UNIVERSITY OF GOTHENBURG

Real-Time Systems

Exercise #3

Course Assistant Elena Marzi

Department of Computer Science and Engineering
Chalmers University of Technology



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Periodic tasks in C
Today:

- event-triggered vs time-triggered systems
- periodicity in TinyTimber: AFTER (), BEFORE (), SEND ()

Exercise:

Implement two periodic tasks with a shared object in C using the
TinyTimber kernel.

The two tasks will be implemented:
1. Without deadline

2. With deadline

3. With a limited lifetime



5 UNIVERSITY OF GOTHENBURG

Time-vs. Event-triggered system

Time-triggered
- Tasks are released at predetermined points in time
- Deterministic

Event-triggered
- System reacts to events in the environment
- Flexible



"s.ew,,%a
CHALMERS | (&)}
2 /2]

& S

UNIVERSITY OF TECHNOLOGY g5

UNIVERSITY OF GOTHENBURG

TinyTimber: Event-triggered runtime




CHALMERS |

(8% ) UNIVERSITY OF GOTHENBURG

TinyTimber: Event-triggered runtime

ETI

T2

 An even’r-’rr'igger'ed
system with offsets

— O |7

— O (T
G — X

IS T
C ‘,

A self-referencing event-
triggered system with offsets



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

TinyTimber: Event-triggered runtime

)

G

T — > T
X G — X

T — O |T
X G — X

T — ) |7
v C \/

A time-triggered A self-refer-encing event-
system triggered system with offsets




(8% ) UNIVERSITY OF GOTHENBURG

CHALMERS |

Some more about AFTER ()

T

»
v

\ 4

meth

AFTER(T, r, meth, a)

baseline baseline

of caller of callee

An AFTER () call with a baseline of 0 means that the called
method runs with the same baseline as the caller.

ASYNC (&obj,meth,12) == AFTER(0, &obj,meth,12);



(8% ) UNIVERSITY OF GOTHENBURG

CHALMERS |

Some more about AFTER ()

Using the baseline to derive time offsets makes the actual
time the AFTER () call is made less critical!

int workl (MyObject *self, 1int arg) {
// do some work
AFTER (SEC(T) , &0bj,do more work,0);

}

has the same behavior as

int workl (MyObject *self, 1int arg) {
AFTER (SEC(T) , &obj,do more work,0);
// do some work



CHALMERS |

T T
AFTER(T, self, m, a) AFTER(T, self, m, a)
7 : -y : v
m m

\ 4

Baseline n Baseline n+1



A
v

L —

|
I
BEFORE(D, r, meth, a)

baseline deadline deadline
of caller of caller of callee

The BEFORE () call has an implicit baseline of 0O, i.e., the
called method runs with the same baseline as the caller.

To assgn a deadline to a delayed method call, you need
to use the SEND () call.



CHALMERS | (&%) UNIVERSITY OF GOTHENBURG

Some more about SEND ()

T D

N

v
N
A 4

> meth

O B

SEND(T,

, T, meth, a)

baseline deadline baseline deadline
of caller of caller of callee of callee

The SEND () call is the fundamental building block for the
AFTER, BEFORE and ASYNC calls.
AFTER (T, &0obj,meth,12) == SEND(T,0, &obj,meth,12);
BEFORE (D, &obj,meth,12) == SEND(0,D, &obj,meth,12);
ASYNC (&obj,meth,12) == SEND(0,0, &obj,meth,12);



CHALMERS |

(8% ) UNIVERSITY OF GOTHENBURG

Periodicity with SEND

\ 4

A

\ 4
A

D : D

A

SEND(T, D, self, m,a) : SEND(T, D, self, m, a)

Baseline n

Baseline n+1
Deadline n Deadline n+1



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Example: periodic tasks in C

Problem: Implement two periodic tasks with a shared object
in C using the TinyTimber kernel.

— Assume that an object actobj of type Actuator is shared
by two periodic tasks taskl and task?2 with periods 300 ps
and 500 us, respectively.

— Both tasks may concurrently call a method update of object
actobj with an initial value 10 and 20, respectively.

— The old value of object actobj should be returned by the
update method, to be used by the tasks.



CHALMERS | &) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Example: periodic tasks in C

typedef struct{
Object super;
int state;

} Actuator;

int update (Actuator *self , int new value) {
int old value = self->state;
self->state = new value;

// code updating the actuator hardware
return old value;

Actuator actobj = { initObject (), 0 }; //an object of Actuator
class



¢ UNIVERSITY OF GOTHENBURG

CHALMERS |

UNIVERSITY OF TECHNOLOGY

Example: periodic tasks in C

typedef struct{
Object super;
Time period;

} TaskObject;

TaskObject taskl = { 1initObject (), USEC(300) Y
TaskObject task?2 = { initObject (), USEC(500) }:

vold tasklcode (TaskObject *self, int n);
void task2code (TaskObject *self, 1nt n);

// Q: Why do we need one object for each task?
// A: To make sure the tasks can execute concurrently.



