
C-Programming part 2
Pedro Trancoso
ppedro@chalmers.se

Machine-Oriented Programming

Original slides by Ulf Assarsson

3/29/19 Chalmers 3

Contents
• Scope / Visibility
• Types2: Arrays, strings, structures, typedef
• Pointers
• Pointer arithmetic
• Absolute addressing
• Volatile
• Ports

4

• Global visibility (global scope)
• File visibility (file scope)
• Local visibility (e.g. function scope)

Visibility / Scope

5

#include <stdio.h>

char x;

int foo()
{

// x is visible
// y is not visible

}

char y;

Visibility

6

#include <stdio.h>

char x;

int foo(float x)
{

// argument x (float) is visible
}

Visibility at the function level

7

#include <stdio.h>

char x;

int foo()
{

int x = 4;
return x;

}

Visibility at the function level

8

#include <stdio.h>

int x;

int foo(int x) {

if(x == 0){
int x = 4;
return x;

}
return x;

}

int main() {
x = 1;
x = foo(0);
printf("x is %d\n", x);
return 0;

}

Which visibility has the highest priority?

What is the output (value of x)?

9

Output:
name1: Emil
name2: Emilia
sizeof(name2): 7

int a[] = {3, 2, 1, 0};
int b[5];
float c[6] = {2.0f, 1.0f};

int main()
{

a[0] = 5;
b[4] = a[2];
c[3] = 3.0f;
return 0;

}

#include <stdio.h>

char name1[] = {'E', 'm', 'i', 'l', '\0'};
char name2[] = "Emilia";
char name3[];

int main()
{

printf("name1: %s \n", name1);
printf("name2: %s \n", name2);
printf("sizeof (name2): %d \n", sizeof(name2));

return 0;
}

Strings
Strings are null-terminated character arrays

Arrays

?

7 what?

3/29/19 Chalmers 10

Have an array where position 0 you have the total number of ‘a’ in a text, in
position 1 you have the total number of ‘b’, etc.

Exercise:

int countChars[100];

int main() {
...
if(ch == ‘a’)

countChars[0]++;
else if(ch == ‘b’)

countChars[1]++;
else if(ch == ‘c’)
...
return 0;

}

int countChars[100];

int main() {
...
countChars[ch-’a’]++;
...
return 0;

}

Better? Single line
for all cases?

3/29/19 Chalmers 11

A struct:
• Has one or more members (fields).
• Members can be for example of type:

• base-type
• int, char, long (as signed/unsigned)
• float, double

• User defined/composite type (e.g. another struct).
• pointer (even to functions and same struct)

Structs: Composite Data Type

3/29/19 Chalmers 12

Use of struct
#include <stdio.h>

char* coursename = "Machine Oriented Programming";

struct Course {
char* name;
float credits;
int numberOfParticipants;

};

int main()
{

struct Course mop;

mop.name = coursename;
mop.credits = 7.5;
mop.numberOfParticipants = 110;

return 0;
}

Definition of the structure

Access to fields via .-operator

Declaration of a variable mop

Assembly code to read value
of mop.numberOfParticipants?

LDR R0, =mop
LDR R1, [R0,#8]

3/29/19 Chalmers 13

Initialization List
struct Course {

char* name;
float credits;
int numberOfParticipants;

};

struct Course c1 = {"MOP", 7.5, 110};
struct Course c2 = {"MOP", 7.5};

Initialization list

A struct can be initialized with an initialization list.
Initiation takes place in the same order as the declarations, but not all members need to be initiated.

3/29/19 Chalmers 14

Typedef – alias for types
typedef unsigned int uint32, uint32_t;

typedef short int int16;

typedef unsigned char *ucharptr;

uint32 a, b = 0, c;

int16 d;

ucharptr p;

typedef int postnr;
typedef int strtnr;
postnr x = 41501;
strtnr y = 3;
x = y; // completely OK

// Note: '*' is not included in the type declaration
for byteptr2
typedef char* byteptr, byteptr2; // byteptr2 wrong!
typedef char *byteptr, *byteptr2; // right
typedef char *byteptr, byte; // right

typedef simplifies / shortens expressions, which can increase readability.
typedef unsigned char uint8, …;

type alias/type name

3/29/19 Chalmers 15

Structs – Composite data type
Syntax:

optional
struct StructName {
type field1;
type field2;
…

} variable1, variable2 … ;
optional

Alternative ways to do the same!
struct {

int age;
char* name;

} player1, player2;

Or:
struct Player {

int age;
char* name;

