CHALMERS

UNIVERSITY OF TECHNOLOGY

Machine-Oriented Programming

C-Programming part 2

Pedro Trancoso
ppedro@chalmers.se

Original slides by Ulf Assarsson

CHALMERS

Contents
« Topics:
 Pointers

« Absolut addressing (ports)

« typedef, volatile, #define

« Arrays of pointers, arrays of arrays
- EXxercises:

° V2

Previous C Lecture

« C-syntax
* Program structure, compiling, linking
* Bitwise operations

Quick Review:

» Ox (prefix for hexadecimal), Ob (prefix for binary)

» a <<n (shift n bits of a to the left and fill with 0 bits
coming from the right)

* a>>n (shift n bits of a to the right and fill with O bits
coming from the left)

CHALMERS

Bitwise operations: Assignment

Packing different values into a single variable:
« Pack and Unpack a date (DAY/MONTH/YEAR) into a word (integer) variable

9 bits 5 bits 4 bits 14 bits
#define DAYMASK OxFF83FFFF
#define MONTHMASK OxFFFC3FFF empty day month year
#define YEARMASK OxFFFFCo00

#define 5BITMASK Ox0000001F

#define 4BITMASK ©x0000000F int getDay(void) {
#define _14BITMASK OXQ@@O3FFF int day = date;
return (day >> 18) & _5BITMASK;
int date = 9; b
void setDay(int day) { int getMonth(void) {
day = day << 18; int month = date;
date = (date & DAYMASK) | day; return (month >> 14) & _4BITMASK;
} }
void setMonth(int month) { int getvear(void) {
month = month << 14; int year = date;
date = (date & MONTHMASK) | month; return year & _14BITMASK;
} }
void setYear(int year) { int main(int argc, char **argv) {
date = (date & YEARMASK) | year; return 0;

} }

CHALMERS
/ N\ " | / N
— M\

- A pointer is a variable that holds a memory address of a value
(e.g., variable or port), instead of holding the actual value itself.

Pointers

Memory

Pointer to value "123456",

i.e. location of value

"123456” in memory, i.e.

its address! (0x1000) 0x1000 123456

CHALMERS
/ N\ " | / N
— N\

- A pointer is a variable that holds a memory address of a value
(e.g., variable or port), instead of holding the actual value itself.

Pointers

Memory

Pointer to value "123456”, 0x1000
i.e. location of value
"123456” in memory, i.e.

its address! (0x1000) 0x1000 123456

CHALMERS

UNIVERSITY OF TECHNOLOGY A pointer is essentially a variable that holds a
memory address of a value (variable or port),
instead of holding the actual value itself.

Why pointers?

- Allows to refer to an object or variable, without having to create

a copy
Example 1: Example 2:
int salarylevell = 1000;
char personl[] = "Elsa"; int salarylLevel2 = 2000;
char person2[] = "Alice"; int salarylLevel3 = 3000;
char person3[] = "Maja"; Are both the same? .i'nt* minSalary = &salarylevel3;
What about: ’
char* winner = person2; winner=&(person2[2]) minSalary = &salarylevell;
char* winner = &(person2[0]); X = minSalary + 1000; Are both the same?
Y = *minSalary + 1000;

winner points to person2.

CHALMERS

"&a” — The address of a
"*a” — The contents in address a

Pointers

1. The pointer’s value is an address (&).

2. The pointer’s type tells how one interprets the bits in the content.

3. " is used to read (derefer) the content of the address.

int salarylLevell = 1000;
int salarylLevel2 = 2000;
int salarylLevel3 = 3000;

int* minSalary = &salarylevel3; // == 0x20030108
\ | L Y)
type value is an address

minSalary is 0x20030108
*minSalary is 3000.

printf(“min salary = %d kr”, *minSalary);

min salary = 3000 kr

0x20030108
0x20030104
0x20030100

0x00000001
0x00000000

0x20030108

3000

2000

1000

minSalary

salarylLevel3
salarylLevel2

salarylLevell

Increasing
Addresses

CHALMERS

Pointers: dereference “*”

 When we dereference a pointer we get the object that is stored

in the corresponding address

What is the output?

