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Preface
This booklet is intended to be used for self-studies while taking the course Machine
Oriented Programming. The text will give a quite brief introduction to the C pro-
gramming language, with a focus on practical examples. The reader is assumed to
have some experience with imperative programming and to have knowledge of basic
computer technology.
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1
Introduction

In this chapter, we will introduce the C programming language by examining a
small first program. Before continuing, make sure you have installed the course’s
development tools and that you are comfortable compiling and running a C program
on your host computer (not cross compiling a program for running on the simulator).

1.1 A short history of the C Programming Lan-
guage

Translation of Roger’s history.

1.2 A simple C program
C is a procedural programming language which means that the program’s state can
be changed by executing some procedure. A procedure, in this context, is simply a
subroutine or, as they are called in C, a function. Specifically, every C program1

must contain exactly one function called main, where the program starts.
To introduce the structure of a C program, we will start by looking at a very small
example. Type the following program into your development environment, and make
sure you can compile and run it.

1 #include <stdio.h>
2

3 // A function that calculates the square of the input
4 int square(int x)
5 {
6 return x * x;
7 }
8

9 int number = 5;
10

11 void main(int argc, char **argv)
12 {
13 int square_of_number = square(number);

1Actually, as you will learn later in the course, the very first code to run is usually some
initializing startup code, but this is usually hidden from the programmer.
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1. Introduction

14 printf("The square of %i is %i.\n", number, square_of_number);
15 }

Starting from line one, we see that the program begins with an #include statement:

#include <stdio.h>

This line says that the contents of the file stdio.h will be included at the top
of this c file before compilation. This file is part of the C Standard Library (see
Section 3.5.1) and contains declarations of a number of useful functions that deal
with user input and output. This is similar to they way the import statements work
in Java or Python but, as will be seen in Section 3.1, the #include statement is
much more rudimentary.
The next line:

// A function that calculates the square of the input

is just a comment. Comments can either begin with // and end on the end of the
line, or be enclosed between a /* and */. Comments are completely ignored by the
compiler and are only used to make the code easier to understand.

int square(int x)
{

return x * x;
}

Next, we define a function. The function is called square and has one integer
parameter (named x). It calculates x * x and returns the result as an integer. This
is a function definition, meaning that we provide the code that will be run when
the function is called. In many cases (as in the stdio.h file included earlier), we
only provide a function declaration which tells the compiler the name, return type
and parameters of a function that is defined elsewhere (later on in the file, or in a
different file). Functions are described in more detail in Section 2.1, and the way
code is combined from different files is discussed in Chapter 3.

int number = 5;

Here, we declare a global variable of type int (a four-byte integer), and assign
the value 5 to it. This variable will have its position in memory allocated during
compilation and will exist throughout the whole program. The actual location of
variables in memory will be discussed in Section 4.1.

void main(int argc, char **argv)
{

int square_of_number = square(number);
printf("The square of %i is %i.\n", number, square_of_number);

}

4



1. Introduction

We now provide the function definition of the main function. This is where program
execution will start. This function returns void, which is how we write in C that
it does not return anything. There are two parameters: an integer argc, that
says how many arguments where provided to the program on the command line,
and a second parameter argv which is a pointer (a memory address) to an area in
memory containing argc other pointers, each of which point to a string of characters
containing an argument that was given to the program on the command line. The
use of pointers to refer to variables in memory is an important part of C, and is
usually the most difficult part for beginners to grasp. We will discuss pointers in
more detail in Chapter 4.
Next, we define a new integer variable, square_of_number, also of type int. Because
it is defined inside a function, this is a temporary variable which only exists (on the
stack, or in registers) while we are executing this function. We call the function
square with the global variable number as an argument, and store the returned
value in square_of_number.
Finally, we print the result to the console. This is achieved by calling the function
printf which has been declared in the stdio.h file. The printf function takes as
its first argument a string2. Within this string we have inserted tags, on the form
”%i”. The first such tag means that printf should substitute the tag with the value
of the second parameter and that that parameter is of type int. The next tag will
be substituted for the third parameter, and so on3. The final two characters in the
string, ”\n”, denote a newline character and mean that the next text sent to the
console will appear at the beginning of the next line.
As you can see, the general structure and syntax of a C program is very similar
to other imperative languages, but there are a number of details that will need
further clarification and that is what this compendium is for. It is not intended as
a complete reference to the C language. There are several books and online sources
that delve much deeper, and provide online learning examples. We urge you to use
these resources if you find some topic in this compendium challenging. Two good
starting points are:
https://www.w3schools.com/c/index.php
https://www.programiz.com/c-programming
https://www.tutorialspoint.com/cprogramming/index.htm

That said, this text is meant as a supplement to the Course book, and it will
hopefully be sufficient for this course. As we are sure you already know, simply
reading through the chapters will not get you very far, however. But make sure to
code through the assignments in the course, and C might soon be your favourite
language (until you discover C++).

2To be precise, it takes a pointer to a string of characters (bytes) in memory.
3A detailed description of printf is found on, e.g., https://cplusplus.com/reference/

cstdio/printf/
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2
Basic C Language

In this chapter, we will go through the basic structure of the C programming lan-
guage.

2.1 Functions

2.1.1 Calling, Declaring and Defining a function
All code in a C program resides in a function. To call a function, it must have been
declared earlier in the C file being compiled. A function declaration looks like:

<return type> function_name(<parameter 1 type> parameter_1_name,
<parameter 2 type> parameter_2_name,
...);

So, if we for instance want to create a function called max that returns the maximum
of two integers, we could declare it as:

int max(int a, int b);

This only tells the compiler that there is a function called max that takes two integers
as parameters and returns an integer. We have not yet implemented or defined the
function. Declaring a function, without giving the definition, is necessary if the
function definition resides in a different C file, or if lies after the calling function1.

