EDA223/DIT162 Real-Time Systems January 22, 2020
Laboratory Assignment — Part 2

Objective: The purpose of Part 2 of the lab is to design a music player capable of
performing the song Brother John. First, you will develop the simple tone generator
of Part 1 into a small synthesizer/sequencer combo that can play the tune in isolation
(Step 1 and Step 2). You will then further develop your player to become a network-aware
application that may participate in coordinated Brother John performances together with
all other like-minded MD407 boards it finds on the local network (Step 3 and Step 4).

Approval: When you see the text “Assistant’s approval: ” below a problem
description you should show your solutions to the laboratory assistant. If the solutions
are found to be satisfactory the laboratory assistant will sign your lab-PM and mark the
corresponding examination objective as 'Passed’ in Canvas. You can then continue with
the next problem.

Step 1: The Brother John player — the design

Starting with the tone generator from Part 1, you should now extend your software design
with the functionality of playing notes of varying frequency and length.

The frequency of a note is expressed in terms of a frequency index, where a fre-
quency index of 0 represents the base frequency. Varying the frequency of a note
means choosing among the tones in the Western 12-tone scale. Recall that, on a piano
keyboard, there is a pattern of 12 keys (7 white and 5 black) that repeats itself over the
entire keyboard. These 12 keys constitute an octave.

The relation between tones that are an octave apart on the keyboard is well defined:
their frequency ratio is exactly 2. The frequencies of the remaining tones in the scale
can be defined according one of the many temperament systems that are available. The
temperament system used in this laboratory assignment is the equal-tempered 12-tone
scale, which consists of a range of frequencies p(i) (where i is the frequency index) such
that the ratio p(i + 1)/p(7) always equals the twelfth root of 2. The default base frequency
in this assignment is p(0) = 440 Hz.

The Brother John tune is a (cyclic) sequence of 32 notes, with the frequency of each
note being defined by the following list of indices:

0240024045745 77975407975400-500-50

The duration of a note is expressed in terms of the length of a beat, which in turn is
determined by the tune’s tempo as measured in beats per minute (bpm). All notes in
the Brother John tune are not of equal length, but exhibit the following (cyclic) pattern:

aaaaaaaaaabaabceccccecaaccecceccecaaaabaalbd

Here, a represents a length of one beat, b represents a length of two beats (i.e., 2a)
and c represents a length of half a beat (i.e., a/2). The length of a beat is set by selecting
a tempo for the tune. The default tempo in this assignment is 120 bpm, which means
that the default length of a beat is 500 ms.

bi Concurrent
Mutually Object A
exclusive
Local state
Object B
iEtee Local state
External Asynchronous |
events Method 2 —
Method calls K=o
S External
Ynchr, Ohoys reactions
Method 4 ||
an
Asynchr'onousUdelayed

Figure 1: An example of an access graph

To give the tune some character a small gap of silence of suitable length should be
inserted at the end of each note, by shortening the actual note duration by the same
amount. A suitable length of the gap is 50-100 ms.

o

: d : i m2
i SEND(T, D, &0, m2, a)

Baseline Deadlined Baseline +T Deadline D

Figure 2: An example of a timing diagram

The performance of Brother John tune is controlled by the parameters key and tempo.
The value of key is used as an offset to the frequency index of each note, thereby trans-
posing the tune from the default key of A (parameter key = 0) to any other key within
a given range. The value of tempo determines the length of a beat.

IMPORTANT! Before you begin writing any code you should get your design ideas
approved by the teacher/assistant. To illustrate your design you should use access graphs
and timing diagrams, similar to the ones shown in Figure 1 and Figure 2.

Problem 1.a: Using access graphs illustrate (i) how the tone generator will
be controlled to play a note of a certain length, including the small gap of
silence, (ii) how the tone generator will be controlled to play the cyclic se-
quence of 32 notes constituting the Brother John tune, and (iii) how the
key and tempo of the tune can be dynamically changed from the keyboard
while the tune is being played.

Problem 1.b: Using timing diagrams illustrate how the tone generator will
be controlled to (i) play a note of a certain length, including the small gap of
silence, and (ii) play the next note in the tune after the gap.

Assistant’s approval:ccc.ooooiiiiiienn...

Step 2: The Brother John player — the code

You should now implement the player design that you developed in Step 1. Define
suitable data structures for storing the frequency and length information®, and write
code for the methods shown in your access graphs and timing diagrams. Make sure that
your reader function is able to dynamically supply the key and and tempo parameters
to the relevant software parts. Your player should able to handle a key parameter in the
range of [-5...5] and a tempo parameter in the range of [60...240] bpm. The key and
and tempo parameters should be read from the keyboard in the form of integer numbers?.

