

Real-Time Systems

Exercise #4

Professor Jan Jonsson

Department of Computer Science and Engineering Chalmers University of Technology

WCET Analysis using Shaw's Method

"The estimated WCET is the execution time of the longest structural path through the program."

The following example is based on Problem 3 in the Exercise Compendium (Collection of Examples).

Problem: Consider the function Calculate().

a) Using Shaw's method, estimate the WCET for function Calculate() in terms of 'Z' (with $Z \ge 0$).

```
int Calculate (int Z) {
   int R;
   if(Z == 0)
       R = 1;
   else if (Z == 1)
       R = 1;
   else
       R = Calculate(Z-1) + Calculate(Z-2);
   return R;
}
```

Problem: Consider the function Calculate().

- a) Using Shaw's method, estimate the WCET for function Calculate() in terms of 'Z' (with $Z \ge 0$).
 - Each declaration or assignment statement costs 1 time unit
 - Each compare statement costs 1 time unit
 - Each return statement costs 1 time unit
 - Each addition or subtraction operation costs 4 time units.
 - A function call costs 2 time units plus WCET for the function in question.
 - All other language constructs can be assumed to take 0 time units to execute.

Problem: Consider the function Calculate().

- b) Function main() calls function Calculate() with
 parameter 5. What is the WCET of function main()?
- c) The deadline for executing function main() is 180 time units. Determine whether the deadline is met or not.

```
int main() {
   int ans;
   ans = Calculate(5);
}
```

Problem: Now the program runs on a new processor that has a faster ALU. The execution costs of addition and subtraction are equal, but smaller than that of the older processor.

Let 'x' represent the execution time of an addition/subtraction operation. All other language constructs are assumed to have the same cost as in sub-problem a).

- d) What is the WCET for function main() in terms of 'x'?
- e) What is the maximum cost of an addition/subtraction operation so that the deadline of function main() is met?

a) Derive WCET for Calculate(Z)

```
Case 3: Z > 1

Let x represent the cost for addition and subtraction.

WCET(Calculate(Z>1)) = {declare, R} + {compare, Z==0} + {compare, Z==1} + {subtract, Z-1} + {call, Calculate(Z-1)} + WCET(Calculate(Z-1)) + {subtract, Z-2} + {call, Calculate(Z-2)} + WCET(Calculate(Z-2)) + {add, Calculate(Z-1)+Calculate(Z-2)} + {assign, R} + {return, R} = 1 + 1 + 1 + x + 2 + WCET(Calculate(Z-1)) + x + 2 + WCET(Calculate(Z-2)) + x + 1 + 1 = 9 + 3*x + WCET(Calculate(Z-1)) + WCET(Calculate(Z-2))
```

b) Derive WCET for main()

c) Check deadline for main()

```
WCET(main()) = 188, which exceeds the deadline of 180
```

```
d) Derive WCET for main()
According to subproblem b):
WCET(main()) = 4 + WCET(Calculate(5)) = 4 + 100 + 21*x = 104 + 21*x

e) Find maximum cost x

WCET(main()) = 104 + 21*x ≤ 180 ⇒ 21*x ≤ 76

That is, x ≤ 76/21 ≈ 3.6

If x can be a non-integer number select x = 3.6 in order to meet deadline.
If x must be an integer number select x = 3 in order to meet deadline.
```