1 int max(int a, int b); // Function declaration
2

3 void main(int argc, char **argv)
4 {
5 int a = max(2, 3); // Function call
6 }
7

8 // Function definition
9 int max(int a, int b)

10 {
11 if(a > b) return a;
12 else return b;
13 }

1It sometimes has to. Consider the case where function a() calls b(), which then calls a()
again.
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2. Basic C Language

In the example above, the function max is first declared on line 1. This allows us
to call the function on line 5. Finally, starting on line 9, we define the function by
providing the code that shall be run.
A function can only be defined once, in one file, in a C program but needs to be
declared before it can be called in all C files that need to call it. Note that a function
definition also counts as a declaration, so the following code is perfectly valid:

1 int max(int a, int b) // Function declaration AND definition
2 {
3 if(a > b) return a;
4 else return b;
5 }
6 void main(int argc, char **argv)
7 {
8 int a = max(2, 3); // Function call
9 }

2.1.2 Function parameters
Unlike most modern languages (including C++), C only allows passing function
parameters by value. That means that every time you call a function in C, the
parameters are copied to the called function. Any changes that happen to the
variables in the called function are local to that function:

1 void f(int a) {
2 a = 5;
3 }
4 void main()
5 {
6 int x = 0;
7 f(x);
8 printf("x = %i\n", x);
9 }

This program will print x = 0 to the console. When calling function f on line 7,
the value of x was copied into the parameter a and when that value is changed on
line 2, the value of x in main is not affected.
It is not uncommon that we want a function to change the value of a parameter.
Consider a function swap(x, y) that should simply swap the values of x and y. The
following code:

1 void swap(int x, int y) {
2 int tmp = y;
3 y = x;
4 x = tmp;
5 }
6 void main()
7 {
8 int a = 5, b = 2;
9 swap(a, b);

8



2. Basic C Language

10 printf("a = %i, b = %i\n", a, b);
11 }

would not not accomplish anything, and would output a = 5, b = 2.
The solution, in C, is to use pointers. Pointers will be discussed in detail in Sec-
tion 4.2, but we will take this opportunity to show one case where they are useful.
A pointer is the address of a variable. If we send (copies of) the addresses of a and
b to the function sort, we can modify their values and get the expected result.

1 void swap(int *x, int *y) {
2 int tmp = *y;
3 *y = *x;
4 *x = tmp;
5 }
6 void main()
7 {
8 int a = 5, b = 2;
9 swap(&a, &b);

10 printf("a = %i, b = %i\n", a, b);
11 }

This code would output a = 2, b = 5, but the syntax is probably quite confusing
at the moment. We will return to this example later.

2.2 Basic Data Types
The only built-in data types in C are integers and floating point numbers. Anything
more complex, such as a data type describing a player in a game, or the properties
of some device, are built from these basic types using structs, arrays, and unions,
as descibed in Chapter 5.
In addition to choosing whether a variable should be integer or floating point, we
also have to specify how many bytes it should occupy (i.e., its range) and, in the
case of integers, whether it should be signed or unsigned. For historical reasons,
the C specification allows for a number of more or less confusing ways of describing
integer types, but Table 2.1 describes the ones we will use in this course.
If you do not prefix your data type with signed or unsigned, it is assumed to
be signed except if it is a char (a one byte integer), in which case its signedness
depends on the architecture (!). Because the notation can be somewhat confusing, it
is common to include the file stdint.h which allows us to use the short, descriptive
names listed in the last column of Table 2.1.
The floating-point data types are simpler and consist only of float or double for
the 4 and 8 byte data types respectively.

2.2.1 Type Casting
We often have to convert from one data type to another. This can be done either
implicitly or explicitly:
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2. Basic C Language

Table 2.1: Integer data types

Integers
type range bytes short name
unsigned char 0 to 255 1 uint8_t
unsigned short 0 to 65535 2 uint16_t
unsigned int 0 to 232 − 1 4 uint32_t
unsigned long long 0 to 264 − 1 8 uint64_t
signed char -127 to 127 1 int8_t
signed short -32767 to 32767 2 int16_t
signed int (−231 + 1) to (231 − 1) 4 int32_t
signed long long (−263 + 1) to (263 − 1) 8 int64_t

1 void main()
2 {
3 float a = 200.501f;
4 int b = a;
5 unsigned char c = a * b;
6 }

In the example above, on line 4 the value 200.5 is cast to an integer and stored in
variable b. Since an integer cannot store a floating point value, it will be truncated
to 200. On the next line b is first promoted to a floating point number, then a *
b is calculated as a floating point number (40100.2), then that value is cast to an
unsigned char and stored in the variable c. Since an unsigned char can only store
values up to 255, only the lowest byte of the result (0xA4) will remain in c.
If this seems a bit complicated, that is because it is. The C specification has a large
number of very strict rules about what happens, and in what order, when casting
between datatypes, but it can be hard to remember. Therefore, it is often better to
explicitly describe what casts should be done:

1 float a = 200.501f;
2 int b = (int) a;
3 unsigned char c = (unsigned char)(a * (float) b);

2.3 Conditional execution
Choosing whether to execute code depending on some condition in C is similar
to most high level languages. The if and switch statements are exemplified in
Figure 2.1.
Note the break statement when using switch. It means that you should break out
of the switch statement. If you forget that, the code will continue to execute the
subsequent case statements, which can be used to your advantage in some cases,
but is also a very common source of bugs.
One important thing to note, is that there is no true or false datatype in C.
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2. Basic C Language

if statement:
1 if(a == 5) {
2 printf("a is 5");
3 }
4 else if(a == 4) {
5 printf("a is 4");
6 }
7 else if(a == 3) {
8 printf("a is 3");
9 }

10 else {
11 printf("a is something else");
12 }

switch statement:
1 switch(a) {
2 case 5: printf("a is 5"); break;
3 case 4: printf("a is 4"); break;
4 case 3: printf("a is 3"); break;
5 default: {
6 printf("a is something else");
7 break;
8 }
9 }

10
11
12

Figure 2.1: The if and switch statements. Both code snippets would
produce the same result.

Instead, the result of a comparison is always an integer, with 0 meaning false and any
other number meaning true. You will see examples of where this can be important
in the following sections.

2.3.1 Conditional operator
In some simple cases, when a variable is to be assigned a value based on some
condition, the conditional operator can be a cleaner way to express your intention:

1 // Conditional operator:
2 // <variable> = <condition> ? <if condition is true> : <if condition is false>;
3 // Example:
4 int a = (b > 5) ? 20 : 30; // a is 20 if b is more than 5 and 30 otherwise

2.4 Iterations
Writing code that iterates or loops is also very similar to other imperative languages.
The for and while loops are exemplified in Figure 2.2.

for statement:
1 int pow(int v, int p) {
2 int result = 1;
3 for(int i=0; i < p; i++) {
4 result = result * v;
5 }
6 return result;
7 }
8
9

while statement:
1 int pow(int v, int p) {
2 int result = 1;
3 int i = 0;
4 while(i < p) {
5 result = result * v;
6 i += 1;
7 }
8 return result;
9 }

Figure 2.2: The for and while statements. Both code snippets would
produce the same result.

