
Exercise #2 

Course Assistant Elena Marzi (marzi@chalmers.se) 

Department of Computer Science and Engineering 
Chalmers University of Technology 

Real-Time Systems 



Today: 
Revise key concepts 
•  SYNC 
•  Callbacks 
•  Queues 
•  Semaphores 
 
Use a semaphore to synchronize two concurrent tasks in 
TinyTimber. 
 

Example: semaphores in C 



Wait 

Signal 

Semaphore 

Non_Critical 

Critical 

Task 1 

Non_Critical 

Critical 

Task 2 

Critical Critical 



Call-back in TinyTimber 

Call-back functionality in TinyTimber:  
•  TinyTimber guarantees that an object is handled like an 

exclusive resource during the execution of a method that 
belongs to the object if that method is called using SYNC(). 
 If multiple concurrent calls, using SYNC(), are made to 
methods belonging to the same object, only one call will  
be granted access to the object. The other calls will be 
blocked (put in a waiting queue.) 
 When the object is available again, one of the blocked calls 
will be unblocked and the corresponding method is executed 
by means of a basic call-back functionality in TinyTimber. 



Call-back in TinyTimber 

Call-back functionality in TinyTimber (cont’d):  
•  Although this basic call-back functionality is sufficient in  

many cases, TinyTimber lacks one powerful property that 
protected objects, monitors and semaphores have: 
 The basic call-back functionality in TinyTimber cannot 
account for conditions relating to the contents of an object. 
 Note: this prevents us from implementing blocking versions  
of the Get/Put methods in the circular buffer example in an  
earlier lecture. 

•  Thus, in order to use advanced resource management with 
TinyTimber we must provide a call-back functionality add-on. 



Call-back functionality add-on:  
•  A task requests access to a certain resource (object) with  

a call to a method belonging to that resource (object). 
•  If access is not granted (because a condition regarding the 

object state prevents this) the method call will be blocked. 
•  If the calling task used ASYNC() to request the resource  

the task itself is not blocked but continues executing code.  
•  Implementing call-back functionality means that a calling  

task supplies ASYNC() with information about a method to 
wake up (call back) when the resource becomes available. 

•  Since multiple tasks may want to request the resource, the 
provided call-back information must be stored in a queue. 

Call-back in TinyTimber 



Method parameter and return-value convention:  
•  TinyTimber uses a uniform approach to method definitions:  

all methods must have two parameters of specific types 
–  The first parameter must be a pointer to an object of the class  

to which the method belongs. This pointer (often named ‘self’) 
allows the methods to access the state variables of the object. 

–  The second parameter must be of type ‘int’ and can be used  
as an input parameter to the method (but can also be ignored). 

•  For this reason calls to method operations in the kernel 
( TINYTIMBER(), ASYNC(), SYNC(), AFTER(),  ... ) must  
include these parameters in addition to a method reference. 

•  The return value of a method must be of type ‘int’, unless no 
value is returned (in which case type ‘void’ is used). 

Call-back in TinyTimber 



Method parameter and return-value work-around:  
•  If an input parameter of type ‘xxx’ (different than ‘int’) is 

needed for the method, type casting the argument to type 
‘int’ must be performed at call time; then the parameter  
is type-cast back to type ‘xxx’ within the method itself. 

•  If multiple input parameters are needed, they should be 
stored in a struct, and a pointer to the struct should be 
passed as the argument at call time (with appropriate 
type casting). 

•  This work-around is also applicable to return values.   

Call-back in TinyTimber 



A semaphore s is an integer variable with value domain ≥ 0  
Atomic operations on semaphores:  

 Init(s,n):  assign s an initial value n 
  Wait(s):   if s > 0 then  

               s := s - 1; 
 else  

               ”block calling task”; 
   Signal(s):  if ”any task that has called Wait(s) is blocked”  

             then  
               ”allow one such task to execute”; 
             else  
               s := s + 1; 

Example: semaphores in C 



Problem: Implement a class Semaphore in C using the 
TinyTimber kernel, to synchronize two concurrent tasks. 

