EDA223/DIT162 Real-Time Systems January 11, 2020

Guidelines for lab assistants

Below you find some useful information for your work in the laboratory, based on the
course examination criteria and based on experience from the labs during earlier years.

Regarding the grading of the lab assignment

Unlike in most other courses the grading of this lab assignment follows a non-binary scale
(i.e. U, 3,4, 5). To facilitate the grading the students will be evaluated during the lab
session with respect to four different performance aspects:

Implementation: How many of the coding challenges in Part 2 that the lab group can
successfully implement and demonstrate. To be awarded the minimum grade of 3
the group must be able to fully implement Part 2, Step 3.

Design: How well the lab group knows the design and behavior of their own software
code. To be awarded the minimum grade of 3 the group must be able to, for the
most part, adequately explain the purpose of variables, objects, methods, etc.

Debugging: How well the lab group can identify, and solve, problems with the software
code. To be awarded the minimum grade of 3 the group must be able to adequately
formulate symptoms for problems with the code. To be awarded a higher grade the
group must also show that they are able to find remedies to the problems.

Paradigm: How well the lab group understands, and can make use of, the reactive, con-
current, object-oriented and timing-aware programming paradigm used by Tiny-
Timber. To be awarded the minimum grade of 3 the group must be able to ade-
quately understand and make use of the paradigm.

In the normal case the members of a lab group will receive the same lab performance
grade. However, in case of significant imbalance (with respect to programming skills,
dedication to the assignment, etc) it is possible to give individual grades.

Common view of how to keep the lab group members active

In order to use your time wisely, and to facilitate the grading of the lab group, please use
the following guidelines.

e Minimize the time spent with lab groups that are not able to formulate symptoms
for possible problems with their software code. Kindly tell them to come back and
ask for help when they have a clearer problem description.

e Minimize the time spent with lab groups that have run into problems with their
software code because they did not read necessary instructions in the lab PM. If
they are uncertain of how to interpret the instructions help them out. Otherwise,
kindly tell them to thoroughly read the instructions in the lab PM and make a new
attempt writing the code.

Minimize the time spent with lab groups that have run into problems with their
software code because they did not follow the software design guidelines advocated
by the course material. Kindly tell them that they need to reconsider their design
strategy, and refer them to the course material and the grading criteria.

If you detect significant imbalance in a lab group, e.g. only one of the students
seems to do the talking and the software coding, make an attempt to activate the
other student by requesting that student to answer your next question, to describe
the functionality of a certain piece of code, to give a demonstration of how the
software is used etc.

Note: if any of the issues listed above keep re-occurring for a particular lab group
make a note and let Jan know as soon as possible as this may affect the performance
grade of the lab group.

Common view of certain software design choices

In order to guide the lab groups in a consistent way in their software design please use
the following recommendations (most of which are also stated in the course material).

The tone-generator task and the background task must use two separate objects in
order to guarantee concurrency, which in turn is necessary to clearly illustrate tone
distortion as well as the usefulness of deadline-based scheduling.

Variables and data structures that are used by concurrent tasks should be placed
inside an object, and be accessed only via mutex method calls (SYNC for reading,

SYNC or ASYNC for writing).

Big data structures, such as lists and tables, with non-changing contents may be
defined as global variables and referred to directly (without involving an object).

A gap between playing tones can be implemented either by muting the audio of the
tone-generator task or by killing (and later restarting) the tone-generator task.

The use of dynamic memory allocation may be used, but should not be encouraged
unless the group is clearly knowledgeable of how to write code for it and is aware
of its potential drawbacks in a time-critical application.

Common view of how to approve the solutions

In order to approve the solutions of the lab groups in a consistent way during the lab
sessions please use the following answers and guidelines.

Part O:
e Problem 3.a: 2500 us
e Problem 3.b: 500 us
e Problem 3.c: 1136 us
e Problem 3.d: p(k) = 440 x 21
e Problem 3.e: a) 1702 us b) 675 us
e Problem 3.g: Maximum is 9 Minimum is -5
e Problem 3.h: -5 -3 -1 -6 -5 -3 -1 -5 -1 0
e Problem 3.i: Maximum is 14 Minimum is —10

e Problem 3.j: Here, frequency values are rounded, and period values truncated:

Index Frequency f [Hz] Period 1/(2f) [us]
-10 247 2024
-9 262 1911
-8 277 1803
-7 294 1702
-6 311 1607
-5 330 1516
-4 349 1431
-3 370 1351
-2 392 1275
-1 415 1203
0 440 1136
1 466 1072
2 494 1012
3 523 955
4 554 901
5 587 851
6 622 803
7 659 758
8 698 715
9 740 675
10 784 637
11 831 601
12 880 568
13 932 536

H
S

988 506

e Make sure that, for problem 2.b, the state variables have been moved into the App
object, and that self is used to refer to them.

e Make sure that the period values in problem 3.j are stored as constants in a table
and used by the software as such. The values are preferably derived off-line (e.g.
via Excel or MATLAB), but could also be derived at run-time and stored in the
table (e.g. using floating-point calculations in the StartApp() method).

e When the students are finished with Part 0, remind them to not dispose of the
program code. Most of it will be useful in the later parts.

Part

Part

1, Step 1:

Remind the students to be cautious when the software volume control is tested for
the first time (e.g. use the oscilloscope.) NO earphones on/in the ears!!!

Encourage the lab group to use a separate object for the tone generator. Inform
them that the tone generator state variables (e.g. period, volume, mute) must in
any case be stored within an object, and not as global variables.

If a separate object will be used for the tone generator check with the lab group
whether they know that suitable methods must be defined for accessing/modifying
the tone generator state variables, and that these methods should be called via
SYNC/ASYNC. Discuss with the lab group what is the most suitable object to
store the state variables (hint: the frequency of updates/accesses speaks in favor of
storing inside the tone generator object).

Measure the frequency of the tone generated in the speaker, and verify that it is
1 kHz. Use the oscilloscope, or a guitar tuner app or a frequency analyzer app on
your phone. If unfamiliar with these tools, let someone else do the measurement.

Discuss with the lab group how they chose to implement the mute function.

Since the tone generator must be running continuously, the approaches to use are:
(i) to not update the DAC at all while muting, or (ii) to write the value 0 to the
DAC while muting. If alternative (ii) is used, it is important that the previously
set volume level is restored when un-muting.

1, Step 2:

Check the lab group’s implementation of the background task. Make sure that the
background task uses a separate object, that the corresponding state variables (e.g.
period, load) are stored within the object, and that SYNC/ASYNC calls to suitable
methods are used when the state variables are accessed/modified from outside of
the object.

Make sure that the distortion generated can be clearly heard when the load is
increased, and that the character of the distortion is different in problems 2.a, 2.b
and 2.c. If not, check whether the two tasks are really using two separate objects
and that the period of the background task is correct (1300 us).

Discuss with the lab group why the distortion occurs.
Answer: The background task disturbs the execution of the tone-generator task,

since there is no special priority given to the latter task.

Check the distortion with an oscilloscope for additional visual insight. If you cannot
handle an oscilloscope, let someone else (e.g. Jan) do it.

Discuss with the lab group why the distortion in problem 2.b is so much different
from the distortion in problems 2.a and 2.c.

Hint: Let them consider the period of the tone generator in problem 2.b.

Part

Answer: In problem 2.b the periods of the tone generator (650 us) and the back-
ground task (1300 us) are harmonically related, and therefore produce a stable
waveform (which can be seen on the oscilloscope). As the background load is
increased the generated waveform remains stable, but becomes increasingly asym-
metrical until just a very narrow pulse remains. This can be heard as the original
tone (650 ps) changing its character to a more and more high-pitched sound, until
it finally can no longer be heard by the human ear. The periods in problems 2.a and
2.c are unrelated to the background task, which means that the generated waveform
will always be heard, but becomes more and more unstable as the background load
increases.

1, Step 3:

Check the lab group’s implementation of the deadline enable/disable function.
Make sure that the corresponding state variable is stored within an object, and
that a SYNC/ASYNC call to a suitable method is used when the state variable is
accessed /modified from outside of the object.

Make sure that no distortion can be heard when the wvalue of wvariable
background_loop_range is in the range [1000,8000].

Discuss with the lab group why there is no distortion in this range.

Answer: The tone-generator task is now always given a high priority (urgent dead-
line) when it executes and will therefore not be disturbed by the background task
who has a lower priority (less urgent deadline).

Make sure that the pitch drop effect can be clearly observed when the value of
variable background loop_range is in the range [10000,21000].

The exact loop range value at which the effect kicks in depends on the C code that
implements the loop in the background task. A sloppily designed for loop yields
the lower value whereas a cleverly designed while loop yields the higher value. The
most commonly-reported loop range value is 13500 (a standard for loop).