The for statement is generally used when we are iterating a known number of times,
and the while statement is used when we only know that we should loop until some
condition is met. In either case, we can use the break statement to immediately
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2. Basic C Language

break out of the loop, or the continue statement to jump back to the beginning of
the loop:

1 int rand(); // Expecting this function to exist elsewhere
2 // and that it returns a random number.
3 void main(void) {
4 // Count the number of positive numbers we get
5 // before we get a zero
6 int result = 0;
7 while(1) {
8 int v = rand();
9 if(v < 0) continue;

10 result += 1;
11 if(v == 0) break;
12 };
13 }

2.4.1 The infamous goto statement
Unlike most other modern languages, C actually has a goto statement, which works
exactly like the ”jump” or ”branch” instruction in assembler. This sort of low level
statement has been removed from modern languages because it provides a very easy
way to write completely undebuggable code, and we recommend that you forget
that you ever saw this small section and never use it.

2.5 Operators
Most of the operators in C will be well known to you, if not from previous coding
experience then from maths, and we will not go through all of them in detail as they
can be easily found on the internet2. We will only quickly go through the different
classes, and highlight some important details:

2.5.1 Arithmetic Operators, +, -, *, etc
We have already seen these used in the text and you probably know how they work.
Worth noting are the increment and decrement operators, and making sure you
understand the modulus operator.

1 int a = 10, b = 3;
2 int c = a + b; // Addition
3 int d = a - b; // Subtraction
4 int e = a * b; // Multiplication
5 int f = a / b; // Division
6 int g = a % b; // Modulus (remainder of an integer division)
7 int h = a++; // Increment Operator (assign a to h, then increment a)
8 int i = ++a; // Increment Operator (increment a, then assign a to i)
9 int j = a--; // Decrement Operator (assign a to j, then decrement a)

10 int k = --a; // Decrement Operator (decrement a, then assign a to k)

2e.g.: https://www.tutorialspoint.com/cprogramming/c_operators.htm
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2. Basic C Language

2.5.2 Relational Operators, ==, !=, >, <, >=, <=

These are the operators we use to compare variables and they are all probably known
to you. Remember that, in C, the result of a relational operator is an integer (0 if
false and 1 otherwise), so you might see expressions such as:

int a = 20 + (a > c); // 21 if a is more than c

2.5.3 Logical Operators, &&, ||, !

These are logical operators and are mostly used as in other languages:

if(a && b) // If a is non-zero AND b is non-zero
if(a || b) // If a OR b is non-zero
if(!a) // If a is NOT non-zero (i.e., if a is zero)

2.5.4 Bitwise Operators, &, |, ˆ, ∼, «, »

The bitwise operators are easy to confuse with the logical operators, but they are
not the same thing. The result of these operators are not a boolean value, but an
integer where the operation has been performed per bit. While these operations
look the same in most modern languages, you may not have come across them as
often, and they will be very important in this course, so make sure you understand
the following:

// Assume a = (binary) 10101010 and b is 00001111
c = a & b; // Bitwise AND, c == 00001010
c = a | b; // Bitwise OR, c == 10101111
c = a ^ b; // Bitwise XOR, c == 10100101
c = ~a; // Binary one's complement, c = 01010101
c = a << 2; // Left shift operator, c = 10101000
c = a >> 6; // Right shift operator,

// c = 00000010 if a is unsigned
// c = 11111110 if a is signed

2.5.5 Assignement Operators
There are several short-hand assignment operators that do an assignement and an
operation in the same operator. A few examples:

c += b; // Same as c = c + b
c <<= b; // Same as c = c << b
c ^= b; // Same as c = c ^ b

13



2. Basic C Language

2.5.6 Precedence of operators
There are strict rules for which operators take precedence in C. For example, a = b
* c + d means that we first multiply b and c, then add d. These rules are hard to
remember for every single operator, however, and it is usually a good idea to make
precedence clear using parentheses whenever precedence is not absolutely obvious.
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3
Compilation

In this chapter, we will explain how the C code is turned into a binary file that can
be executed on the computer. We will then go on to explain how libraries are created
in C, and talk about the C standard library, that accompanies any C compiler.
To describe the process of compiling a whole C program, we will use a small example,
consisting of a few files:

functions.h:
1 float function(float a);

math.h:
1 float pi_squared();

main.c:
1 #include "functions.h"
2 void main()
3 {
4 float a = function(2.0f);
5 }

functions.c:
1 #include "math.h"
2 float function(float a)
3 {
4 return a * pi_squared();
5 }

math.c:
1 #define PI 3.14
2 float pi_squared()
3 {
4 return PI * PI;
5 }

Figure 3.1: The source files of our program

The program consists of three C files: main.c, functions.c, and math.c. With each
C file (except main.c) there is an accompanying .h file, that declares the functions
that we want to be visible to other .c files.
Normally, when compiling a program from inside an Integrated Development Envi-
ronment (IDE), like CodeLite or Visual Studio Code, we simply press the ”build”
button and do not have to care much about what actually happens. In this chapter,
however, we will go through the actual compilation steps, since it can be very useful
to know how this works when things go wrong.

3.1 Preprocessor
The first step in compiling a program is to run the preprocessor on all .c files. We
can invoke the preprocessor alone on the command-line like this:
gcc -E -P main.c -o main.i
gcc -E -P functions.c -o functions.i
gcc -E -P math.c -o math.i

Figure 3.2 shows the resulting three files.
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3. Compilation

main.i:
1 float function(float a);
2 void main()
3 {
4 float a = function(2.0f);
5 }

functions.i:
1 float pi_squared();
2 float function(float a)
3 {
4 return a * pi_squared();
5 }

math.i:
1
2 float pi_squared()
3 {
4 return 3.14 * 3.14;
5 }

Figure 3.2: The result of running the preprocessor on the .c files

3.1.1 #include
As you can see, the job of the preprocessor is mostly quite simple. When it comes
across an #include ”filename” statement, it will simply cut and paste the contents
of the provided file into the .c file being preprocessed. For example, in main.i,
it has removed the include statement and inserted the function declatation from
functions.h.
It is important to realize that the preprocessor is not smarter than this. Whatever
text is in the included file will be inserted, in its entirety, into the preprocessed file.

3.1.2 #define
The file math.c begins with the statement #define PI 3.14. This tells the pre-
processor that whenever it comes accross the word ”PI”, in the subsequent code, it
will replace it with the text ”3.14”. Note that this is very different from declaring a
variable called PI and assigning a value to it. The preprocessor does not understand
the code at all, it simply replaces text, exactly as it has been told.
The define statement can also be used to construct slightly more complex macros,
but we will not come across them in this course. A more in-depth explanation can
be found at, e.g., https://www.tutorialspoint.com/cprogramming/c_preprocessors.htm.

