

UNIVERSITY OF GOTHENBURG

Real-Time Systems

Exercise #5

Course Assistant Elena Marzi

Department of Computer Science and Engineering Chalmers University of Technology

Exercise #5: scheduling

Today:

- Repetition on relevant scheduling concepts
- Exercise on cyclic executive
- Exercise on pseudo-parallel execution
- Exercise on feasibility test: processor utilization analysis

The examples are based on some old exam problems.

Scheduling

- Schedule: reservation of spatial and temporal resources for a given set of tasks
- **How** is scheduling implemented?
 - Cyclic executive/ Pseudo-parallel execution
- When are scheduling decisions taken?
 - Preemptive/ Non-preemptive
- Which task should excecute?
 - RM/ EDF

Scheduling

"With cyclic executives the schedule is generated off-line, and stored in a time table. The schedule can be generated by simulating a run-time system with pseudo-parallel execution."

"With pseudo-parallel execution the schedule is generated on-line, as a side-effect of tasks being executed. Ready tasks are sorted in a queue and receive access to the processor based on priority."

- **Problem:** Consider a real-time system with two periodic tasks that should be scheduled using a time table. The parameters for the two tasks are given below. Both tasks arrive the first time at time 0.
- a) Construct a time table for the execution of the two tasks. The tasks are allowed to preempt each other.

	C_i	D_i	T_i
$ au_1$	2	5	5
$ au_2$	4	7	7

Problem: Consider a real-time system with two periodic tasks that should be scheduled using a time table. The parameters for the two tasks are given below. Both tasks arrive the first time at time 0.

- a) Construct a time table for the execution of the two tasks. The tasks are allowed to preempt each other.
- b) Does your schedule constitute the best possible schedule, or does there exist a superior one?

	C_i	D_i	T_i
τ_1	2	5	5
$ au_2$	4	7	7

Simulate the execution of the tasks using EDF scheduling within the hyper-period (LCM = 35)

 $(\tau_1^1, 0, 2), (\tau_2^1, 2, 6), (\tau_1^2, 6, 8), (\tau_2^2, 8, 12), (\tau_1^3, 12, 14), (\tau_2^3, 14, 15), (\tau_1^4, 15, 17), (\tau_2^3, 17, 20), (\tau_1^5, 20, 22), (\tau_2^4, 22, 26), (\tau_1^6, 26, 28), (\tau_2^5, 28, 32), (\tau_1^7, 32, 34)$

Since EDF scheduling is known to be optimal for the given assumptions, this is the best possible schedule!

Q: Why would simulation of RM scheduling not generate a better schedule? RM is also known to be optimal.

Q: Consider a task set with $D_i = T_i$ that is schedulable using RM. Is the task set also schedulable using EDF?

Q: Consider a task set with $D_i = T_i$ that is schedulable using EDF. Is the task set also schedulable using RM?

A: A scheduler that is optimal among all schedulers that use dynamic priorities can never be worse than a scheduler for static priorities. This is because static priorities is a special case of dynamic priorities.

Example 2: Pseudo-parallel execution

Problem: Decide, based on the table and timing diagram below, whether the schedule was generated by an RM or an EDF scheduler. In the timing diagram τ_i^k is used for representing instance *k* of periodic task *i*.

	C_i	D_i	T_i
$ au_1$	4	6	8
$ au_2$	4	12	16
$ au_3$	6	24	32

UN (UN

Example 2: Pseudo-parallel execution

If the tasks' arrival times and deadlines are indicated in a timing diagram, it is clear that we have a scheduler with dynamic priorities, that is, EDF. For example, τ_1 takes priority over τ_2 at t = 0 while the converse applies at t = 24. A simulation of the tasks with EDF gives the same execution scenario.

Example 3: Pseudo-parallel execution

- Problem: Consider a real-time system with three periodic tasks. The parameters for the three tasks are given below. All tasks arrive the first time at time 0.
- a) Can you guarantee the schedulability of the task set using the RM scheduling algorithm?

Task	C _i	T _i	D _i
А	1	7	7
В	1	14	14
С	4	18	18

Example 3: Pseudo-parallel execution

a) The utilization U of the system is

$$U = \sum_{i=1}^{n} \frac{C_i}{T_i} = \frac{1}{7} + \frac{1}{14} + \frac{4}{18} \approx 0.4365$$

The utilization bound $U_{\rm RM}$ is:

$$U_{RM} = n \left(2^{1/n} - 1 \right) = 3 \left(2^{1/3} - 1 \right) \approx 0.780 \qquad U < U_{RM}$$

The test succeeds! Schedulability is thus guaranteed.

UN UN

Example 3: Pseudo-parallel execution

- Problem: Consider a real-time system with three periodic tasks. The parameters for the three tasks are given below. All tasks arrive the first time at time 0.
- a) Can you guarantee the schedulability of the task set using the RM scheduling algorithm?
- b) Add a task Z with $T_Z = D_Z = 100$ and $C_Z = x$ to the task set. What is the maximum value of x such that the new task set is schedulable for RM scheduling based on Liu and Layland's utilization test?

Task	C _i	T _i	D _i
А	1	7	7
В	1	14	14
С	4	18	18

Example 3: Pseudo-parallel execution

b) The utilization U of the system is

$$U = \sum_{i=1}^{n} \frac{C_i}{T_i} = \frac{1}{7} + \frac{1}{14} + \frac{4}{18} + \frac{x}{100} = 0.4365 + 0.01x$$

The utilization bound U_{RM} is:

$$U_{RM} = n\left(2^{1/n} - 1\right) = 4\left(2^{1/4} - 1\right) \approx 0.7568$$

The test succeeds if:

 $U \le U_{RM} \Rightarrow 0.4365 + 0.01x \le 0.7568 \Rightarrow$ $\Rightarrow 0.01x \le 0.7568 - 0.4365 \Rightarrow x \le 100 \cdot 0.3203 = 32.03$