

UNIVERSITY OF GOTHENBURG

Real-Time Systems

Exercise #7

Course Assistant Elena Marzi

Department of Computer Science and Engineering Chalmers University of Technology

Multiprocessor scheduling

Today:

- Repetition of relevant concepts in multiprocessor scheduling
- Exercise on RMFF scheduling
- Exercise on RM-US[m/(3m-2)] scheduling

The examples are based on some old exam problems

Multiprocessor scheduling

- How are tasks assigned to processors?
 - Static assignment \rightarrow off-line
 - Dynamic assignment \rightarrow on-line
- How are tasks allowed to migrate?
 - Partition scheduling \rightarrow no task migration / RMFF scheduling
 - Global scheduling \rightarrow task migration / RM-US scheduling

Multiprocessor scheduling

"Partitioned scheduling: If all tasks are assigned using the Rate-Monotonic-First-Fit (**RMFF**) algorithm, then all tasks are schedulable if the total task utilization does not exceed 41% of the total processor capacity."

"Global scheduling: If tasks with the highest utilization are given highest priority and the remaining tasks are given RM priorities according to **RM-US**, then all tasks are schedulable if the total task utilization does not exceed 33.3% of the total processor capacity."

Problem:

There are two approaches for scheduling tasks on multiprocessor platform: the *partitioned* approach and the *global* approach. The table below shows C_i (WCET) and T_i (period) for six periodic tasks to be scheduled on m = 3 processors. The relative deadline of each periodic task is equal to its period.

	C_i	T_i
τ_1	2	10
$ au_2$	10	25
$ au_3$	12	30
$ au_4$	5	10
τ_5	8	20
τ_6	7	100

The task set is schedulable using rate-monotonic first-fit (RMFF) partitioned scheduling algorithm. Show how the task set is partitioned on m = 3 processors so that all the deadlines are met using RMFF scheduling?

Rate-Monotonic-First-Fit (RMFF): (Dhall and Liu, 1978)

- Let the processors be indexed as $\mu_1, \mu_2, ..., \mu_m$
- Assign tasks in order of increasing periods (i.e., RM order).
- For each task τ_i , choose the <u>lowest</u> previously-used *j* such that τ_i , together with all tasks that have already been assigned to processor μ_j , can be feasibly scheduled according to the utilization-based RM-feasibility test.

If all tasks are successfully assigned using RMFF, then the tasks are schedulable on *m* processors.

$$U_{Total} = \sum_{i=1}^{6} \frac{C_i}{T_i} = \frac{2}{10} + \frac{10}{25} + \frac{12}{30} + \frac{5}{10} + \frac{8}{20} + \frac{7}{100} = 1.97$$

$$U_{\rm RMFF} = m(2^{1/2} - 1) = 3(2^{1/2} - 1) = 1.243$$

The tasks are schedulable if the following condition is true:

$$U_{\rm Total} \leq U_{\rm RMFF}$$

However: $U_{Total} > U_{RMFF}$

Therefore, we cannot guarantee schedulability using the utilization based test. However, since the test is only a sufficient one we could try the RMFF algorithm.

The utilization of the tasks are

	C_i	T_i	U_i
τ_1	2	10	0.2
$ au_2$	10	25	0.4
$ au_3$	12	30	0.4
$ au_4$	5	10	0.5
$ au_5$	8	20	0.4
$ au_6$	7	100	0.07

The order of allocation (based in increasing period) is τ_1 , τ_4 , τ_5 , τ_2 , τ_3 and τ_6 . The three processors are indexed as μ_1 , μ_2 , and μ_3 .

Task τ_1 can be allocated to μ_1 since there are no other tasks on μ_1 .

Task τ_4 can also be allocated to μ_1 since

$$U_1 + U_4 = 0.2 + 0.5 = 0.7 \le 2 \cdot (2^{\frac{1}{2}} - 1) = 0.82$$

Task τ_5 cannot be allocated to μ_1 since

 $U_1 + U_4 + U_5 = 0.2 + 0.5 + 0.4 = 1.1 > 1$

Task τ_5 can be allocated to μ_2 since there are no other tasks on μ_2 .

Task τ_2 cannot be allocated to μ_1 since

 $U_1 + U_4 + U_2 = 0.2 + 0.5 + 0.4 = 1.1 > 1$

Task τ_2 can be allocated to μ_2 since

 $U_5 + U_2 = 0.4 + 0.4 = 0.8 \le 2 \cdot (2^{\frac{1}{2}} - 1) = 0.82$

Task τ_3 cannot be allocated to μ_1 since

 $U_1 + U_4 + U_3 = 0.2 + 0.5 + 0.4 = 1.1 > 1$

Task τ_3 cannot be allocated to μ_2 since

 $U_5 + U_2 + U_3 = 0.4 + 0.4 + 0.4 = 1.2 > 1$

Task τ_3 can be allocated to μ_3 since there are no other tasks on μ_3 .