3.2 Compiler
The next step is to take the preprocessed .i files and generate assembly code1. This
is the job of the Compiler. We can run the compiler to produce assembly files with:
gcc -S main.i
gcc -S functions.i
gcc -S math.i

The resulting assembly files are listed in Figure 3.32.
You are not expected to understand this assembly code, but we will note a few
important things about them. First, we can compile, for instance, the main.i file
into assembly code indepenently of the other files. To create the assembly code for

1In practice, the compiler might skip creating the actual assembly code and merge the compi-
lation step with the assembler step that produces machine code, but sometimes it is very handy
to see the human readable assembly code.

2The output has been stripped of irrelevant lines and comments
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main.s:
1 main:
2 push {fp, lr}
3 add fp, sp, #4
4 sub sp, sp, #8
5 mov r0, #1073741824
6 bl function
7 str r0, [fp, #-8]
8 nop
9 sub sp, fp, #4

10 pop {fp, lr}
11 bx lr
12
13
14
15

functions.s:
1 function:
2 push {fp, lr}
3 add fp, sp, #4
4 sub sp, sp, #8
5 str r0, [fp, #-8]
6 bl pi_squared
7 mov r3, r0
8 ldr r1, [fp, #-8]
9 mov r0, r3

10 bl __aeabi_fmul
11 mov r3, r0
12 mov r0, r3
13 sub sp, fp, #4
14 pop {fp, lr}
15 bx lr

math.s:
1 pi_squared:
2 str fp, [sp, #-4]!
3 add fp, sp, #0
4 ldr r3, .L3
5 mov r0, r3
6 add sp, fp, #0
7 ldr fp, [sp], #4
8 bx lr
9 .L4: .align 2

10 .L3: .word 1092478984
11
12
13
14
15

Figure 3.3: The result of running the compiler on the .i files

main.i, the compiler needs to know the there exists a function called function,
that it returns a float, and that it takes a float as parameter, but it does not need
to know what that function does.

Secondly, this assembler code can be created without any knowledge of where this
code will reside in memory. Connecting the symbols between the assembly files
and placing them at specific places in memory is the job of the Linker and will be
described in Section 3.4.

In larger projects, it is very important that we can recompile a single .c file and
that we do not have to recompile all files, whenever one of them changes.

3.3 Assembler

The next step is to assemble all of the .s files into object files. This can be done on
the command line with:

as -c main.s
as -c functions.s
as -c math.s

An object file is a binary file3, containing the machine code that will eventually run
on the processor. Note, however, that this file is not an executable program. We
still don’t know the final addresses of variables and functions. The ”bl function”
command in main.s, for instance, has been assembled into the appropriate machine
code for the bl instruction, but the address it should jump to is not yet available.

3The actual format of this file depends on the compiler. gcc will produce files on the ELF
format.
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3.4 Linker
The final step in producing our executable program is called linking the program.
The linker takes as input all of the object files, and produces an executable:
ld main.o functions.o math.o -o program

The linker’s main job is to arrange the code in memory, and turn all symbols (such
as the call to a function called function) into actual memory addresses.
If you have run all of these commands on your host computer, with the appropriate
gcc toolchain, the output will be an executable file that will run on your operating
system (although it won’t actually do anything visible). If you are cross-compiling
for another machine (like the lab computer) and have used the appropriate gcc
toolchain this last linking stage will not quite work. You will also have to supply
some flags to inform the compiler that it should not expect to find a runtime library
(see Section 3.5.2), and you would need to supply a linker script that tells the linker
in what part of memory to place the functions and variables and where to start
running the code. This is discussed in the Course book (Chapter 6).

3.5 Libraries
When writing larger programs, it is common to bundle some of your code into
libraries, i.e., precompiled binaries that can be developed separately and linked with
your program. This is also often the way C code is distributed over the internet. A
library in C is just a collection of object files, merged into one single ”library” file,
along with a header file that contains the function declarations that are needed to
use the library.
If we wanted to create a library so that someone else could use the functions we
created for our toy program in Figure 3.1, we could do that in the command line as:

gcc -c functions.c math.c
ar cr libfunctions.a functions.o math.o

The first line compiles the .c files directly into object (.o) files. The second line
bundles these object files into a single file called libfunctions.a. We can now copy
our library into some other directory, along with the functions.h file. Note that
we do not supply the math.h file, as we consider that internal to the library and
that it should not be used from outside. Finally, we can use this library in any other
program by calling, for example:

gcc main.c -L./libpath/ -I./libpath/ -lfunctions -o program.exe

There are a few things to note on this line. First, we are telling gcc to preprocess,
assemble, compile, and link, all in one go, and (with the -o flag) to output a single
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executable called program.exe. We also supply the -L and -I flags. They tell the
compiler about an extra directory to look for libraries and include files, respectively.
Finally, we use the -l flag to tell gcc to link with the library called libfunctions.a
(it is just gcc convention that the file containing the library is called lib<name>.a
and to only supply the name on the command line).

3.5.1 C standard library
The C standard library (often called libc) is an important library that follows any
C compiler distribution. It is a collection of functions and macros that help with IO,
maths, memory management, etc. For example, it supplies the include file stdio.h
and the function printf that we used in Section 1.2. The C standard library is
described in a bit more detail in the Course book (Chapter 6). When compiling a
program with gcc, it links with libc by default. You can avoid this by adding the
-nolibc flag when compiling.

3.5.2 Runtime library
The C standard library is meant to be easily portable between systems, but how can
we have a portable version of printf if it is supposed to write to a console window
on you Windows machine, and to a small ASCII display on your lab computer? This
is achieved by having a separate library, the runtime library that takes care of all
low level mechanisms. As an example, the printf implementation in libc expects
there to be an external function called _write that takes care of putting characters
onto some kind of output device. The _write function must be implemented by the
runtime library, for the standard library to work. How to create a small runtime
library for the lab computers is also discussed in the course book (Chapter 6).

3.5.3 Compiler Library
Another library that is usually linked with by default is the compiler library. This
library is supplied by the compiler and contains precompiled code that may or may
not be used depending on the target we compile for. For example, some small
ARM processors do not have floating point hardware. If the programmer asks for,
e.g., a floating point multiplication, the compiler then has to resort to doing this
multiplication in software, and this is achieved by calling an existing function (you
can find one such call in Figure 3.3)

3.6 Build Systems
A commercial computer program can easily consist of thousands of different C and
header files, and manually typing all these commands for each file would be much
too time consuming. Moreover, a large program can take quite some time to compile
from scratch, and it can be very hard for a human to know exactly which files need
to be recompiled when one file has been changed. This quickly led to the invention
of build systems or build automation tools. One of the first, and for a long time the
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most ubiquitous was make. This is a program that reads a single file (the makefile)
where the user has written information about which include files each C file depends
on, which C files make up each library, and so on. This was soon followed by software
that could automatically parse the C files and generate makefiles. These days, the
build system is often hidden by the IDE, but oftentimes a program has to compile
on a number of different platforms, with different IDEs and build tools. In such
cases it is common to use very large tools, such as CMake, which will read a high
level description of the project structure and create the build files needed for any
platform.
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4
Memory, Arrays, and Pointers

In this chapter, we will describe how variable data is actually stored in memory, and
how C uses pointers and arrays to access elements in lists and strings.