};
struct Player player1, player2;

Or:
typedef struct tPlayer {// tPlayer can be skipped

int age;
char* name;

} Player ;
Player player1, player2;

3/29/19 Chalmers 16

Structs – Composite data type
Initialization of structs
Usual commands:

typedef struct {
int age;
char* name;

} Player;

//Player is now a type alias for this struct.
Advantage: you do not need to write ”struct Player”

Player player1 = {15, "Ulf"};
Player player2 = {20, "John Doe"};
// or for example
player1.age = 16;
player1.name = "Striker";

// Structs can contain other structs:
typedef struct {

int x;
int y;

} Position;

typedef struct {
int age;
char* name;
Position pos;

} Player;

Player player1 = {15, "Striker”, {5, 10}};
// or for example
player1.pos.x = 6;
player1.pos.y = 11;
player1.pos = (Position){6,11};

// Incomplete initialization is OK!
Player player1 = {15, "Striker”, {5}};

What if you want a Player as
a field/member of Player?
(a) Is it possible?
(b) How can we do it?

Assembly code to read value
of player1.pos.y?

LDR R0, =player1
LDR R1, [R0,#12]

3/29/19 Chalmers 17

Structs – Composite data type
In exercise 5.15 & 5.16 (pg. 108-111) in
“Arbetsboken” :

typedef struct tPoint{
unsigned char x;
unsigned char y;

} POINT;

#define MAX_POINTS 20

typedef struct tGeometry{
int numpoints;
int sizex;
int sizey;
POINT px[MAX_POINTS];

} GEOMETRY, *PGEOMETRY;

Create and initialize a variable of type GEOMETRY:

GEOMETRY ball_geometry = {
12, 4, 4,
{ // POINT px[20]
{0,1}, // px[...]
{0,2},
{1,0},
{1,1},
{1,2},
{1,3},
{2,0},
{2,1},
{2,2},
{2,3},
{3,1},
{3,2} // Incomplete initialization

} // (12 of 20)
};

Assembly code to read value
of ball_geometry.px[4].x?
@ 12+4*2=20
LDR R0, =player1
LDR R1, [R0,#20]

3/29/19 Chalmers 18

• A pointer is a variable that holds a memory address of a value
(e.g., variable or port), instead of holding the actual value itself.

Pointers

123456

Memory

0x1000

Pointer to value ”123456”,
i.e. location of value
”123456” in memory, i.e.
its address! (0x1000)

3/29/19 Chalmers 19

• A pointer is a variable that holds a memory address of a value
(e.g., variable or port), instead of holding the actual value itself.

Pointers

123456

Memory

0x1000

Pointer to value ”123456”,
i.e. location of value
”123456” in memory, i.e.
its address! (0x1000)

0x1000

3/29/19 Chalmers 20

• Allows to refer to an object or variable, without having to create
a copy

Why pointers?

winner points to person2.

Example 2:

int salaryLevel1 = 1000;
int salaryLevel2 = 2000;
int salaryLevel3 = 3000;
…
int* minSalary = &salaryLevel3;
…
minSalary = &salaryLevel1;
…
X = minSalary + 1000;
Y = *minSalary + 1000;

Example 1:

char person1[] = "Elsa";

char person2[] = "Alice";

char person3[] = "Maja";
…

char* winner = person2;

char* winner = &(person2[0]);

A pointer is essentially a variable that holds a
memory address of a value (variable or port),
instead of holding the actual value itself.

Are both the same?
What about:
winner=&(person2[2])

Are both the same?

3/29/19 Chalmers 21

1. The pointer’s value is an address (&).
2. The pointer’s type tells how one interprets the bits in the content.
3. ”*” is used to read (derefer) the content of the address.

Pointers

0x20030108
... …

0x20030108 3000
0x20030104 2000
0x20030100 1000

… …
0x00000001
0x00000000

Increasing
Addresses

type salaryLevel1

salaryLevel2

salaryLevel3

int salaryLevel1 = 1000;
int salaryLevel2 = 2000;
int salaryLevel3 = 3000;

int* minSalary = &salaryLevel3; // == 0x20030108

minSalary is 0x20030108
*minSalary is 3000.

printf(“min salary = %d kr”, *minSalary);

value is an address

minSalary

min salary = 3000 kr

”&a” – The address of a
”*a” – The contents in address a

3/29/19 Chalmers 22

• When we dereference a pointer we get the object that is stored
in the corresponding address
• The number of bytes we read depends on the type
• The interpretation of the bits depends on the type

