Scan Conversion of Line Segments

« Start with line segment in window coordinates with integer
values for endpoints

* Assume implementation has a write pixel function

(XQ.«'Y )

y=kx+m \\\ﬂ/ /’/
Ay
P Ay e
A_x /(X] Y])




DDA Algorithm

* Digital Differential Analyzer

/

/

/

/(X] )’])

el

Ax

_DDA was a mechanical device for numerical solution of

differential equations
—Line y=kx+ m satisfies differential equation
dy/dx = k = Ay/AX = Y-y /Xo-X4
* Along scan line Ax = 1

y=yl;

For (x=x1,; x<=x2,1ix++) {
write pixel (x, round(y),
v+=k;

}

line color)




Problem

* DDA = for each x plot pixel at closest y

—Problems for steep lines
i

/

/
!




Using Symmetry

eUsefor1>k=>0

Fork > 1, swaprole of xand y
—For each y, plot closest x

[

/

/
!




* The problem with DDA is that it uses floats which was
slow in the old days

* Bresenhams algorithm only uses integers



Bresenham'’s line drawing
algorithm

The line is drawn between two points (x,, y,)

and (x,, ¥;) (v —1,)
Slope k= Y17 Vo (y = kx + m)
(X, —x,)

Each time we step 1 in x-direction, we should increment y with k.
Otherwise the error in y increases with k.

If the error surpasses 0.5, the line has become closer to the next y-

value, so we add 1 to y, simultaneously decreasing the error by 1
function line(x0, x1, y0, y1)
int deltax := abs(x1 - x0)
int deltay := abs(y1 - y0)
real error ;=0
real deltaerr := deltay / deltax

. ._ See also
inty :=y0 http://en.wikipedia.org/wiki/Bresenham's_line algorithm
for x from x0 to x1

plot(x.y)

error := error + deltaerr
if error > 0.5
y=y+1

error := error - 1.0
UIf Assarsson © 2006



Bresenham'’s line drawing
algorithm

* Now, convert algorithm to only using integer computations

» Trick: multiply the fractional number, deltaerr, by deltax
— enables us to express deltaerr as an integer.
— The comparison if error>=0.5 is multiplied on both sides by 2*deltax

Old float version: New integer version:
function line(x0, x1, y0, y1) function line(x0, x1, y0, y1)
int deltax := abs(x1 - x0) int deltax := abs(x1 - x0)
int deltay := abs(y1 - y0) int deltay := abs(y1 - y0)
real error :=0 real error :=0
real deltaerr := deltay / deltax real deltaerr := deltay €———— Multiply by deltax
inty:=y0 inty:=y0
for x from x0 to x1 for x from x0 to x1
plot(x,y) plot(x,y)
error ;= error + deltaerr error := error + deltaerr €= error implicitly mult by deltax
if error> 0.5 if 2*error > deltax ~ € Multiply by 2 deltax
y:=y+1 y=y+1
error := error - 1.0 error := error - deltax €———— Multiply by deltax

UIf Assarsson © 2006



Complete Bresenham’s line
drawing algorithm

function line(x0, x1, y0, y1)
boolean steep := abs(y1 - y0) > abs(x1 - x0)

if steep then head in the opposite direction. l.e.,
SwaPEX(l)a y(l); Swap loop axis s:vapping the initial points if x0 >
swap(xl, x1.

if x0 >I;(1 thgn To draw lines that go up, we check if yO
>=y1; if so, we step y by -1 instead
of 1.

To be able to draw lines with a slope
less than one, we take advantage
of the fact that a steep line can be
reflected across the line y=x to
obtain a line with a small slope. The

The first case is allowing us to draw
lines that still slope downwards, but

swap(x0, x1)
swap(y0, y1)
int deltax := x1 - x0
int deltay := abs(y1 - y0)
int error ;=0

Swap start and end

int ystep effect is to switch the x and y
inty =y0 variables.
if y0 <yl then ystep := 1 else ystep = -1
for x from x0 to x1
if steep then plot(y,x) else plot(x,y) ><

error ;= error + deltay
if 2xerror > deltax

y =y tystep
error := error - deltax UIf Assarsson © 2006