4.1 Variables location in memory
In C, and especially in machine oriented programming, it is often important to know
where in memory variables reside. If a variable resides on the stack, for example, it
can be very dangerous to store the address of that variable and try read or change it
later in the program, when the stack’s contents represent something different. Let’s
consider another toy C program:

1 int a = 5;
2 int b;
3

4 int count(int v) {
5 if(v == 0) return 0;
6 return 1 + count(v - 1);
7 }
8

9 int main()
10 {
11 b = 20;
12 int c = count(a + b);
13 }

The variables a and b are both global variables, and their location in memory is
known when the program starts. These variables will reside in the same place in
memory throughout the execution of the program and can be read and written from
anywhere. The variable a is assigned a value when it is declared in the global scope,
and will be copied from the executable file into the initialized data area which, in
memory, will come right after the program code. The variable b is not initialized,
and will be allocated a space in the uninitialized data area. The required size of
this area is known from the executable file, and it will be initialized to 0 when the
program starts.
All other variables in the program are declared inside functions. These are called
local variables and will only ”exist” while the function is executing. Usually, this
means that they will exist on the stack, which grows every time a function is called,
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and shrinks when the function returns. In some cases, local variables do not need
to reside in memory at all, but only exist temporarily in processor registers.

4.1.1 Static and Constant variables
In some cases, we want a variable that ”exists” throughout the program, but that
is only visible in a specific function or scope. This is achieved using the static
qualifier:

1 int counted_function(int v) {
2 static int times_the_function_has_been_called = 0;
3 times_the_function_has_been_called += 1;
4 ...
5 }

A variable declared as static will reside in the initialized or uninitialized data area,
just like a global variable, but is only visible in the scope that it was declared (i.e.,
the compiler will produce an error if we try to access it from outside the scope).
Both global and local variables can also be qualified by the keyword const:

1 const int a = 5;
2 int function(int v) {
3 const int b = 20;
4 ...
5 }

Using const, we are telling the compiler that this variable will not change, and
trying to assign a new value to that variable will produce an error. const variables
will reside either in the initialized data area or in the text area (with the program
code). In either case, they may be placed in read-only memory.

4.2 Pointers
The use of pointers in C is usually the hardest part of the language for beginners
to grasp. Understanding pointers is completely necessary for C to become a useful
programming language, however. In this section, we will introduce the concept, and
in the next sections we will go through some uses and examples.
A pointer is a special variable containing a memory address that points to another
variable somewhere in memory. We will illustrate this in a small example in Fig-
ure 4.1.
At line 1, we create a global integer variable called b and initialize it with the value
20. It will reside at the first memory location in the initialized data area when
we start the program. In this example, the address where b resides in memory is:
0x2100.
Then, on line 2, we create another variable called ptr_to_b. The type of this
variable is int *. The asterisk here means that ptr_to_b is of the type ”pointer
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1 int b = 20;
2 int * ptr_to_b = &b;
3 int main()
4 {
5 // At this line, b == 20
6 *ptr_to_b = 40;
7 // At this line, b == 40
8 }

Figure 4.1: Example code and the memory contents before line 5.

to integer”. This variable resides in the next available memory in the initialized
data area, address 0x2104. We immediately initialize this variable to be &b. The
ampersand (&) here means ”the address of b”, so the value stored att memory address
0x2104 is 0x2100.
Now, at line 6, we dereference the variable ptr_to_b and assign a new value to it.
Dereferencing a pointer means ”give me the variable that this pointer points to”,
and is done by putting an asterisk in front of the pointer 1

So when the compiler sees ”*ptr_to_b = 40” it will look read the value stored at
0x2104 and read that as a memory address (0x2100). It then assigns the value 40 to
the integer at that memory address. Therefore, the next time we read the variable
b (which resides at memory address 0x2100) we will read the value 40.
If you feel lost at the end of this section, take a deep breath and try again. It is
essential to understand that a pointer is a variable containing the address of another
variable, of a specific type. Once that is clear, working with pointers will become
second nature.

4.3 Accessing absolute memory addresses
One reason that pointers are important in machine oriented programming is that
they allow us to express reading and writing from arbitrary memory addresses.
When we do not have an operating system and drivers, the only way for the pro-
cessor to communicate with peripheral hardware is through memory load and store
operations.
Let us consider a new toy example, where we know that out program is loaded into a
32kb SRAM chip that is mapped to addresses 0x20000000 - 0x20007FFF. We also
know that there is a second 128kb SRAM chip mapped to addresses 0x30000000 -
0x3001FFFF. Our program needs to read some data into memory for future process-
ing. Since there is a lot of data to read, it will not fit together with our program on
the smaller SRAM, so we will put it on the larger SRAM.

1So, in a statement, the asterisk means "dereference", but in a declaration it means "is a pointer".
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1 char ReadValue(); // We expect this function to exist in some other file.
2 int main()
3 {
4 unsigned int BIG_SRAM_ADDRESS = 0x30000000;
5 char * output_pointer = (char *) BIG_SRAM_ADDRESS;
6 for(int i=0; i<44100; i++) {
7 *output_pointer = ReadValue();
8 output_pointer = output_pointer + 1;
9 }

10 }

On line 4, we store the known starting address of the larger SRAM into an unsigned
integer. Then, on line 5, we define a pointer, output_pointer, to that address, and
specify that it points to a char value (a byte). Next, we want to read one value at
a time and place each value on the next available memory position.
In the loop that follows, we read one value and place it at the address that output_pointer
points to, by dereferencing the pointer (Line 7). On Line 8, We then increase the
pointer by one (so that it points to the next byte in memory), and repeat the process
until all values have been read.