Note: Make sure that the lab group does not confuse the pitch drop effect with the
distortion that appears just before the actual pitch drop.

Discuss with the lab group why the pitch drop effect occurs.

Answer: As the execution time of the background task exceeds its period (overrun)
the task retains its (absolute) deadline. Any new instance of the tone generator
that occurs while the background task continues its overrun will have a deadline
further away and therefore lower priority. Once the background task completes its
overrun, the tone generator will execute although delayed. Then the background
task will execute again, and once again overrun causing yet another delay of the tone
generator execution. This repeated overrun execution causes the tone generator to
get a real period that is longer than intended, resulting in a lower frequency of the
generated tone.

Part 1, Step 4:

e Make sure that the measured WCET for the background task is in the range
[1250,1350] ps when the value of variable background loop_range from problem
3.c is used (i.e. when the pitch drop effect kicks in).

Discuss with the lab group why it is reasonable that the WCET of the background
task has a value in the range [1250,1350] us in this case.

Answer: Because the WCET of the background task is then very close to the
period of the task (1300 ps), thereby consuming almost all processing capacity and
significantly disturbing the tone generator task.

e Make sure that the measured WCET for the background task is in the range
[80,120] ps when the value of variable background_loop_range is 1000.

Discuss with the lab group why it is reasonable that the WCET of the background
task has a value in the range [80,120] ps in this case.

Answer: The fraction between the loop ranges for the above WCET values should
be the same as the fraction between the WCET values themselves. Example: If
13500 loops cause the pitch drop effect in problem 4.a and 1000 loops is used in
problem 4.b, then the WCET in problem 4.b should be approximately 13500/1000
= 13.5 times lower than the WCET in problem 4.a.

e Make sure that the measured WCET for the tone generator is less than 1pus
but non-zero. Typically, the WCET should be in the range [100,300] ns.

Discuss with the lab group what is a reasonable value of the tone generator WCET.

Answer: Given that the code is very short (only involving writing a new value to
the DAC) and that the processor frequency is 168 MHz, they should come to the
conclusion that the WCET must be less than 1us.

Note: If the measured WCET is exactly 0, the reason is most likely that the lab
group has not reflected upon the resolution of the system clock (10us). In order
to measure the WCET accurately a special measurement solution is required, e.g.
changing the time scale by running the measured code 1000 times between the begin
and end samples (giving values in ns units). Let the lab group think about this for
a while before you give them a hint.

e Comments regarding measurements made with a system clock resolution of 10us:

— If reported WCET values are consistently 10 times lower than the expected
values a time conversion macro is probably missing (e.g. USEC_OF).

— If reported WCET values are consistently 100 times lower an erroneous time
conversion macro is probably used (e.g. USEC instead of USEC_OF).

e When the students are finished with Part 1, inform them that they no longer need
the code for the background task and the WCET measurements. They should make
a backup of the files and then remove that part of the code.

Part 2, Step 1:

e Make sure that the lab group’s software design sketch is illustrated using access
graphs and timing diagrams.

The timing of the the gap event and the next-played-note event must be clearly
shown, and be put in relation to the baseline of the currently-played note.

The timing diagram should illustrate the application’s full concurrency. This means
that method executions may be overlapping in the diagram, while scheduling-related
details such as local skew or preemptions should not be shown.

e Make sure that independent tasks in the design are represented by separate objects.

The lab group should realize that they need a separate object for handling the
playing of the melody, to implement a state machine that traverses the 32 elements
of the frequency index and note length arrays in a repeated fashion. The tone
generator task should not be involved in anything else except generating a tone!

e Discuss with the lab group their choice of objects for storing the tone generator
parameters (period, deadline, volume) and melody player parameters (tempo, key).

Check that the lab group is aware of the correct approach regarding how these
parameters should be accessed and updated from outside the object. Answer: via
SYNC/ASYNC/AFTER calls to suitable methods.

e Discuss with the lab group their approach for implementing the gap after each
played note. Is the tone generator killed and restarted, or is it muted?

Check that the lab group has a solution where it is the melody player that initiates
the gap event (similar to the example in Exercise session 3.) The tone generator
should not poll the system clock to know it is time for the gap.