Pointers: dereference “*”

1111 1111

-1 255

signed char unsigned char

8 bits

char str[] = ”abcdef";
char* p = &str[0]; // = &(str[0]), = str
char s = *p;

What is the output?

char *x = &str[1];
printf(”%s\n”, x);

What is the output?

char *p = &str[0];
printf(”%s\n”, (++p));

What is the output?

int *p = (int*)&str[0];
printf(”%s\n”, (char*)(++p));

3/29/19 Chalmers 23

Pointers: Operators & *
#include <stdio.h>

int main() {
char a, b, *p;
a = 'v';

b = a;
p = &a;

printf("b = %c, p = 0x%p (%c) \n", b, p, *p);

a = 'k';
printf("b = %c, p = 0x%p (%c) \n", b, p, *p);

}

Output:
b = v, p = 0x0027F7C3 (v)
b = v, p = 0x0027F7C3 (k)

Pointer declaration

Dereferering

Address of ...

?

3/29/19 Chalmers 24

• In declarations:
• Pointer type

• As operator
• dereferens

Meaning of “*”
char* p;

void foo(int *pi);

char a = *p;
*p = 'b';

All good?

3/29/19 Chalmers 25

Pointers: Summary
&a Address of variable a. The memory address where a is stored.
a Variable’s value (e.g. int, float or an address if a is a pointer variable)
*a The variable a points to. Here a’s value must be a valid address (e.g. pointer to

another variable or port) and a must be of type pointer. “*a” is used to get the value
for the variable/port.

If a’s value is an address, *a
is the content of that address.

Example:

0x2001bff30x2001c026

118 ('v')

Increasing
addresses

Address for p:

p’s value

*p is the value that p points to.
char c = 'v';
…
char* p = &c;

. . .
0x2001bff3

. . .
Address for c:

printf("%c = %c", c, *p);

&p is 0x2001c026
p is 0x2001bff3
*p is ‘v’

3/29/19

Chalmers 26

Pointers: Example
0x20030200

... …

0x20030202 ’i’

0x20030201 ’l’

0x20030200 ’A’

… …

0x00000001

0x00000000 Increasing
addresses

type
"Alice"

char person1[] = "Elsa";
char person2[] = "Alice";
char person3[] = "Maja";
…
char* winner = &person2[0]; // == 0x20030200

winner is 0x20030200
*winner is "Alice".

Value is an address

winnerHow many bytes is
the content?

printf(”%s”, winner);

Fill-in-the-gaps!

char *chp = winner;
while(…)

printf(”%c”, …);

NOTE:
Memory
width is
not really
1 byte…

3/29/19 Chalmers 27

Pointers: More pointers
int a[] = {2,3,4,10,8,9};

int *pa = &a[0];

short int b[] = {2,3,4,10,8,9};

short int *pb = b;

float c[] = {1.5f, 3.4f, 5.4f, 10.2f, 8.3f, 2.9f};

float *pc = &c[3];

Pointers to string:
char course[] = "Machine-Oriented Programming";

char *pCourse = course;

Or directly as in:
char *pCourse = ”Programming of Embedded Systems";

But here the C compiler places the string in read-only
string memory in the program's data segment

“course” is a standard writable array on the stack or in
the program's data segment.

3/29/19 Chalmers 28

Pointers
t *p; p declared of type “pointer to type t“
p = 0; p becomes a null pointer (pointer to nothing!)
p = &v; p is assigned the address of variable v
*p means “content of what p points to”
p1 = p2; p1 will point to the same pointed by p2
*p1 = *p2; content of what is pointed by p1 becomes the same as the content of

what p2 points to.

What is the value of *p if p is
of type int*?

3/29/19 Chalmers 29

Why pointers?

• Write to/Read from ports
• (faster indexing in arrays)
• Use copies of input parameters
• Change the input parameters…

#include <stdio.h>

void inc(int x, char y)
{

x++;
y++;

}

Arguments are ’’pass-by value’’ in C.

int var1 = 2;
char var2 = 7;
inc(var1, var2);

var1 and var2 have still values 2 and 7
after the function call

#include <stdio.h>

void inc(int *x, char *y)
{

(*x)++;
(*y)++;

}

int var1 = 2;
char var2 = 7;
inc(&var1, &var2);

var1 and var2 have now values 3 and 8
after the function call

Arguments are ’’pass-by value’’ in C.