4.3.1 Volatile Pointers
Another situation where absolute memory accesses are necessary is when writing
to, or reading from, hardware registers and ports. The only way the CPU has to
communicate with outside peripherals is through load and store operations. So
when, for instance, we want to read the current value from an external timer, we
will do that by reading a specific memory address that is mapped to that timer’s
register (this will be discussed in detail elsewhere in the course). The fact that this
value can change with no CPU interference introduces a problem for the compiler.
Consider the following code:

1 void WriteValue(char value); // We expect this function to exist in some
2 // other file
3 int main()
4 {
5 char * timer_value_pointer = (char *) 0x12340000;
6 while(1) {
7 char current_value = *timer_value_pointer;
8 WriteValue(current_value);
9 }

10 }

The code is supposed to read some timer value, from a specific port at some address,
and in every iteration of the loop it will write that value out somewhere (perhaps to
a bargraph). The problem is that the compiler will generally assume that all loads
and stores are memory accesses, and that the CPU it is running on is the only one
controlling that memory. Therefore, it can look at this code and realize that no one
is writing to the address we are reading all the time. Therefore, it might optimize
the code by doing the read (line 7) once outside of the loop.
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This is a perfectly good optimization in most programs, but since this particular
address is not connected to memory, but to an external timer, it would be disastrous
in this case. The simple solution to this is to use the volatile keyword:

7 volatile char * timer_value_pointer = (char *) 0x12340000;

This tells the compiler that this particular pointer points to an address that might
be changed from outside, and so can not be considered for this kind of optimization.

4.4 Pointer Arithmetic

In the example in Section 4.3, we used a pointer to a char (one byte) in memory.
There is a small but important point to be made about how arithmetic operations
work on pointers. Let’s say we have exactly the same toy program as before, but
the values we need to store are 32 bit floating point values, instead of bytes:

1 float ReadValue(); // We expect this function to exist in some other file.
2 int main()
3 {
4 unsigned int BIG_SRAM_ADDRESS = 0x30000000;
5 float * output_pointer = (float *) BIG_SRAM_ADDRESS;
6 for(int i=0; i<44100; i++) {
7 *output_pointer = ReadValue();
8 output_pointer = output_pointer + 1;
9 }

10 }

This code would work just fine, which might look weird considering line 8. Since
we are now reading and storing floating point values (four bytes), the address that
output_pointer points to must be increased by 4, in every iteration of the loop.
When adding x to a pointer, we are telling the compiler to add the size of the type
of element that the pointer points to to the address. So, for example:

1 int main() {
2 char * char_pointer = (char *) 0x20000000;
3 short * short_pointer = (short *) 0x2000000;
4 int * int_pointer = (int *) 0x20000000;
5 char_pointer += 1; // Now points to address 0x20000001
6 short_pointer += 1; // Now points to address 0x20000002
7 int_pointer += 1; // Now points to address 0x20000004
8 }

This might seem strange, but actually leads to much cleaner code in many cases.
Since pointers are often used to point out the starting address of a list of elements in
memory, and we add an offset from that address to access a specific element, there
is an alternative way of writing this is illustrated in the next example:
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1 float ReadValue(); // We expect this function to exist in some other file.
2 int main()
3 {
4 float * big_sram_pointer = (float *) 0x30000000;
5 for(int i=0; i<44100; i++) {
6 big_sram_pointer[i] = ReadValue();
7 }
8 }

The syntax ptr[i] is equivalent to *(ptr + i); It means ”Take the address that
ptr points, increase it by the size of i elements, and dereference that pointer”.

4.5 Arrays
In the previous sections, we have seen examples of iterating through a list of variables
(an array) when we know the absolute starting address of the list. Obviously, C
supports allocating arrays of elements without hard-coded addresses as well:

1 short value_array[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
2 int main()
3 {
4 int square_array[10];
5 for(int i=0; i<10; i++) {
6 square_array[i] = value_array[i] * value_array[i];
7 }
8 }

Hopefully, the syntax is fairly intuitive from your knowledge of other imperative
languages (e.g., Java). On the first line, we declare that we want an array of short
(2 byte) elements. The square brackets can be empty, because we immediately
define the values of the array on the same line (comma separated within the curly
brackets). Since this array is declared outside of any function, the memory for the
array will be allocated in the initialized data area. The compiler will count the
number of elements and knows the size of each element and allocates memory for
the array before the program starts. The variable value_array is a const pointer
to the first element of the allocated array.
On line 4, another array is declared. This time, no initial values are given and so the
size of the array must be given within the square brackets. Since this array is local,
it will be allocated on the stack and will only ”exist” while the function is running.
Note that, unlike higher level languages, an array in C is always of constant size,
since the compiler needs to know the size when producing the code2.
The program then enters a loop and, for each element, the i:th element in the first
array is squared and the result is stored in the second array. This is done, just as
in the previous sections, using the pointers to the start of the arrays in memory
(value_array and square_array).

2Allocating memory dynamically is possible, and common practice, when writing programs
for machines with operating systems. How this works is discussed in detail in the Course Book,
Chapter 6.
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4.5.1 Pointers as Function Parameters
Let’s say we want to isolate the code that squares the values of an array in a function.
This is done by passing the pointers to the start of the arrays as arguments to the
function:

1 void SquareArray(short * src_array, int * dst_array, int num_elements) {
2 for(int i=0; i<num_elements; i++) {
3 dst_array[i] = src_array[i] * src_array[i];
4 }
5 }
6

7 int main()
8 {
9 short value_array[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

10 int square_array[10];
11 SquareArray(value_array, square_array, 10);
12 }

After the call to SquareArray on line 11, the array square_array will contain
the squares, just as before. It is worth remembering here that we claimed in Sec-
tion 2.1.2 that all function parameters in C are sent by value. Yet, the contents of
square_array are changed after the function call. This is because the array itself
is not a function parameter. The parameter is a single pointer to the start of the
array, and that pointer is copied as a function parameter.
In the same way, we can use pointers to variables when we want to change the value
of ”a parameter” (where we would have used pass by reference, in other languages):

1 void swap(int * x, int * y) {
2 int temp = *y;
3 *y = *x;
4 *x = temp;
5 }
6

7 int main()
8 {
9 int a = 1, b = 2;

10 swap(&a, &b);
11 // a now equals 2 and b equals 1
12 }

This example was discussed in the introduction, but bears repeating now that you
have a better grasp of what pointers are. The function swap takes as input pointers
to two integers, which allows it to modify the values that they point at.