Problem 2: Demonstrate that your software implementation is able to pro-
duce the notes that you recognize as the Brother John tune, and that the key
and tempo can be dynamically changed from the keyboard while the tune is
being played in a cyclic fashion.

Assistant’s approval:cc..ooooiiiiiiienn...

IMPORTANT! After approval you should submit your software code in Canvas
(under ’Modules’/’Laboratory Software’). Typically, you only need to submit the
application.c file, but if you have multiple files you should submit a file archive.

'Reuse the array of pre-computed tone generator periods that you defined in Part 0.
2Reuse the software code for reading integer numbers that you wrote in Part 0.

Step 3: Yes, we CAN!

You will now enable your music-playing boards to communicate with each other using
broadcast messages over the CAN bus. When you connect your board to the CAN
bus your program must be prepared to run in either leader mode or in slave mode.
In leader mode your board’s (and every other connected board’s) music player will be
controlled directly via your keyboard. That is, whenever you give a command via the
keyboard the leader board’s music player should react on the command, while at the
same time a corresponding command should be sent out on the CAN bus to the slave
boards. In slave mode your player will be controlled by another project group’s board
via the CAN bus. More specifically, a slave board should run in a semi-autonomous
fashion; that is, once the leader board has initiated the playing of the tune a slave board
should be able to play the tune even if the leader board does not send any additional
commands.

You should first familiarize yourself with the CAN device driver. Locate the receiver
method in the application.c file. Whenever a message is received from the CAN bus,
the can_interrupt method (an interrupt handler) located in the canTinyTimber. c file is
invoked and the message is read from the MD407 board’s CAN controller. The interrupt
handler then invokes the receiver method, within which you can acquire and decode
the contents of the received CAN message.

To acquire the contents of the received CAN message, you should use the built-
in macro CAN_RECEIVE. Correspondingly, to send a new CAN message you should use
the built-in macro CAN_SEND. Locate the use of CAN RECEIVE and CAN_SEND in the
application.c file, and notice that they use a pointer to a variable of data type CANMsg
as the second parameter. The data type CANMsg, defined in the canTinyTimber.h file,
is used for storing only the user-relevant parts of the CAN message, such as the message
identifier and the (maximum 8-byte) message payload. In TinyTimber’s CAN device
driver the 11-bit identifier is stored in two parts in the CANMsg type: one part consisting
of the four least significant bits of the identifier (referred to as nodeid), and one part
containing the 7 most significant bits of the identifier (referred to as msgid). This par-
titioning of the message identifier allows you and the other groups to enumerate your
MD407 boards (via nodeid) and the transmitted messages (via msgid).

When designing your software it is important to know that the CAN controller
does not receive what it sends out. You therefore need to make sure that your software
does not rely on incoming copies of the messages you send. However, in order to test
your software before you connect with any other boards, you will make temporary use of
a loopback feature to verify that you can play in both leader mode and slave mode.

To enable the loopback feature of the CAN device driver for your MD407 board you
should proceed as follows:

e Connect the primary CAN interface (CAN1) to the secondary CAN interface
(CAN2) by means of the short white (loopback) cable provided by the laboratory
assistant.

e Configure the CAN device driver by removing the comments on line 3 in
canTinyTimber.c (that is, enable the #define __CAN_LOOPBACK statement).

As part of adapting your code to handle CAN messages you should add a play function
to your program that allows you to start and stop the playing of the tune. When you
run your program the tune should not be playing by default. A start command should
initiate the playing from the beginning of the tune. Control the start/stop function with
suitable keys on the keyboard. In addition, you should prepare the receiver method
to print out the contents of messages received on the CAN bus regardless of which mode
you are running in.

Problem 3.a: Run your program in leader mode, and make sure that you
are able to control the tune (i.e. start, stop, change key and tempo) regardless
of whether the loopback cable is connected or not. Observe the printouts of
the contents of each received CAN message, and verify that the messages that
you receive (when the cable is connected) contain the same information as the
messages you send.

Assistant’s approval:cooooiiiiiiienn...

Problem 3.b: Run your program in slave mode. Since you are not yet con-
nected to any other board you should use a temporary solution and let your
own keyboard send out CAN messages (just like you did in leader mode.)
Connect the loopback cable and make sure that you can control the tune
playback from the keyboard, and also observe the printouts of the received
message contents.

Demonstrate the semi-autonomous functionality of your program as follows:

e With the loopback cable connected initiate the playing of the tune from
the keyboard.

e Disconnect the loopback cable and show that you no longer can control
the playing of the tune from the keyboard. That is, it should not be pos-
sible to stop the playing, or change key or tempo, of the tune. However,
the tune should continue to play even though the cable is disconnected.

e Reconnect the loopback cable and show that you once again are able to
control the playing of the tune from the keyboard.