 The number of bytes we read depends on the type

char *x = &str[1];

* The interpretation of the bits depends on the type orintf("%s\n", X);
8 bits
1111 1111 What is the output?

signed char unsigned char char *p = &str[0]:
printf("%s\n”, (++p));

1 char str[] = "abcdef";
char* p = &str[0]; // = &(str[0]), = str
char s = *p;

255 What is the output?

= int *p = (int*)&str[0];
printf("%s\n”, (char*)(++p));

CHALMERS

Pointers: Operators & *

#include <stdio.h>

Pointer declaration
int main() { ‘{’////

char a, b, *p;

a="'v';

Address of ...
b = a;
p - 8a; ?
printf("b = %c, p = @x%p (%c) \n", b, p, *p);

$— Dereferering

a = "k'; Output:
printf("b = %c, p = @x%p (%c) \n", b, p, *p); b = v, p = 0x0027F7C3 (V)

Ox0027F7C3 (k)

} b=VJp

CHALMERS

UNIVERSITY OF TECHNOLOGY

Meaning of “*”

* In declarations: char* p;

All good?
* Pointer type

void foo(int *pi);

 As operator char a = *p;
- dereferens P =

CHALMERS

Pointers: Summary

&a Address of variable a. The memory address where a is stored.

a Variable’s value (e.g. int, float or an address if a is a pointer variable)

If a’s value is an address, *a
is the content of that address.

*a The variable a points to. Here a’s value must be a valid address (e.g. pointer to

another variable or port) and a must be of type pointer.

for the variable/port.
Example:
char ¢ = 'V" Address for c:

char* p = &c;

Address for p:

&p is 0x2001c026

p is 0x2001Dbff3

*p is 'V’
printf("%c = %c", c, *p);

Gk

0x2001bff3 118 (V)

0x2001c026 0x2001bff3

p’s value -/

a’ is used to get the value

*p is the value that p points to.

Increasing
addresses

CHALMERS

Pointers: Example

char personl[] = "Elsa"; the content? :
char person2[] = "Alice",; ,'\\'AS;EW
char person3[] = "Maja"; 0x20030202 7 width is
not really
1 byte...
char* winner = &person2[0@]; // == 0x20030200 0x20030201 T e
S ‘ Y / 0x20030200 ‘A "Alice"
type Value is an address
printf(”%s”, winner); 0x00000001 A
winner 1s 0x20030200
*winner is "Alice". Fill-in-the-gaps!
gap 0x00000000 Increasing
char *chp = winner; addresses
while(..)

printf(”%c”, ..);

CHALMERS

Pointers: More pointers

{2,3,4,10,8,9};
&a[e];

int a[]
int *pa

short int b[] = {2,3,4,10,8,9};
short int *pb = b;

float c[] = {1.5F, 3.4f, 5.4f, 10.2f, 8.3f, 2.9f};
float *pc = &c[3];

Pointers to string:
char course[] = "Machine-Oriented Programming";

“course” is a standard writable array on the stack or in
the program's data segment.

char *pCourse = course;

Or directly as in: But here the C compiler places the string in read-only
char *pCourse = “Programming of Embedded Systems"; | String memory in the program's data segment

CHALMERS

What is the value of *p if p is

POi nte rsS of type int*?

t *p; ~ declared of type “pointer to type t*

p = 0; p becomes a null pointer (pointer to nothing!)
p = &v; p is assigned the address of variable v

*p means “content of what p points to”

pl = p2; p1 will point to the same pointed by p2
*pl = *p2; content of what is pointed by p1 becomes the same as the content of
what p2 points to.