Part 2, Step 2:

e Measure the default tempo of the melody, and verify that it is 120 bpm. Use a
metronome app on your phone, or let someone else (e.g. Jan) with such an app do
the measurement. Also check other tempos, such as the extreme values (60 and 240
bpm) as well as some random value within the domain (e.g. 131 or 209 bpm).

Note: Make sure that the tempo parameter is read from the keyboard as an integer
number (bpm), and not as an increment/decrement command. The lab group
software should be able to translate between beats-per-minute (bpm) and note
length (ms).

e Measure the default frequency of the first melody note, and verify that it is 440 Hz.
Use a guitar tuner app or a frequency analyzer app on your phone, or let someone
else (e.g. Jan) with such an app do the measurement. Also check that the melody
can be played in other keys (e.g. =5 and +5).

Note: To be able to take a good measurement of the first note the melody should
be played at the slowest possible tempo (60 bpm, or lower if possible).

Note: Due to the resolution of the real-time clock the frequency of the generated
tone will not be exactly 440 Hz. The measured frequency will be closer to 442 Hz.

Note: Make sure that the key parameter is read from the keyboard as an integer
number, and not as an increment/decrement command.

e Make sure that the melody is played in a cyclic fashion, and that the tempo is
maintained also in the transition between the last note of one melody repeat and
the first note in the subsequent melody repeat.

e Make sure that there is a short gap between the notes. This is easiest to observe
between two subsequent notes with the same frequency, e.g. between note 4 and 5
in the melody, or between the last note in one melody repeat and the first note in
the subsequent melody repeat.

e When the students are finished with Part 2, Step 2, remind them that they should
submit their software code in Canvas. Normally, they only need to submit the
application.c file, but if they have made changes to multiple files they should
put them into an archive file (.zip or .tar) and submit that file.

Part 2, Step 3:

e General comment: If the lab group has not yet settled for a common CAN protocol
together with other groups, a simpler protocol is acceptable to use for this step.

e Make sure that the contents of each received CAN messages are printed out in both
leader and slave mode. But only when a cable is connected!

e Make sure that the key and tempo parameters are sent as integer numbers in the
protocol, and not as increment/decrement commands.

Note: Check particularly that negative values of the key parameter (e.g. -5) can be
handled by the protocol.

e Make sure that the melody can be controlled (start, stop, change tempo and key)
from the keyboard in both leader and slave mode when the CAN cable is connected.
When the cable is disconnected it should only be possible to control the melody in
leader mode.

Hint: In slave mode, disconnect the CAN cable and let the group give 2-3 commands
from the keyboard. With TinyTimber’s default configuration the board’s CAN
controller chip will buffer up to three CAN messages. When the cable is reconnected
the buffered messages will be transmitted and the keyboard commands be executed
as a batch.

e Make sure that the slave mode works in an semi-autonomous fashion; that is, once
the playing of the melody has been initiated from the keyboard the playing should
continue even if the CAN cable is later disconnected. See demonstration procedure
in Problem 3.b in the lab PM.

Part 2, Step 4:

e General comment: It is required that three boards should be able to play the
melody in either form (chorus or canon). If there are less than three lab groups
collaborating, one of the groups should use their software on multiple boards.

Note: It is not required that the boards shall be able to switch dynamically between
leader and slave mode. Separate software versions may be used for each mode.

e Make sure that the melody is played in a cyclic fashion in chorus form, for different
initial tempos and keys. Also make sure that the note synchronization is maintained
between the boards after several repeats of the melody. The melodies of the boards
should not drift apart!

Note: Due to delays in the CAN communication there may be a slight (barely
noticeable) delay between notes that are supposed to be played simultaneously by
the boards. If there is a noticeable "echo” delay between the boards there is a
problem with the software in one or more of the slave boards. A probable cause
is that the software prints out debug text for each received CAN message before it
starts generating the notes.

e Make sure that the melody is played in a cyclic fashion in canon form, for different
initial tempos and keys. Also make sure that the note synchronization and the
”canon separation” (parameter n) is maintained between the boards after several
repeats of the melody. There should be no board playing in unison with another
board.

Note: It is not required that the boards shall be able to switch dynamically between
chorus and canon form. Separate software versions may be used for each form.