CHALMERS | (&%) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Example: periodic tasks in C

// Taskl and Task2 methods

void tasklcode (TaskObject *self, int value) {

int old state = SYNC(&actobj, update, value);
. // do something with returned value
AFTER (self->period, self, tasklcode, value);

void task2code (TaskObject *self, int value) {

int old state = SYNC(&actobj, update, value);
. // do something else with returned value
AFTER (self->period, self, taskZ2code, value);



CHALMERS | &) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Example: periodic tasks in C

// How to begin the initial invocation?

void kickoff (TaskObject *self , int unused) {
ASYNC (&taskl, tasklcode, 10);
ASYNC (&task?2, task2code, 20);

int main() {
TINYTIMBER (&taskl, kickoff, 0);
return 0O;



CHALMERS | {®%) UNIVERSITY OF GOTHENBURG

Example: periodic tasks in C

Problem: Implement two periodic tasks with a shared object
in C using the TinyTimber kernel.

— Assume that an object actobj of type Actuator is shared
by two periodic tasks taskl and task2 with periods 300 us
and 500 us, respectively.

— Both tasks may concurrently call a method update of object
actobj with an initial value 10 and 20, respectively.

— The old value of object actobj should be returned by the
update method, to be used by the tasks.

— Add deadlines of 100 ys and 150 ys to taskl and task2,
respectively.



CHALMERS | (&%) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Example: periodic tasks in C

typedef struct{
Object super;
Time period;
Time deadline;

} TaskObject;

TaskObject taskl = { initObject (), USEC(300), USEC(100) }r
TaskObject task?2 = { initObject (), USEC(500), USEC(150) }:



CHALMERS | &) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Example: periodic tasks in C

// Taskl and Task2 methods

void tasklcode (TaskObject *self, int value) {
int old state = SYNC(&actobj, update, value);
. // do something with returned value
SEND (self->period, self->deadline, self, tasklcode, value);

void task2code (TaskObject *self, int value) {
int old state = SYNC(&actobj, update, value);
. // do something else with returned value
SEND (self->period, self->deadline, self, taskZ2code, wvalue);



CHALMERS | (&%) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Example: periodic tasks in C

// How to begin the initial invocation?

void kickoff (TaskObject *self , int unused) {
BEFORE (USEC (100), &taskl, tasklcode, 10);
BEFORE (USEC (150), &task2, taskZcode, 20);

int main() {
TINYTIMBER (&taskl, kickoff, 0);
return 0O;



CHALMERS | {®%) UNIVERSITY OF GOTHENBURG

Example: periodic tasks in C

Problem: Implement two periodic tasks with a shared object
in C using the TinyTimber kernel.

— Assume that an object actobj of type Actuator is shared
by two periodic tasks taskl and task2 with periods 300 us
and 500 us, respectively.

— Both tasks may concurrently call a method update of object
actobj with an initial value 10 and 20, respectively.

— The old value of object actobj should be returned by the
update method, to be used by the tasks.

— Add deadlines of 100 ys and 150 pys to taskl and task?2,
respectively.

— Stop the execution of taskl and task2 after 100 ms and
200 ms, respectively.



CHALMERS | (&%) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Example: periodic tasks in C

// How to make conditional invocations?

typedef struct{
Object super;
Time period;
Time deadline;
int running;

} TaskObject;

TaskObject taskl = { initObject (), USEC(300), USEC(100), 1 };
TaskObject task?2 = { initObject (), USEC(500), USEC(150), 1 };



CHALMERS | &) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Example: periodic tasks in C

// Q: How to set the state variable ‘running’ to 0 after a
delay?

// A: Define a method to be called after the delay

void stop (TaskObject *self, int unused) {
self->running = 0;



CHALMERS | &) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Example: periodic tasks in C

// How to make conditional invocations?

void tasklcode (TaskObject *self, int value) {
if (self->running) {
int old state = SYNC(&actobj, update, value);
// do something with returned value

SEND (self->period, self->deadline, self, tasklcode,
value) ;

}

void task2code (TaskObject *self, int value) {
if (self->running) {
int old state = SYNC(&actobj, update, value);
// do something else with returned value

SEND (self->period, self->deadline, self, taskZ2code,
value) ;

}



CHALMERS | &) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Example: periodic tasks in C

// How to begin the initial invocation?

void kickoff (TaskObject *self , int unused) {
BEFORE (USEC (100), &taskl, tasklcode, 10);
BEFORE (USEC (150), &task2, taskZcode, 20);
AFTER (MSEC (100), &taskl, stop, 0);
AFTER (MSEC (200), &task2, stop, 0);

int main() {
TINYTIMBER (&taskl, kickoff, 0);
return 0O;

// Q: Why do we need two different objects in the AFTER calls
to ‘stop’?

// A: To make sure that the correct task is terminated by each
call.