CHALMERS

UNIVERSITY OF TECHNOLOGY

Write to/Read from ports

« (faster indexing in arrays)
» Use copies of input parameters
« Change the input parameters...

Why pointers?

#tinclude <stdio.h>

void inc(int x, char y)
{

X++;

y++;

}

#include <stdio.h>

void inc(int *x, char *y)
{

(%) ++;

(*y)++;
}

Arguments are "’pass-by value” in C.

Arguments are "’pass-by value” in C.

int varl = 2;
char var2 = 7;
inc(varl, var2);

int varl = 2;
char var2 = 7;
inc(&varl, &var2);

varl and var2 have still values 2 and 7
after the function call

varl and var2 have now values 3 and 8
after the function call

CHALMERS

Pointer arithmetic

char *course = ”Machine-Oriented Programming”;
What is the result of:

e “Q ” % .
*course; /] M’ 1. pr!ntf(“/oc\n”, course);
e 2. printf(“%s\n”, course);
*(course+2); // ‘c
course++; // course now points to 'a’

course += 4; // course now points to ’1

p is increased by (n * size_of_type) int a[] = {2,3,4,10,8,9};

int *p = a;
Assume p=0x00000000, what is p++;
the value of p after p++7?

1. In case char *p
2. Incaseint *p

\\
1l
1l
/-\
|—|
|_|
SN’ NS

int *p3 = a + 3;// p == &(a[3])

CHALMERS

Pointer Examples (...think...)

char name[] = ”Machine Oriented Programming”;
char *p2c;
int *p2i;
Machine Oriented Programming - Machine Oriented Programming
p2C = nhame;
p2i = (int*)name;
printf(*%s - %s\n”, (char*)p2c, (char*)p2i);

p2c += 3;

p2i += 3;
printf(”%s - %s\n”, (char*)p2c, (char*)p2i);

hine Oriented Programming - nted Programming

CHALMERS

Pointers for absolute addressing

- As a port ’identifier” we can have an absolute address
(e.g. 0x40011004).

CHALMERS

Absolute addressing

0x40011000 // an hexadecimal number

(unsigned char*) 0x40011000 // an unsigned char pointer that points to address 0x40011004
((unsigned char) 0x40011000) // dereferens of the pointer

// Read from 0x40011000
unsigned char value = *((unsigned char*) 0x40011000);

// Write to 0x40011004
((unsigned char) 0x40011004) = value;

But... we need to add volatile if we have
optimization flags... !

User defined types with typedef

#define INPORT *((unsigned char*) ©x40011000)
value = INPORT;

typedef unsigned char* port8ptr; Evaluates to:
#define INPORT_ADDR 0x40011000
#define INPORT *((port8ptr)INPORT_ADDR)

INPORT_ADDR 0x40011000
(port8ptr)INPORT_ADDR (unsigned char*) 0x40011000
INPORT

((unsigned char) 0x40011000)

// read from 0x40011000

// read from 0x40011000
value = INPORT;

value = *((unsigned char*) 0x40011000);

typedef simplifies / shortens expressions, to increase readability.
typedef unsigned char* port8ptr;
|_'_l

type alias/type name

CHALMERS

Volatile qualifier

char * inport = (char*) 0x40011000;
void foo(){

while(*inport != 0)
{
/]l ...

}

A compiler that optimizes may only read once (or not at all if we never write to the
address from the program).

CHALMERS

Volatile qualifier

volatile char * inport = (char*) 0x40011000; volatile char * utport = (char*) 0x40011000;
void foo(){ void f2()
{
while(*inport != 0) *utport = 0;
{
/... *utport = 1;
}
} *utport = 2;
}

volatile prevents some optimizations (which is good and necessary!), i.e. indicates that the compiler must
assume that the content of the address can be changed from outside.