Assistant’s approval:c......iiiiennn...

Step 4: Playing in Chorus and CANon

After testing the CAN message functionality in isolation using the loopback feature you
will now enter cooperative mode and work with your fellow groups to jointly develop a
communication protocol that facilitates synchronized playback of our favorite tune.

When demonstrating your software in cooperative mode there should be three boards
connected to the CAN bus. If there are less than three groups collaborating, one of the
groups should use their software on multiple boards.

Remove the short white cable, and connect the primary CAN interface (CAN1) to the
boards of your fellow groups by means of the long black cable provided by the laboratory
assistant. NOTE! Now is the time to disable the CAN loopback feature used in Step 3.

The initial requirements on the protocol are as follows:

1.

Each board should have a rank that is unique. Assign among yourselves the ranks
of the boards (using, for example, the nodeid part of the message identifier).

. Decide among yourselves which board should run in leader mode. The other boards

should run in slave mode, in a semi-autonomous fashion (as per Step 3). When the
leader starts playing the tune the other boards should join in, without noticeable
delay, in chorus form (i.e., all at the same time).

The leader also decides on the key (i.e., the offset of the frequency index) and the
tempo (i.e., the length of a beat) of the tune. At this point it is only required to
set the key and tempo before starting to play the tune.

Once the leader has started to play the tune the playing should go on in a cyclic
fashion until the leader chooses to stop playing, and stay synchronized (in tempo)
no matter how long time this takes.

It is not required that the boards shall be able to switch dynamically between leader
and slave mode. Separate software versions may be used.

IMPORTANT! Before you start adapting your code to the chorus form requirements
above, be sure to meet with your fellow groups to discuss, design and agree upon a
common protocol. Do not hesitate to ask your teacher or assistant for hints.

Problem 4.a: Demonstrate that your board, and your fellow groups’ boards,
are able to play the Brother John tune in chorus form, and in the key and
tempo set initially by the leader board.

Assistant’s approval: ...

The cooperative mode will now be extended towards a more elaborate way of play-
ing the Brother John tune, in which the boards play in a common key and tempo but
in different parts of the tune.

To that end, add the following requirement on the protocol:

6. In addition to the chorus form the leader board shall be able to select canon form, in
which the leader starts playing and the other boards join in (in rank order) delayed
by n steps, where a step equals the currently chosen length of a beat, and n is a
parameter of the canon form.

For example, if there are three boards in the network:

e the leader board starts playing from the beginning of the tune, in the chosen
key and tempo.

e after a delay of n steps the second board starts playing from the beginning of
the tune, in the key and tempo set initially by the leader board.

e after yet another delay of n steps the third board starts playing from the
beginning of the tune, in the key and tempo set initially by the leader board.

Done correctly, the canon form can offer a very pleasant listening experience. A
particularly nice value of n is 8. For a nightmare experience, try n = 1!

7. It is not required that the boards shall be able to switch dynamically between chorus
and canon form. Separate software versions may be used.

8. It is only required that the boards shall be able to play the tune in canon form with
parameters n =4 and n = 8.

IMPORTANT! Before you start adapting your code to the canon form requirement
above, be sure to meet with your fellow groups to discuss, design and agree upon a
common protocol. Do not hesitate to ask your teacher or assistant for hints.

Problem 4.b: Demonstrate that your board, and your fellow groups’ boards,
are able to play the Brother John tune in canon form, and in the key and
tempo set initially by the leader board.

Assistant’s approval:cc....ooiiiinnn...

It is now time to add the final, and most advanced, feature of the cooperative mode: in
which changing the key and tempo is allowed during playback of the Brother John tune.

The final requirements on the protocol are:

9. For either form (chorus or canon) the leader board shall be able to change the key
and tempo dynamically while the tune is being played.

10. A change of key or tempo must be adopted by all connected boards within a recovery
time corresponding to the length of 12 beats, measured from the time the leader
requests the corresponding change.

The length of the recovery time is defined by the current tempo at the time that
the leader requests the change. For example, if the current tempo is 120 bpm when
the leader requests a change, all boards must have adopted the change within 6
seconds.

11. No board is allowed to stop playing the tune, or skip parts of the tune, during the
recovery time.

IMPORTANT! Before you start adapting your code to the dynamic requirements
above, be sure to meet with your fellow groups to discuss, design and agree upon a
common protocol. Do not hesitate to ask your teacher or assistant for hints.

Problem 4.c: For either form (chorus or canon) show that the leader board
can set an initial key and tempo, and then is able to change the key and
tempo dynamically while the tune is being played.

Assistant’s approval:cciiinnn...

That’s it for the laboratory assignment.
Thank You for the Music!

