
Lecture #10

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

Real-Time Systems

Real-Time Systems

Verification

Implementation

Specification

•  Hyper-period analysis
•  Cyclic executives

Feasibility tests

What types of feasibility tests exist?
•  Hyper period analysis (for any type of scheduler)

–  In an existing schedule no task execution may miss its deadline

•  Processor utilization analysis (static/dynamic priority scheduling)
–  The fraction of processor time that is used for executing the

task set must not exceed a given bound

•  Response time analysis (static priority scheduling)
–  The worst-case response time for each task must not exceed

the deadline of the task

•  Processor demand analysis (dynamic priority scheduling)
–  The accumulated computation demand for the task set under

a given time interval must not exceed the length of the interval

Hyper period analysis

Motivation:
•  When it is not obvious which feasibility analysis should

be used for a given task set and a given scheduler it is
always possible to generate a schedule by simulating
the execution of the tasks, and then check feasibility
for individual tasks.

•  The schedule interval that is sufficient to investigate is
related to the hyper period of the task set, that is, the
least common multiple (LCM) of the task periods.

NOTE: Unless the periods of all tasks are harmonically
related (multiples of each other) hyper-period analysis
will in general have an exponential time complexity.

Hyper period analysis

Schedule interval to investigate:
•  For synchronous task sets:

 It is sufficient to investigate the interval
where is the hyper period of the task set. 0,P[]

P

•  For asynchronous task sets:
It is sufficient to investigate the interval
if no task instance that arrives within the interval
executes beyond time .

 0,P[]

P
In all other cases it is necessary to investigate
more than one hyper period.

 ∀i, j :Oi =Oj

 ∃i, j : i≠ j,Oi ≠Oj

Cyclic executives

Because of its deterministic properties the cyclic executive is often
the choice of scheduler in safety-critical real-time systems, such as
automotive and aircraft applications.

Cyclic executives

General properties:
•  Table-based schedule
•  Feasibility test performed when generating table
•  Schedule repeats itself (= “cyclic executive”)

:
:

:

:
15 * i + 15 * i + 15 * i + 15 * i + t 0 5 10 15

1τ

2τ

3τ

4τ

Cyclic executives

General properties:
•  Off-line schedule generation

–  Explicit start and finish times for each task are derived off-line,
and chosen so that at most one task at a time requests access
to the processor during run time.

•  Mutual exclusion is handled explicitly
–  The schedule must be generated in such a way that a task

switch is not made within a critical region (= no need for
mutual exclusion support at run-time, e.g. mutex objects)

•  Precedence constraints are handled explicitly
–  The schedule must be generated in such a way that specified

task execution orderings are respected (= no need for task
synchronization at run-time, e.g. semaphores)

Cyclic executives

Advantages:
•  Communication between tasks is facilitated

–  The time instant when data becomes available is known
–  Task execution can easily be adapted to any existing time-slot

network protocol (e.g., TTCAN, FlexRay).
•  Low overhead for scheduling decisions

–  Everything is pre-planned, time table guides the run-time system
–  Feasibility test is done off-line during time table generation

•  Task execution becomes very deterministic
–  Simplifies feasibility tests (compare finish time against deadline)
–  Simplifies software debugging (increased observability)
–  Simplifies fault tolerance (natural points in time for self control)

Cyclic executives

Disadvantages:
•  Low flexibility

–  The run-time system cannot adapt its schedule to
changes in the task set or in the system environment

•  External events are not handled efficiently
–  Data from I/O-based events (interrupts) may not be consumed

directly by a periodic task due to the pre-planned schedule,
which could lead to long response times.

–  An external event with a short deadline must be handled by
a task with short period, which may lead to resource waste

•  Not so efficient for tasks with ”bad” periods
–  Tasks with mutually inappropriate periods give rise to large

time tables, which may require more program code and/or data

(a.k.a. the ”Skalman” factor)

Cyclic executives

How is the schedule generated?
•  Simulation of pseudo-parallel execution:

–  Simulate a run-time system with a (myopic) priority-based
scheduler and then ”execute” the tasks on that simulator.

–  Example: find a schedule by simulating a run-time system
with the (dynamic priority) earliest-deadline-first scheduler.