Task τ_6 can be allocated to μ_1 since

 $U_1 + U_4 + U_6 = 0.2 + 0.5 + 0.07 = 0.77 \le 3 \cdot (2^{\frac{1}{3}} - 1) = 0.78$

So, the final allocation is as follows:

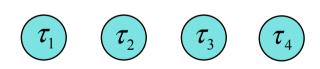
Processor μ_1 gets tasks τ_1 , τ_4 , and τ_6 .

Processor μ_2 gets tasks τ_5 and τ_2 .

Processor μ_3 gets tasks τ_3 .

Example 2: RM-US scheduling

Problem: Consider the task set below for a system using global scheduling on m=3 processors. Show that the task set is schedulable on the processors assuming that task priorities are given according to RM-US[m/(3m-2)].



Task	C _i	T _i
$ au_1$	1	7
$ au_2$	4	19
$ au_3$	9	20
$ au_4$	11	22

CHALMERS

Example 2: RM-US scheduling

$$U_{Total} = \sum_{i=1}^{4} \frac{C_i}{T_i} = \frac{1}{7} + \frac{4}{19} + \frac{9}{20} + \frac{11}{22} = 1.30$$

Task	C _i	T _i	U _i
$ au_1$	1	7	0.14
$ au_2$	4	19	0.21
$ au_3$	9	20	0.45
$ au_4$	11	22	0.5

$$U_{\rm RM-US} = \frac{m^2}{(3m-2)} = \frac{9}{7} = 1.2857$$

- Since $U_{Total} > U_{RM-US}$ the utilization based test for RM-US fails.
- However, since the test is only a sufficient one we could try response time analysis for global scheduling.

Example 2: RM-US scheduling

• RM-US[m/(3m-2)] assigns (static) priorities to tasks according to the following rule:

If $U_i > m/(3m-2)$ then τ_i has the highest priority (ties broken arbitrarily)

If $U_i \leq m/(3m-2)$ then τ_i has RM priority

UNIVERSITY OF GOTHENBURG

Example 2: RM-US scheduling

$$m/(3m-2) = 3/7 = 0.4286$$

Task	C _i	Ti	U _i
$ au_1$	1	7	0.14
$ au_2$	4	19	0.21
$ au_3$	9	20	0.45
$ au_4$	11	22	0.5

Task priorities are:

CHALMERS

- Tasks au_3 and au_4 have highest priority ("heavy tasks")
- Task au_1 has highest RM priority
- Task au_2 has lowest RM priority
- Since we have three processors, tasks τ_3 , τ_4 and τ_1 are trivially schedulable (C_i < T_i) on one processor each.
- So, we want to calculate the response time for task au_2 .

$$R_i^{n+1} = C_i + \frac{1}{m} \sum_{\forall j \in hp(i)} \left(\left[\frac{R_i^n}{T_j} \right] C_j + C_j \right)$$

Example 2: RM-US scheduling

$$\begin{aligned} R_2^0 &= C_2 = 4 \\ R_2^1 &= C_2 + \frac{1}{m} (\left(\left\lceil \frac{R_2^0}{T_3} \right\rceil C_3 + C_3\right) + \left(\left\lceil \frac{R_2^0}{T_4} \right\rceil C_4 + C_4\right) + \left(\left\lceil \frac{R_2^0}{T_1} \right\rceil C_1 + C_1\right)\right) \\ &= 4 + \frac{1}{3} (\left(\left\lceil \frac{4}{20} \right\rceil 9 + 9\right) + \left(\left\lceil \frac{4}{22} \right\rceil 11 + 11\right) + \left(\left\lceil \frac{4}{7} \right\rceil 1 + 1\right)\right) = 4 + 42/3 = 18 \end{aligned}$$
$$\begin{aligned} R_2^2 &= 4 + \frac{1}{3} (\left(\left\lceil \frac{18}{20} \right\rceil 9 + 9\right) + \left(\left\lceil \frac{18}{22} \right\rceil 11 + 11\right) + \left(\left\lceil \frac{18}{7} \right\rceil 1 + 1\right)\right) = 4 + 44/3 = 18.66 \end{aligned}$$
$$\begin{aligned} R_2^3 &= 4 + \frac{1}{3} (\left(\left\lceil \frac{18.66}{20} \right\rceil 9 + 9\right) + \left(\left\lceil \frac{18.66}{22} \right\rceil 11 + 11\right) + \left(\left\lceil \frac{18.66}{7} \right\rceil 1 + 1\right)\right) = 18.66 < T_2 = 19.66 \end{aligned}$$