Note: It is only required that the boards shall be able to play the melody in canon
form with parameters n = 4 and n = 8. Making things work with other values of n
is trickier than one might think.

e Make sure that a change of key or tempo must be adopted by all connected boards
within a recovery time corresponding to the length of 12 beats, measured from the
time the leader requests the corresponding change.

e Make sure that the note synchronization and the ”canon separation” (parameter
n) is maintained in canon form between the boards for different dynamic changes
in tempo and key.

e The Ultimate Test: check that the nodes do not lose synchronization in canon mode
after the following tempo-change scenario:

start with a tempo of 120 bpm
wait for a little while
increase the tempo to 240 bpm

walit for a little while

A

decrease the tempo to 60 bpm

Other good-to-know type of information

MD407 debug monitor and TinyTimber specifics:

The monitor command ’go’ is a shorthand version of the command ’go 20000000’

As of version v2.05 the TinyTimber kernel has enabled support for the detection of
divide-by-zero and unaligned data transfer hardware faults. If any of these faults
occur the program will abort and return to the MD407 debug monitor.

An unaligned data transfer means that a 16- or 32-bit word is read from or written
to an odd memory address. This could happen e.g. if there is an attempt to write
a 32-bit data word into the CANMsg data structure’s 8-byte buffer (which begins
at an odd byte offset within the structure).

If the message " PANIC!!! Empty queue” appears on the console output the Tiny-
Timber kernel is temporarily overloaded by interrupt requests. Probable causes:
a key on the workstation keyboard has been pressed for too long (activating auto
repeat), or some computer board has transmitted CAN messages too frequently.

If the message "PANIC!!! Empty pool” appears on the console output the Tiny-
Timber kernel cannot keep up with scheduling requests. Probable causes: a method
is repeatedly calling itself with AFTER using an offset of zero, or multiple copies of
the tone generator task exist because old copies were not successfully terminated.

If a program is terminated (due to a crash, or via the RESET button) and returns
to the MD407 debug monitor the program code should be downloaded again in
order to guarantee the consistency of initialized static variables (.data segment).

CodelLite specifics:

It is good practice to always aim at having zero warnings after compilation. A
warning may refer to type mismatches which, in this type of programming, may
cause serious problems.

Printing of floating point numbers with sprintf %f is disabled by default (it out-
puts nothing) in order to keep code size down. It is recommended that floating point
numbers are type-cast to integers and then printed with sprintf %d. Printing with
sprintf %f can be enabled by adding the compiler flag '~u _printf float’.

If the lab group has problems building their project under Windows, a common
cause is that the directory path for the project files contains a space (’ ’) character.

If the lab group has problems with the CodeLite configuration (e.g. strange compiler
setup), it could mean that they have used CodeLite in some other project. Restore
CodelLite to its default configuration by erasing the (hidden) directory

C:\Users\cid\AppData\Roaming\codelite

On some machines the (hidden) directory is instead

Z:\.win\AppData\Roaming\codelite
After removing the directory restart CodeLite and let it do a default setup.

CoolTerm specifics:

It is possible to use drag-and-drop of a file from an OS file browser window (e.g.
Explorer, Finder) to a CoolTerm window. This saves a lot of clicks/keypresses in
the long run.

Strange things: As of CoolTerm version 1.4.6 for Windows the ".s19’ load files are
no longer displayed using the ’All files’ option in the CoolTerm file browser.

Solution: Use the version (1.4.5) of CoolTerm that is available on the course page,
or use the drag-and-drop functionality (see above).

Particularly nasty bugs:

Watch out for the combination of sprintf() and character arrays. It happens
frequently that data is written beyond the limits of a too modestly dimensioned
character array, which in turn may cause many hard-to-solve problems in the soft-
ware.

Watch out for the use of &self instead of self in TinyTimber operations, such as
ASYNC, AFTER, etc. This is a serious case of type mismatch and will most likely
cause a memory fault. Surprisingly enough, the compiler does not give a warning
or error for this type mismatch.

Watch out for calls to ASYNC, AFTER, etc that crashes the program without any
apparent cause. It may happen if the object referred to in the call is missing an
‘Object super’ as the first element in its C struct.

Watch out for local data structure variables within a method that are being used
for storing CAN messages. The contents of the data structure becomes volatile
(most likely overwritten) as soon as the method call completes.

Watch out for CAN messages transmitted with unknown contents of the length
field. A very hard-to-find bug in the receiving software.

Recommended tuner and metronome apps:

TonalEnergy Chromatic Tuner and Metronome (40 SEK in iOS App Store)
Cleartune (40 SEK in iOS App Store)

Metronome: Tempo Lite (Free in iOS App Store)

