
Scan Conversion of Line Segments

•Start with line segment in window coordinates with integer 
values for endpoints

•Assume implementation has a write_pixel function

y = kx + m

x

y
k








DDA Algorithm

• Digital Differential Analyzer

–DDA was a mechanical device for numerical solution of 
differential equations

–Line y=kx+ m satisfies differential equation
dy/dx = k = y/x = y2-y1/x2-x1

• Along scan line x = 1
y=y1;
For(x=x1; x<=x2,ix++) {
write_pixel(x, round(y), line_color)
y+=k;

}



Problem

•DDA = for each x plot pixel at closest y
–Problems for steep lines



Using Symmetry

•Use for 1  k  0

•For k > 1, swap role of x and y
–For each y, plot closest x



• The problem with DDA is that it uses floats which was 
slow in the old days

• Bresenhams algorithm only uses integers



Bresenham’s line drawing 
algorithm

• The line is drawn between two points (x0, y0) 

and (x1, y1)

• Slope (y = kx + m)

• Each time we step 1 in x-direction, we should increment y with k. 
Otherwise the error in y increases with k.

• If the error surpasses 0.5, the line has become closer to the next y-
value, so we add 1 to y, simultaneously decreasing the error by 1

Ulf Assarsson © 2006

)(

)(

01

01

xx

yy
k






See also 
http://en.wikipedia.org/wiki/Bresenham's_line_algorithm

function line(x0, x1, y0, y1) 
int deltax := abs(x1 - x0) 
int deltay := abs(y1 - y0) 
real error := 0 
real deltaerr := deltay / deltax
int y := y0 
for x from x0 to x1 

plot(x,y) 
error := error + deltaerr
if error ≥ 0.5 

y := y + 1 
error := error - 1.0



Bresenham’s line drawing 
algorithm

• Now, convert algorithm to only using integer computations

• Trick: multiply the fractional number, deltaerr, by deltax
– enables us to express deltaerr as an integer. 

– The comparison if error>=0.5 is multiplied on both sides by 2*deltax

Ulf Assarsson © 2006

Old float version:

function line(x0, x1, y0, y1) 
int deltax := abs(x1 - x0) 
int deltay := abs(y1 - y0) 
real error := 0 
real deltaerr := deltay / deltax 
int y := y0 
for x from x0 to x1 

plot(x,y) 
error := error + deltaerr 
if error ≥ 0.5 

y := y + 1 
error := error - 1.0

New integer version:

function line(x0, x1, y0, y1) 
int deltax := abs(x1 - x0) 
int deltay := abs(y1 - y0) 
real error := 0 
real deltaerr := deltay
int y := y0 
for x from x0 to x1 

plot(x,y) 
error := error + deltaerr 
if 2*error ≥ deltax 

y := y + 1 
error := error - deltax

Multiply by deltax

Multiply by 2 deltax

Multiply by deltax

error implicitly mult by deltax



The first case is allowing us to draw 
lines that still slope downwards, but 
head in the opposite direction. I.e., 
swapping the initial points if x0 > 
x1.

To draw lines that go up, we check if y0 
>= y1; if so, we step y by -1 instead 
of 1.

To be able to draw lines with a slope 
less than one, we take advantage 
of the fact that a steep line can be 
reflected across the line y=x to 
obtain a line with a small slope. The 
effect is to switch the x and y 
variables.

function line(x0, x1, y0, y1) 
boolean steep := abs(y1 - y0) > abs(x1 - x0) 
if steep then 

swap(x0, y0) 
swap(x1, y1) 

if x0 > x1 then 
swap(x0, x1) 
swap(y0, y1) 

int deltax := x1 - x0 
int deltay := abs(y1 - y0) 
int error := 0 
int ystep
int y := y0 
if y0 < y1 then ystep := 1 else ystep := -1 
for x from x0 to x1 

if steep then plot(y,x) else plot(x,y) 
error := error + deltay
if 2×error ≥ deltax

y := y + ystep
error := error - deltax

Complete Bresenham’s line 
drawing algorithm

Ulf Assarsson © 2006

Swap loop axis

Swap start and end 
points