The previous example, now corrected with volatile:
unsigned char value = *((volatile unsigned char*) 0x40011000); // read from ©x40011004

((volatile unsigned char) 0x40011004) = value; // write to 9x40011004

CHALMERS

Summary for ports

In-port: Out-port:

typedef |lvolatile Junsigned char* port8ptr; typedef'volatile|unsigned char* port8ptr;
#define INPORT_ADDR ©x40011000 #define UTPORT_ADDR 0x40011004

#define INPORT *((port8ptr)INPORT_ADDR) #define UTPORT *((port8ptr)UTPORT_ADDR)
// read from 0x40011000 // write to 0x40011004

value = INPORT; UTPORT = value;

CHALMERS

Pointers and Arrays

CHALMERS

Number of bytes with sizeof()

#include <stdio.h>

char* s1 = "Emilia";
char s2[] = "Emilia";

int main()

{

printf("sizeof(char): %d \n", sizeof(char));

printf("sizeof(char*): %d \n", sizeof(char*));

printf("sizeof(sl): %d \n", sizeof(sl));

printf("sizeof(s2): %d \n", sizeof(s2));

return 0;
}
sizeof(char): 1 _ - _
sizeof(char*): 4 Sizeof evaluated at compile-time. One (of few) exceptions where
sizeof(s1): 4 arrays and pointers are different.
sizeof(s2): 7 It is actually a “string” not an “array”

CHALMERS

Indexing: Same for array / pointers

X[y] is translated to *(x + y) and is thus a way to derive a pointer.
Indexing is the same for pointers as for the array.

char* s1 = "Emilia"; So are arrays pointers? No...

char s2[] = "Emilia";

#tinclude <stdio.h>

int main()

{
// tre ekvivalenta satt att dereferera en pekare
printf("'1l’ in Emilia (version 1): %c \n", *(s143));
printf("'1l’ in Emilia (version 2): %c \n", s1[3]);
printf("'1l’ in Emilia (version 3): %c \n", —3{st)s

// tre ekvivalenta satt att indexera en array
printf("'1l’ in Emilia (version 1): %c \n", *(s243));
printf("'1l’ in Emilia (version 2): %c \n", s2[3]);
printf("'1l’ in Emilia (version 3): %c \n", —3fs21);

return 0;

CHALMERS

Arrays vs Pointers: Similarities and Differences

char* s1 = "Emilia";
char s2[] = "Emilia";

 Both have and address and a type.

e char s2[] = "Emilia";
- sizeof(s2) = 7 sl++; // is allowed
* char* s1 = "Emilia"; s2++; // is NOT allowed

- sizeof(sl) = sizeof(char*) = 4

* Indexing has the same result.
« s1[0] > 'F’
« s2[0] > 'F’
c *s1>'F’
« *s2 —»'E’ (because s2 is an address, we can dereference it just like a pointer)

CHALMERS

Arrays vs Pointers: Similarities and Differences

char* si = "Emilia";
char s2[] = "Emilia";
s2 s1
Type: Array Pointer variable
Addressing: &s2 is not possible - s2 is just a symbol | &s1 = address for variable s1.
s2 = symbol = array’s start address. s1 =s1’s value = string’s start address.
s2 = &(s2[0]) s1 = &(s1[0])
s2[0] =*s2 - 'E' s1[0] = *s1 > 'E'
Pointer arithmetic: s2++ is not possible s1++is OK
(s2+1)[0] is OK (s1+1)[0] is OK
Size of type: sizeof(s2) = 7 bytes sizeof(s1) = sizeof(char*) = 4 bytes

s2 is a symbol (not a variable) for an address which is known at compile time.
Because s2 is an address we can dereference it exactly as a pointer: *s2 — 'E’.