4.5.2 Strings
In C, there is no built-in or otherwise special datatype to represent strings. Instead,
a string is simply a certain number of characters stored contiguously in memory,
i.e., an array of char. Each character is represented by a single byte (which can
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have a value between 0 and 255) and each character is assigned a certain value. The
mapping between byte values and letters is defined in the ASCII standard3. This
standard also contains some non-characters. For instance, the byte value 10 means
”end of line” and the byte value 0 means ”end of string”. When we want to do
operations on strings, for example compare two strings and see if they are equal, we
do this by passing around the pointer to the beginning of the strings:

1 int compare_string(char * str0, char * str1)
2 {
3 while(1) {
4 char character0 = *str0;
5 char character1 = *str1;
6 if(character0 != character1) return 0;
7 if(character0 == 0) return 1;
8 str0 += 1;
9 str1 += 1;

10 }
11 }

This function will take the pointer to the starting characters of two strings, then
look at the subsequent chars until they either differ (so the strings are not the same
and we return 0), or one of them is zero (then we have reached the end of the strings
and we return 1).
A string can be declared in several ways:

1 char * string1 = "Hello";
2 char string2[] = "Hello";
3 char string3[] = {'H', 'e', 'l', 'l', 'o', 0};
4 char string4[] = {72, 101, 108, 108, 111, 0};

All of these declarations mean exactly the same thing.

4.6 2D Arrays

4.7 Pointers to Pointers
We have seen how pointers can be used to point to basic datatypes such as int or
char. In this section we will see that we often need pointers that point to other
pointers.
Figure 4.2 shows an example of declaring a pointer to another pointer. As you can
see, it works exactly the same as creating a pointer for any other type:

int ** ptr_to_ptr_to_a = &ptr_to_a;

The type of a ”pointer to a pointer to an integer” is int **, and to get the address
of a pointer, we use the & character just as before.

3More info on the ASCII standard at https://en.wikipedia.org/wiki/ASCII

28

https://en.wikipedia.org/wiki/ASCII


4. Memory, Arrays, and Pointers

1 int main()
2 {
3 int a = 0x1234;
4 int * ptr_to_a = &a;
5 int ** ptr_to_ptr_to_a =
6 &ptr_to_a;
7 }

Figure 4.2: Example code and the memory contents after line 5.

Let’s revisit the example of a swap function from Section 4.5.1, but this time we
want to swap two pointers:

1 void swap(char ** x, char ** y) {
2 char * temp = *y;
3 *y = *x;
4 *x = temp;
5 }
6

7 int main()
8 {
9 char * name0 = "Chimpanzee";

10 char * name1 = "Bonobo";
11 swap(name0, name1);
12 // name0 now points to "Bonobo" and name1 to "Chimpanzee"
13 }

The variables name0 and name1 are both pointers to the places in memory where
two text strings start. We want to swap these two pointers, so that name0 points
to the start of the string ”Bonobo” and name1 points to the start of the string
"Chimpanzee" (without actually changing any of the strings).
Just as in the previous swap example, we cannot send name0 and name1 as param-
eters to the swap function, since they will be copied to the stack and any changes
will be local to the swap function. Instead, we send pointers to name0 and name1,
which are dereferenced in the swap function to change their respective contents.
Thus, the the parameters to the swap function are:

void swap(char ** x, char ** y)

That is, x is a ”pointer to a pointer to a char”. When dereferenced we have that *x
is a ”pointer to a char”.

4.8 Function Pointers
We will conclude this chapter by talking about function pointers. Just as a pointer
can point to, e.g., the beginning of a string of characters in memory, it can point
to the beginning of a piece of code in memory (a function). This can be extremely
useful as it, for instance, allows us to send a function as a parameter to another
function. Let’s consider a very simple toy example:
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1 int function(int a) {
2 return a + 1;
3 }
4 int main() {
5 int (*function_ptr)(int) = &function;
6 int a = (*function_ptr)(1);
7 }

On line 5, we declare a new function pointer and assign it the address of an existing
function. On line 6, we then dereference that function pointer (which gives us a
function) and call that function with the parameter 1. There is really nothing new
about this, a function is just another thing that we can point to, but the syntax is
often quite confusing to beginners4.
A function pointer is declared as:

<return type of function> (*<name of function pointer>)(<parameters of function>)

The pointer (address) to a specific function is obtained with the & operator just
as for any other data type, and that pointer can be dereferenced to call the actual
function with the * operator, as we saw in the previous example. However, somewhat
surprisingly, it is also allowed to use the function name itself to mean ”the address
of this function” and to call the function pointer without dereferencing it. That is,
the example above can look like:

1 int main() {
2 int (*function_ptr)(int) = function;
3 int a = function_ptr(1);
4 }

This code is equivalent and arguably ”prettier”, but it is less consistent with how
pointers to ordinary data types work.
Let us look at a slightly more useful example of using function pointers:

1 int Double(int value) {
2 return 2 * value;
3 }
4 int Square(int value) {
5 return value * value;
6 }
7 void map(int (*an_operation)(int), int * items, int num_items)
8 {
9 for(int i=0; i<num_items; i++) {

10 items[i] = (*an_operation)(items[i]);
11 }
12 }
13 int main()
14 {
15 int values[] = {1, 2, 3, 4};

4Okay, the syntax can be confusing to experienced programmers too.
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16 map(Double, values, 4); // Double every item in values
17 map(Square, values, 4); // Square every item in values
18 // values is now {4, 16, 36, 64}
19 }

Here, we create a general function called map that takes as input a list of items, and
an operation that shall be performed on each item. There is nothing new in this
example, so go through the code and make sure you understand how it works.
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5
Advanced data types

In real programs, we naturally need data types describing more complex objects
than a single integer. In this chapter, we will learn about how more complex data
types can be created in C.

5.1 typedef
One of the simplest ways in C where we create a new name for a data type is the
typedef keyword:

typedef <existing name> <name of aliased data type>

This can be useful in many cases. For instance, we have already talked about using
the file stdint.h to get better names for integers of different sizes. This is achieved
using typedef:

1 ...
2 typedef signed long long int64_t;
3 typedef unsigned long long uint64_t;
4 typedef signed long int32_t;
5 typedef unsigned long uint32_t;
6 typedef signed short int16_t;
7 typedef unsigned short uint16_t;
8 ...

5.2 Structs
For more complex data types we will use structures. These will look familiar to
people who are used to classes in other languages, but a struct is a much simpler
concept, as it can not have methods, constructors, inheritance, or any other fancy
functionality. It is just a compound data structure, consisting of a compilation of
other data types. A simple example of the usage of a struct follows:

1 struct Player {
2 int score;
3 int health;
4 };
5 int main() {
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6 struct Player player_one;
7 player_one.score = 0;
8 player_one.health = 100;
9 }

So player_one in this example is an instance of the struct ”Player”, and has
two fields called ”score” and ”health”, which can be read and written to using the
notation player_one.score or player_one.health.
Note that (for mostly historical reasons, and unlike most modern languages), the
name of the struct, ”Player” is not a type in C, so we can not write:

1 Player player_one; // Incorrect!

to declare an instance of the struct. It must be preceded by the struct keyword.
To remedy this, we can make use of typedef:

1 typedef
2 struct {
3 int score;
4 int health;
5 }
6 Player;
7 Player player_one; // Correct

Here, the datatype we want to create an alias for is an unnamed struct containing
the fields ”score” and ”health” and we give that datatype the alias ”Player”. We can
then use ”Player” as our data type in the way we are used to from other languages.