3/29/19 Chalmers 30

Pointer arithmetic
char *course = ”Machine-Oriented Programming";

*course;
*(course+2);
course++;
course += 4;

// 'M’
// ‘c’
// course now points to 'a’
// course now points to ’i'

p is increased by (n * size_of_type) int a[] = {2,3,4,10,8,9};

int *p = a; // p == &(a[0])
p++; // p == &(a[1])

int *p3 = a + 3;// p == &(a[3])

What is the result of:
1. printf(“%c\n”, *course);
2. printf(“%s\n”, course);

Assume p=0x00000000, what is
the value of p after p++?
1. In case char *p
2. In case int *p

3/29/19 Chalmers 31

Pointer Examples (…think…)
char name[] = ”Machine Oriented Programming”;
char *p2c;
int *p2i;

p2c = name;
p2i = (int*)name;
printf(”%s - %s\n”, (char*)p2c, (char*)p2i);

p2c += 3;
p2i += 3;
printf(”%s - %s\n”, (char*)p2c, (char*)p2i);

Machine Oriented Programming - Machine Oriented Programming

hine Oriented Programming - nted Programming

3/29/19 Chalmers 32

Pointers for absolute addressing
• As a port ”identifier” we can have an absolute address

(e.g. 0x40011004).

3/29/19 Chalmers 33

Absolute addressing

0x40011000 // an hexadecimal number
(unsigned char*) 0x40011000 // an unsigned char pointer that points to address 0x40011004
((unsigned char) 0x40011000) // dereferens of the pointer

// Read from 0x40011000
unsigned char value = *((unsigned char*) 0x40011000);

// Write to 0x40011004
((unsigned char) 0x40011004) = value;

But… we need to add volatile if we have
optimization flags... !

3/29/19 Chalmers 34

User defined types with typedef
#define INPORT *((unsigned char*) 0x40011000)
value = INPORT;

Evaluates to:

0x40011000
(unsigned char*) 0x40011000
((unsigned char) 0x40011000)

// read from 0x40011000
value = *((unsigned char*) 0x40011000);

typedef unsigned char* port8ptr;
#define INPORT_ADDR 0x40011000
#define INPORT *((port8ptr)INPORT_ADDR)

INPORT_ADDR
(port8ptr)INPORT_ADDR
INPORT

// read from 0x40011000
value = INPORT;

type alias/type name

typedef simplifies / shortens expressions, to increase readability.
typedef unsigned char* port8ptr;

Preprocessor does all
the work!

3/29/19 Chalmers 35

Volatile qualifier
char * inport = (char*) 0x40011000;

void foo(){

while(*inport != 0)
{

// ...
}

}

A compiler that optimizes may only read once (or not at all if we never write to the
address from the program).

3/29/19 Chalmers 36

Volatile qualifier
volatile char * inport = (char*) 0x40011000;

void foo(){

while(*inport != 0)
{

// ...
}

}

volatile prevents some optimizations (which is good and necessary!), i.e. indicates that the compiler must
assume that the content of the address can be changed from outside.
The previous example, now corrected with volatile:

unsigned char value = *((volatile unsigned char*) 0x40011000); // read from 0x40011004

((volatile unsigned char) 0x40011004) = value; // write to 0x40011004

volatile char * utport = (char*) 0x40011000;

void f2()
{

*utport = 0;
…
*utport = 1;
…
*utport = 2;

}

3/29/19 Chalmers 37

Summary for ports
In-port:
typedef volatile unsigned char* port8ptr;

#define INPORT_ADDR 0x40011000

#define INPORT *((port8ptr)INPORT_ADDR)

// read from 0x40011000

value = INPORT;

Out-port:
typedef volatile unsigned char* port8ptr;

#define UTPORT_ADDR 0x40011004

#define UTPORT *((port8ptr)UTPORT_ADDR)

// write to 0x40011004

UTPORT = value;

3/29/19 Chalmers 38

Exercises
1. Create a port to an int located at

the address 0x40004000.

2. Create a pointer to a string (“hej”)
which is in read-only string-letter
memory in the data segment.

3. Create a pointer to a string (“hej”)
located on the stack.

4. Use typedef to create a new type
byteptr as pointer to unsigned byte.

5. What does volatile do? 5. Reading/writing of the volatile variable is not
optimized. Volatile therefore is necessary for ports.

1. typedef volatile int* port8ptr;
#define PORT_ADDR 0x40004000
#define PORT *((port8ptr)PORT_ADDR);

2. char *p = “hej”;

3. void fkn()
{

char s[] = “hej”; // in the stack
char* p = s;

}

4. typedef unsigned char *byteptr;

