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“For a task set to be schedulable with DM there cannot exist 
an instance of a task execution in the schedule where the 
worst-case response time of the task exceeds its deadline.” 
 
“For a task set to be schedulable with EDF there cannot exist 
an interval of length L in the schedule where the processor 
demand in that interval exceeds the length L.” 
   
The following example is based on an old exam problem. 
 
 

Pseudo-parallel execution 



Problem: 

Example: EDF + DM scheduling 

Consider a real-time system with five tasks, whose timing properties are listed in the table below. Tasks
τ3 and τ4 cooperate in the sense that τ4 uses the result produced by τ3, and they must both complete
within a common end-to-end deadline of Dglobal = 75. The global deadline should be divided between
these two tasks, and X represents the part of the deadline that is assigned to τ3. To guarantee that
valid data is available at the beginning of its execution, the offset for τ4 is set to X . The same offset is
also used for task τ5. All other tasks are supposed to be independent, with an offset of 0.

Ci Oi Di Ti

τ1 5 0 6 15
τ2 6 0 11 25
τ3 9 0 X 75
τ4 15 X 75−X 75
τ5 15 X 25 25



Problem (cont’d): 

Example: EDF + DM scheduling 

The tasks are assigned to two separate processors that are connected through a shared-bus network.
Processor 1 executes tasks τ1, τ2 and τ3, and employs preemptive earliest-deadline-first (EDF) scheduling
(that is, dynamic priorities.) Processor 2 executes tasks τ4 and τ5, and employs preemptive deadline-
monotonic (DM) scheduling (that is, static priorities.) The overhead for sending data between the
processors over the network is assumed to be negligible.

Derive the range of allowed (maximum and minimum) values of X for which all tasks will meet their
deadlines. (12 points)



Example: EDF + DM scheduling 
Processor demand analysis for EDF: 
•  The processor demand for a task     in a given time 

interval          is the amount of processor time that the 
task needs in the interval in order to meet the deadlines 
that fall within the interval. 

•  Let      represent the number of instances of     that must 
complete execution before    . 
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Example: EDF + DM scheduling 

A sufficient and necessary condition for earliest- 
deadline-first scheduling, for which            , is  Di ≤ Ti

•  The total processor demand is 

  
CP (0, L) =

L − Di

Ti

"

#
"

$

%
$ + 1&

'(
)
*+

Ci
i=1

n

∑

  ∀L ∈K : CP (0, L) ≤ L

   K = Di
k | Di

k = kTi + Di , Di
k ≤ LCM T1,…,Tn{ }, 1 ≤ i ≤ n, k ≥ 0{ }



Example: EDF + DM scheduling 

The easiest approach to solving this problem is to take advantage of the fact that the two processors are
“isolated” from each other with respect to time. Since τ4 and τ5 have a common arrival time at t = X ,
this could be seen as the origin of these tasks’ life cycles. And since τ3 is assumed to have completed its
execution no later than t = X , and the time to transfer its data to the other processor is assumed to be
negligible, τ3 and τ4 need not synchronize its executions.

Processor 1 (EDF scheduling):

Since the task deadlines are shorter than the periods, we apply processor-demand analysis. We first
derive the LCM for the tasks: LCM{τ1, τ2, τ3} = LCM{15, 25, 75} = 75.

We then calculate the set of control points K: K1 = {6, 21, 36, 51, 66}, K2 = {11, 36, 61} och K3 = {X}
which gives us K = K1 ∪ K2 ∪ K3 = {6, 11, 21, 36, 51, 61, 66, X}.



Example: EDF + DM scheduling 
Processor-demand analysis, including unknown control point X :

L NL
1 · C1 NL

2 · C2 NL
3 · C3 CP (0 , L) CP (0 , L) ≤ L

6 (⌊(6−6)
15 ⌋+ 1) · 5 = 5 (⌊(6−11)

25 ⌋+ 1) · 6 = 0 (⌊(6−X)
75 ⌋+ 1) · 9 =? 5 + ? OK if X > 6

11 (⌊(11−6)
15 ⌋+ 1) · 5 = 5 (⌊(11−11)

25 ⌋+ 1) · 6 = 6 (⌊(11−X)
75 ⌋+ 1) · 9 =? 11 + ? OK if X > 11

21 (⌊(21−6)
15 ⌋+ 1) · 5 = 10 (⌊(21−11)

25 ⌋+ 1) · 6 = 6 (⌊(21−X)
75 ⌋+ 1) · 9 =? 16 + ? OK if X > 21

36 (⌊(36−6)
15 ⌋+ 1) · 5 = 15 (⌊(36−11)

25 ⌋+ 1) · 6 = 12 (⌊(36−X)
75 ⌋+ 1) · 9 =? 27 + ? OK

51 (⌊(51−6)
15 ⌋+ 1) · 5 = 20 (⌊(51−11)

25 ⌋+ 1) · 6 = 12 (⌊(51−X)
75 ⌋+ 1) · 9 =? 32 + ? OK

61 (⌊(61−6)
15 ⌋+ 1) · 5 = 20 (⌊(61−11)

25 ⌋+ 1) · 6 = 18 (⌊(61−X)
75 ⌋+ 1) · 9 =? 38 + ? OK

66 (⌊(66−6)
15 ⌋+ 1) · 5 = 25 (⌊(66−11)

25 ⌋+ 1) · 6 = 18 (⌊(66−X)
75 ⌋+ 1) · 9 =? 43 + ? OK

As can be seen from the table, the processor demand never exceeds the length of the interval for the
known control points if X > 21. While X = 36 is a safe choice, it is possible to find a smaller value of X

by observing that the processor demand CP (0, L) = 25 for 21 < X < 36. This means that we can add
D3 = X ≥ 25 as the last control point. Hence, tasks τ1, τ2 and τ3 will meet their deadlines if X ≥ 25.



Example: EDF + DM scheduling 
Processor 2 (DM scheduling):

We first observe that t = X is the critical instant for tasks τ4 and τ5. We can therefore apply response-
time analysis to determine a suitable value for X .

We first check whether D4 < 25, which would mean that τ4 has the highest priority. However, the
response time for τ5 would then become R5 = C4 + C5 = 15 + 15 = 30 > D5, causing τ5 to miss its
deadline.

Consequently, D4 ≥ 25, and we use response time analysis to find the smallest value of D4. Assume
R0

4 = C4 = 15.

R1
4 = 15 + ⌈15

25
⌉ · 15 = 15 + 1 · 15 = 30

R2
4 = 15 + ⌈30

25
⌉ · 15 = 15 + 2 · 15 = 45

R3
4 = 15 + ⌈45

25
⌉ · 15 = 15 + 2 · 15 = 45 (convergence)

Therefore, we have that D4 ≥ 45.

Since D4 = 75 − X , we can now see that X ≤ 75 − 45 = 30. Hence, tasks τ4 and τ5 will meet their
deadlines if X ≤ 30.

Conclusion: By combining the results from the analysis of processors 1 and 2, we see that all tasks
will meet their deadlines if 25 ≤ X ≤ 30


