks with deadlines closer in

time, it temporarily assumes (inherits) the deadline closest in
time of the blocked tasks.

–  Due to the dynamic relationship, and due to the possibility of
chained blocking, the estimated worst-case blocking times will
be very pessimistic.

Extended processor-demand analysis

Accounting for blocking with EDF:
•  The best method is the Stack Resource Policy (SRP):

 Very similar to ICPP used for static priority scheduling.
–  Each task is assigned a static preemption level, that reflects

the relative deadline of the task.
–  Each shared resource is given a ceiling value based on the

maximum preemption level of the tasks that use the resource.
–  A task can only preempt the currently-executing task if its

deadline is closer in time, and its preemption level is higher
than the highest ceiling of the currently locked resources.

–  Due to the protocol, and because no chained blocking occurs,
accurate worst-case blocking times can determined and be
incorporated into the processor-demand analysis.

Example 2: scheduling using EDF

Problem: Assume a system with tasks according to the figure below.
The timing properties of the tasks are given in the table.

 a) Determine, by using processor-demand analysis, whether the
 tasks are schedulable or not using EDF.

 b) Determine, by using simulation, whether the tasks are
 schedulable or not using EDF.

1τ 2τ 3τ
 Task Ci Di Ti

2 1τ
2τ
3τ

2
3

3
7
12

4
8
16

Example 2: scheduling using EDF

a) Determine the LCM for the tasks:

K1 = D1

k | D1
k = kT1 + D1, D1

k ≤ 16, k = 0,1,2,3{ } = 3,7,11,15{ }
 Determine the control points K:

K2 = D2

k | D2
k = kT2 + D2 , D2

k ≤ 16, k = 0,1{ } = 7,15{ }

K3 = D3

k | D3
k = kT3 + D3, D3

k ≤ 16, k = 0{ } = 12{ }
 The processor demand must be checked at the following
control points:

K = K1 ∪ K2 ∪ K3 = 3,7,11,12,15{ }

 LCM T1,T2 ,T3{ } = LCM 4,8,16{ } = 16

 We define a table and examine every control point …

Example 2: scheduling using EDF

3− 3
4

⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅2 = 2

3− 7
8

⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅2 = 0 3−12

16
⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅3 = 0

L N1
L ⋅C1 N2

L ⋅C2 N3
L ⋅C3

CP 0, L()
CP 0, L() ≤ L

7− 3
4

⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅2 = 4 7− 7

8
⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅2 = 2 7−12

16
⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅3 = 0

11− 3
4

⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅2 = 6 11− 7

8
⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅2 = 2 11−12

16
⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅3 = 0

12− 3
4

⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅2 = 6 12− 7

8
⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅2 = 2 12−12

16
⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅3 = 3

15− 3
4

⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅2 = 8 15− 7

8
⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅2 = 4

15−12
16

⎢

⎣
⎢

⎥

⎦
⎥ +1

⎛
⎝⎜

⎞
⎠⎟
⋅3 = 315 15 OK!

12 11 OK!

OK!

OK!

OK!

11

7

3 2

6

8

Example 2: scheduling using EDF

b) Simulate the execution of the tasks:

t 0 12 16 8 4

 The tasks meet their deadlines also in this case!

1τ

2τ

3τ

