
Exercise #3

Course Assistant Elena Marzi

Department of Computer Science and Engineering
Chalmers University of Technology

Real-Time Systems

Today:
-  event-triggered vs time-triggered systems
-  periodicity in TinyTimber: AFTER(), BEFORE(), SEND()

Exercise:
Implement two periodic tasks with a shared object in C using the
TinyTimber kernel.

The two tasks will be implemented:
1.  Without deadline
2.  With deadline
3.  With a limited lifetime

Periodic tasks in C

Time-vs. Event-triggered system

Time-triggered
-  Tasks are released at predetermined points in time
-  Deterministic

Event-triggered
-  System reacts to events in the environment
-  Flexible

TinyTimber: Event-triggered runtime

TinyTimber: Event-triggered runtime

TinyTimber: Event-triggered runtime

An AFTER()call with a baseline of 0 means that the called
method runs with the same baseline as the caller.
 ASYNC(&obj,meth,12) == AFTER(0,&obj,meth,12);

Some more about AFTER()

Using the baseline to derive time offsets makes the actual
time the AFTER()call is made less critical!
 int work1(MyObject *self, int arg) {

 ... // do some work
 AFTER(SEC(T),&obj,do_more_work,0);

 }

has the same behavior as

 int work1(MyObject *self, int arg) {
 AFTER(SEC(T),&obj,do_more_work,0);
 ... // do some work

 }

Some more about AFTER()

Periodicity with AFTER

The BEFORE()call has an implicit baseline of 0, i.e., the
called method runs with the same baseline as the caller.
To assign a deadline to a delayed method call, you need
to use the SEND()call.

Some more about BEFORE()

The SEND()call is the fundamental building block for the
AFTER, BEFORE and ASYNC calls.
 AFTER(T,&obj,meth,12) == SEND(T,0,&obj,meth,12);
 BEFORE(D,&obj,meth,12) == SEND(0,D,&obj,meth,12);
 ASYNC(&obj,meth,12) == SEND(0,0,&obj,meth,12);

Some more about SEND()

Periodicity with SEND

Problem: Implement two periodic tasks with a shared object
in C using the TinyTimber kernel.

–  Assume that an object actobj of type Actuator is shared

by two periodic tasks task1 and task2 with periods 300 µs
and 500 µs, respectively.

–  Both tasks may concurrently call a method update of object
actobj with an initial value 10 and 20, respectively.

–  The old value of object actobj should be returned by the
update method, to be used by the tasks.

Example: periodic tasks in C

Example: periodic tasks in C

typedef struct{
 Object super;
 int state;

} Actuator;

int update(Actuator *self , int new_value){
 int old_value = self->state;
 self->state = new_value;
 ... // code updating the actuator hardware
 return old_value;

}

Actuator actobj = { initObject(), 0 }; //an object of Actuator

class

...

Example: periodic tasks in C

typedef struct{
 Object super;
 Time period;

} TaskObject;

TaskObject task1 = { initObject(), USEC(300) };
TaskObject task2 = { initObject(), USEC(500) };

void task1code(TaskObject *self, int n);
void task2code(TaskObject *self, int n);

// Q: Why do we need one object for each task?
// A: To make sure the tasks can execute concurrently.

Example: periodic tasks in C
// Task1 and Task2 methods

void task1code(TaskObject *self, int value){

 int old_state = SYNC(&actobj, update, value);
 ... // do something with returned value
 AFTER(self->period, self, task1code, value);

}

void task2code(TaskObject *self, int value){

 int old_state = SYNC(&actobj, update, value);
 ... // do something else with returned value

 AFTER(self->period, self, task2code, value);

}

Example: periodic tasks in C

// How to begin the initial invocation?

void kickoff(TaskObject *self , int unused) {
 ASYNC(&task1, task1code, 10);
 ASYNC(&task2, task2code, 20);

}

int main() {
 TINYTIMBER(&task1, kickoff, 0);
 return 0;

}

Problem: Implement two periodic tasks with a shared object
in C using the TinyTimber kernel.

–  Assume that an object actobj of type Actuator is shared

by two periodic tasks task1 and task2 with periods 300 µs
and 500 µs, respectively.

–  Both tasks may concurrently call a method update of object
actobj with an initial value 10 and 20, respectively.

–  The old value of object actobj should be returned by the
update method, to be used by the tasks.

–  Add deadlines of 100 µs and 150 µs to task1 and task2,
respectively.

Example: periodic tasks in C

Example: periodic tasks in C

typedef struct{
 Object super;
 Time period;
 Time deadline;

} TaskObject;

TaskObject task1 = { initObject(), USEC(300), USEC(100) };
TaskObject task2 = { initObject(), USEC(500), USEC(150) };

Example: periodic tasks in C

// Task1 and Task2 methods

void task1code(TaskObject *self, int value){
 int old_state = SYNC(&actobj, update, value);
 ... // do something with returned value
 SEND(self->period, self->deadline, self, task1code, value);

}

void task2code(TaskObject *self, int value){
 int old_state = SYNC(&actobj, update, value);
 ... // do something else with returned value
 SEND(self->period, self->deadline, self, task2code, value);

}

Example: periodic tasks in C

// How to begin the initial invocation?

void kickoff(TaskObject *self , int unused) {
 BEFORE(USEC(100), &task1, task1code, 10);
 BEFORE(USEC(150), &task2, task2code, 20);

}

int main() {
 TINYTIMBER(&task1, kickoff, 0);
 return 0;

}

Problem: Implement two periodic tasks with a shared object
in C using the TinyTimber kernel.

–  Assume that an object actobj of type Actuator is shared

by two periodic tasks task1 and task2 with periods 300 µs
and 500 µs, respectively.

–  Both tasks may concurrently call a method update of object
actobj with an initial value 10 and 20, respectively.

–  The old value of object actobj should be returned by the
update method, to be used by the tasks.

–  Add deadlines of 100 µs and 150 µs to task1 and task2,
respectively.

–  Stop the execution of task1 and task2 after 100 ms and
200 ms, respectively.

Example: periodic tasks in C

Example: periodic tasks in C

// How to make conditional invocations?

typedef struct{
 Object super;
 Time period;
 Time deadline;
 int running;

} TaskObject;

TaskObject task1 = { initObject(), USEC(300), USEC(100), 1 };
TaskObject task2 = { initObject(), USEC(500), USEC(150), 1 };

Example: periodic tasks in C

// Q: How to set the state variable ‘running’ to 0 after a
delay?

// A: Define a method to be called after the delay

void stop(TaskObject *self, int unused){
 self->running = 0;

}

Example: periodic tasks in C

// How to make conditional invocations?

void task1code(TaskObject *self, int value){
 if (self->running) {
 int old_state = SYNC(&actobj, update, value);
 ... // do something with returned value
 SEND(self->period, self->deadline, self, task1code,
value);

 }
}

void task2code(TaskObject *self, int value){
 if (self->running) {
 int old_state = SYNC(&actobj, update, value);
 ... // do something else with returned value
 SEND(self->period, self->deadline, self, task2code,
value);

 }
}

Example: periodic tasks in C

// How to begin the initial invocation?

void kickoff(TaskObject *self , int unused) {
 BEFORE(USEC(100), &task1, task1code, 10);
 BEFORE(USEC(150), &task2, task2code, 20);
 AFTER(MSEC(100), &task1, stop, 0);
 AFTER(MSEC(200), &task2, stop, 0);

}

int main() {
 TINYTIMBER(&task1, kickoff, 0);
 return 0;

}

// Q: Why do we need two different objects in the AFTER calls

to ‘stop’?
// A: To make sure that the correct task is terminated by each

call.