 
–  The object should receive an initial value when it is created.   
–  The class should have two methods, Wait and Signal,  

that work in accordance with the definition of semaphores. 
–  The methods should have support for call-back functionality 

Example: semaphores in C 



Solution overview:  
1.  Define a data type for call-back information, that can also be 

stored as an element in a queue 
2.  Implement functions for manipulating a queue containing 

elements of the call-back information data type 
3.  Define a class Semaphore with Wait and Signal methods, as 

well as an initialization macro 
4.   Implement the Semaphore (Wait and Signal methods) 
5.  Create application code that uses the semaphore 
 

Example: semaphores in C 



Example: semaphores in C 

// Define a data type for call-back information, that can also 
// be used as an element in a queue 
 
struct call_block; 
typedef struct call_block *Caller; 
 
typedef struct call_block { 
    Caller  next;  // for use in linked lists 
    Object  *obj; 
    Method  meth; 
} CallBlock; 
 
#define initCallBlock() { 0, 0, 0 } 
 



Example: semaphores in C 

// Implement functions for manipulating a queue containing  
// elements of the call-back information data type 
 
void c_enqueue(Caller c, Caller *queue) { 

  Caller prev = NULL, q = *queue; 
    while (q) { // find last element in queue 
        prev = q; 
        q = q->next; 
    } 
    if (prev == NULL) 
        *queue = c;  // empty queue: put ‘c’ first 
    else 
        prev->next = c; // non-empty queue: put ‘c’ last 
    c->next = NULL; 
} 
 
Caller c_dequeue(Caller *queue) { 
    Caller c = *queue; 
    if (c) 
        *queue = c->next; // remove first element in queue 
    return c; 
} 



Example: semaphores in C 

// Define a class Semaphore with Wait and Signal methods, 
// as well as an initialization macro 
 
typedef struct { 
    Object  super; 
    int  value; 
    Caller  queue; 
} Semaphore; 
 
// Note that TinyTimber methods only accept type ‘int’ for the second 
// parameter. This means that, if we want to send a parameter of another 
// scalar type (i.e. a pointer), we will have to trick the system by 
// “type casting” to ‘int’ before a call, and then back to the original 
// type within the method. 
 
void Wait(Semaphore*, int); 
void Signal(Semaphore*, int); 
  
#define initSemaphore(n) { initObject(), n, 0 } 
 
 



Example: semaphores in C 

// Implement the methods Wait and Signal 
 
void Wait(Semaphore *self, int c) { 
    Caller wakeup = (Caller) c;  // type-cast back from ‘int’ 
    if (self->value > 0) { 
        self->value--; 
        ASYNC(wakeup->obj, wakeup->meth, 0);    
    } 
    else 
        c_enqueue(wakeup, &self->queue);           
} 
 
void Signal(Semaphore *self, int unused) { 
    if (self->queue) { 
        Caller wakeup = c_dequeue(&self->queue); 
        ASYNC(wakeup->obj, wakeup->meth, 0); 
    } 
    else 
        self->value++; 
} 
 



Example: semaphores in C 

// Define two identical tasks using the same semaphore 
 
Semaphore Sem = initSemaphore(1);  // binary semaphore 
 
typedef struct { 
    Object super; 
    CallBlock cb;  // where call-back information is stored 
} Task; 
 
Task task1 = { initObject(), initCallBlock() }; 
Task task2 = { initObject(), initCallBlock() }; 
 
... 



Example: semaphores in C 

... 
 
void Critical(Task*, int); 
 
void Non_Critical(Task *self, int unused) { 
    self->cb.obj = self;   // provide call-back information 
    self->cb.meth = Critical; 
    ASYNC(&Sem, Wait, (int) &self->cb );  // acquire semaphore  
}      // type-cast pointer argument to ‘int’ 
 
void Critical(Task *self, int unused) { 
    ...     // the critical region  
    SYNC(&Sem, Signal, 0);   // release semaphore 
    ASYNC(self, Non_Critical, 0);  // restart “loop” 
} 
 
... 



Wait 

Signal 

Semaphore 

Non_Critical 

Critical 

Task 1 

Non_Critical 

Critical 

Task 2 

1 0 

Non_Critical 

Wait 

Critical 

Non_Critical 

Task 2 
Critical 

Signal 

Critical 



Example: semaphores in C 

... 
 
void kickoff(Task *self, int unused) { // TinyTimber’s first scheduled 
  ASYNC(&task1, Non_Critical, 0);     // event 
  ASYNC(&task2, Non_Critical, 0);     // spawn two identical tasks 
} 
 
int main() {     // we enter here after system startup, 
    TINYTIMBER(&task1, kickoff, 0); // and hand over control to TinyTimber 

    // note: any object could be “host” object for 
}     // the ‘kickoff()’ method. We chose ‘task1’.  