•  Exhaustive search:
–  Use an algorithm that searches for a feasible schedule by

considering all possible execution orders for the tasks.
–  Example: use the well-known A* search algorithm to find a

feasible (optimal or non-optimal) schedule.

If the simulated scheduler or search algorithm is optimal for the given
system model a feasible schedule will be found whenever one exists.

Cyclic executives

How is the size of the time table restricted?
•  Only cyclic schedules are considered:

–  Schedule is repeated with a cycle time (“hyper period”) that is
equal to the LCM (”least common multiple”) of the task periods.

–  Tasks that are not periodic, or that have very long periods, can
be handled by reserving time slots in the schedule for a “server”
that can handle such special tasks when they arrive.

•  Suitable task periods are chosen:
–  To obtain reasonably long cycle times, the task periods should

(if application allows) be adjusted to be multiples of each other.
–  Example:

 periods 7, 13, 23 ms ⇒ cycle time 2093 ms, but
 periods 5, 10, 20 ms ⇒ cycle time 20 ms

Cyclic executives

How is the scheduler implemented?
•  Use a circular queue that corresponds to the time table

–  Each element in the queue contains start and finish times for a
certain task (or task segment in case of preemptive scheduling)

–  The elements in the queue are sorted by the start time

•  Use clock interrupts
–  When a task starts executing, a real-time clock is programmed

to generate an interrupt at the start time of the next (the one
whose start time is closest in time) element in the queue.

–  When the interrupt occurs, the next element in the circular
queue is fetched and the procedure is repeated.

Cyclic executives

Remarks:
•  Emulating a cyclic executive

–  By assigning offsets to tasks in a priority-based run-time system
it is possible to mimic the behavior of a cyclic executive.

–  Example: assigning offsets to AFTER() operations in TinyTimber

•  Emulating other priority-based schedulers
–  By generating a table-based schedule by simulation it possible

to mimic the behavior of tasks with static priorities on a run-time
system with dynamic priorities (and vice versa).

–  Example: simulating the rate-monotonic (static priority) scheduler
to generate a time table that is used to emulate a cyclic executive
on the (dynamic priority) TinyTimber run-time system.

Example: simulating EDF

Problem: Assume a system with tasks and precedence constraints
according to the figure below. Timing constraints for the tasks are
given in the table. Generate a cyclic schedule for these tasks by
simulating preemptive earliest-deadline-first (EDF) scheduling.

A

B

C

D

Period: 15

Period: 5

Task Ci Oi Di

A 4 0 7
B 3 0 12
C 5 0 15
D 1 3 1

Ti

15
15
15
5

Example: simulating EDF

Begin by calculating the LCM of the tasks:
Then generate a new version of the task graph with cycle time 15.

{ } 155,15LCM =

Observe that D must execute 15/5 = 3 times within the
cycle, hence instances D’ and D’’ in the new graph.

A

B

C

D

LCM = 15 Task Ci Oi Di

A 4 0 7
B 3 0 12
C 5 0 15
D 1 3 1

D’ D’’ D’ 1 8 1
D’’ 1 13 1

Ti

15
15
15
15
15
15

Example: simulating EDF

Now generate a schedule by assuming preemptive, earliest-
deadline-first scheduling and simulate execution of the tasks:
1. A is scheduled first since it has the earliest deadline among the

tasks (A and B) that are ready at t = 0.
2. D becomes ready at t = 3 and preempts A since D’s deadline is

closer in time than A’s and B’s deadlines.
3. A resumes its execution at t = 4 and finishes at t = 5.
4. B is scheduled at t = 5 and finishes at t = 8. C becomes ready.
5. D’ becomes ready and is scheduled at t = 8 since the deadline of

D’ is closer in time than C’s deadline.
6. C is scheduled at t = 9.
7. D’’ becomes ready at t = 13 and preempts C since the deadline of

D’’ is closer in time than C’s deadline.
8. C resumes its execution at t = 14 and finishes at t = 15.

Example: simulating EDF

Static schedule:

t 0 5 10 15

A

B

C

D

Cyclic time table:
 (A,0,3) (D,3,4) (A,4,5) (B,5,8) (D’,8,9) (C,9,13) (D”,13,14) (C,14,15)

NOTE: Since no task executes beyond t = 15, it
is sufficient to generate, and check feasibility of,
a schedule that spans one hyper period ([0,15])