CHALMERS

UNIVERSITY OF TECHNOLOGY

Indexing: More Examples

#include <stdio.h>

char *s1="Emilia"; // s1 is a pointer. Variable sl1 is a variable which can be changed,
// and at start the value is assigned the address to 'E’

char s2[] ="Emilia"; // s2 is an array. The value of symbol s2 is known at compile time.
// Symbol s2 is constant, not like a variable which value can be changed.
// The value of s2 is an address to 'E’.

int main()

{
/l three equivalent ways to dereference a pointer
printf("'l' in Emilia (version 1): %c \n", *(s1+3));
printf("'l' in Emilia (version 2): %c \n", s1[3]);
printf("'l' in Emilia (version 3): %c \n", *(s2+3));
printf("'l" in Emilia (version 3): %c \n", (s2+3)[0])

char a[] = "hej"; char b[10] = "hej"; // b becomes 10 elements.
(a+1)[0] = 'o'; —_ .
char*p =a; b[4] ='d)
p ="bye"; // works! String ”bye" is allocated at compile time as a read-only = b[5] = 'a';
b[6] = O

char b[10] ="hej"; // b becomes 10 elements.

/b ="da"; // here we try to change b's value, but it does not go through "..." synta
b[0]='d"; // OK . "._—0] .
ot = a7/ ok pHNtf("b=%s\n", b);
b[2]=0; // OK OR b[2] = ’\@’

return 0;

CHALMERS

Arrays as function parameters become pointers

void foo(int i[]); void foo(int *i);

[] — the notation exists but it means pointer!

int sumElements(int *a, int 1)

Avoids the entire array to be copied. Length not {
always known at compile time. The address of int sum = ©;
the array is added to the stack and accessed for (int i=0; i<1; i++) {
via the stack variable i. sum += a[i];
}
(A struct is copied and placed on the stack). return sum;
}

int array[] = {5,4,3,2,1};
int x;
X = sumElements(array, 5);

CHALMERS

Array of pointers

#include <stdio.h>

char *manyName[] = {"Emil", "Emilia", "Droopy"};

int main()

{
printf("%s, %s, %s\n", manyName[2], manyName[1l], manyName[©@]);

return 0;

}

Droopy, Emilia, Emil

sizeof(manyName) = 12; // 3*sizeof(char*) = 3*4 = 12

CHALMERS

Array of arrays

#include <stdio.h>
char shortName[][4] = {"Tor", "ULf", "Per”, “Ian” },;
int main()

{
printf("%s, %s, %s\n", shortName[2], shortName[1l], shortName[9]);

return 0;

Per, Ulf, Tor

sizeof(shortName) = ..

CHALMERS

Array of arrays

#include <stdio.h>
int arrayOfArrays[3][4] = { {1,2,3,4}, {5,6,7,8}, {9,10,11,12} };

int main()
{
int i,7;
for(i=0; i<3; i++) {
printf("arrayOfArray[%d] = ", 1);
for (j=0; j<4; j++)
printf("%d ", arrayOfArrays[i][]]); arrayOfArrays[i][j] = arrayOfArrays+i*4+j
printf("\n");
}

return 0;

CHALMERS

Exercises
1. Create a port to an int located at 1. typedef volatile int* port8ptr;
the address 0x40004000. #define PORT_ADDR 0x40004000

#define PORT *((port8ptr)PORT_ADDR);

2. Create a pointer to a string (“hej”) _
which is in read-only string-letter 2. char*p ="hej’;
memory in the data segment.

3. void fkn()
3. Create a pointer to a string (“hej”) { e s
located on the stack. char*s[] _ hej) 0000 S Sl
char* p =s;
4. Use typedef to create a new type i
byteptr as pointer to unsigned byte. 4. typedef unsigned char *byteptr:

5. What does volatile do? 5. Reading/writing of the volatile variable is not
optimized. Volatile therefore is necessary for ports.

CHALMERS

Next (C) Lecture:

Structs
Function pointers

struct abc {
int a;
char b;
short c;

%
struct abc x;

x.a = 2345678;
x.b ="f;
X.C = 972;

2345678, f, 572

union abc {
int a;
char b;
short c;

union abc x;

x.a = 2345678;
x.b ="f;
X.C = 9572;

2294332, <, 572