5.2.1 Initialization of a struct

When declaring a struct, we can simulatenously initialize it like this:

1 Player player_one = {0, 100};

The values within the curly brackets will be assigned to the fields of the struct
in the order that they appear in the declaration. C also allows for a convenient
initialization of named fields:

1 Player player_one = {.score = 0, .health = 100};

In this case, the values can come in any order, and any field that is not named will
be initialized to zero.

5.2.2 Nested structures
A struct can also have other structs as fields. In the following example we first
declare a struct that represents a 2D coordinate, and then a line that has one
starting coordinate and one end coordinate:
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1 typedef struct { int x; int y; } Coord2D;
2 typedef struct {
3 Coord2D start, end;
4 } Line;

We can also declare a struct nested in another struct:

1 typedef struct {
2 struct { int x; int y; } start, end;
3 } Line;

In this case, we declare two instances (”start” and ”end”) of a nameless struct,
to be fields of our ”Line” struct. In either case, the child structs can be defined
together with the parent struct during declaration, or accessed like any other field
after declaration:

1 int main()
2 {
3 Line line = {{1, 2}, {3, 4}};
4 line.start.x += 1;
5 }

5.2.3 Pointers to structs

When a variable of struct type is declared, it will of course have its place in memory
just like any other variable. The fields of the struct will lie contiguously (in the order
that they are declared) in memory along with the fields of any nested structure. See
Figure 5.1 for an example.
Note that the exact positioning of each field will have to adhere to the rules for
correct alignment, which means that there will sometimes be padding (unused space)
in memory. This is discussed in greater detail in the Course book, Chapter 1.5.

1 typedef struct {
2 int x;
3 int y;
4 } Coord2D;
5 typedef struct {
6 Coord2D start, end;
7 } Line;
8 Line line;

Figure 5.1: Declaration of a struct and how it ends up in memory.

As with any data type, we can refer to an instance of a struct through a pointer.
Since a structure can be a fairly large amount of data, this is usually how we pass
structures in function calls:
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1 typedef struct {
2 char title[100];
3 char author[100];
4 int num_pages;
5 short ISBN;
6 } Book;
7

8 // We expect this function to exist and do something important
9 void ProcessBook( Book * book );

10

11 int main() {
12 Book book = { "Middlemarch", "George Elliot", 370, 1234 };
13 ProcessBook(&book);
14 }

In the above example, a struct representing a book is sent to the function RegisterBook,
but the parameter to the function is a pointer to a ”Book”, rather than a ”Book”. If
we had not used a pointer, all of the data that makes up the structure would have to
be copied to the stack which could become very costly both in terms of performance
and memory. By just sending the address to where the book is already stored in
memory, we avoid this.
Since it is so common to use pointers to structures, there is a special syntax that
allows us to directly access the fields from a pointer to a struct:

1 void ProcessBook( Book * book )
2 {
3 // We can dereference the book to get at the fields:
4 (*book).title = "Something New";
5

6 // Or we can directly access the fields from the pointer:
7 book->title = "Seomething New";
8 }

5.2.4 Incomplete declarations
There are cases where we want two different structures to refer to each other, or
we might want one structure to refer to another instance of itself. Consider the
following example:

1 typedef struct {
2 char * name;
3 int birth_date;
4 Book * best_book; // Incorrect
5 } Author;
6

7 typedef struct {
8 char * title;
9 Author * author;

10 } Book;
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When declaring the Author structure, we are trying to use a Book as one of the
fields, but that has not yet been declared. If we changed the order, we would have
the opposite problem (the Author would not yet have been declared when trying to
declare the Book). In such cases, we will need to create an incomplete declaration
of the structures:

1 // Incomplete declarations
2 struct Book;
3 struct Author;
4

5 typedef struct Author {
6 char * name;
7 int birth_date;
8 struct Book * best_book; // Incorrect
9 } Author;

10

11 typedef struct Book {
12 char * title;
13 Author * author;
14 } Book;
15

16 int main()
17 {
18 Author author = { "George Elliot", 1819 };
19 Book book = { "Middlemarch", &author };
20 author.best_book = &book;
21 }

On the first two lines, we tell the compiler that there is a struct called ”Book” and
a struct called ”Author”, but they are not yet defined. We can then, when declaring
the struct ”Author” say that it shall have a field that is a pointer to a ”Book”,
without error. The compiler does not yet know what a Book is, but it knows that
any pointer is just a 32 bit address, which is all it needs. We do need to declare it
as struct Book *, since we have not yet declared the typedef.

5.2.5 Bit fields
When programming in C, and especially in machine oriented programming, it is
often important to use as little memory as possible for a structure. Consider the
following unusually silly example:

1 typedef struct {
2 char is_alive; // 1 if alive, 0 if dead (1 bit)
3 char age; // Monkeys do not live past 100 years (7 bits)
4 char strength; // On a scale from 0 to 10 (9 bits)
5 short num_bananas; // Max bananas is 1000 (10 bits)
6 } Monkey;

Although we use the smallest possible datatypes for each field, the size of one Monkey
would be 6 bytes (one extra byte due to alignement). Since the total information
needed is 27 bits, we could pack all of this into a single unsigned int, and use
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shifting and masking operations to get the data out, but that is not very easy to
read. Alternatively, C allows for so called bit fields that can hide these operations
for us:

1 typedef struct {
2 unsigned int is_alive : 1; // 1 if alive, 0 if dead
3 unsigned int age : 7; // Monkeys do not live past 100 years
4 unsigned int strength : 9; // On a scale from 0 to 10
5 unsigned int num_bananas : 10; // Max bananas is 1000
6 } Monkey;
7

8 int main()
9 {

10 Monkey monkey;
11 monkey.strength = 35;
12 }
13

We now inform the compiler that, e.g., is_alive only requires 1 bit. It will place
all of these variables in the same unsigned int (starting at the lowest bit), and when
we access individual elements, it will do the shifting and masking for us.
If we should add another variable, that does not fit in the remaining 5 bits:

1 ...
2 unsigned int num_bananas : 10; // Max bananas is 1000
3 unsigned int thrown_bananas : 8;
4 } Monkey;

the size of the struct will be 8 bytes, with thrown_bananas taking up the lowest
8 bits, and the rest being unused. As you will see during the course, bit fields
are especially useful for declaring structs that map to ports that communicate with
hardware units.

5.3 Unions
Another space-saving mechanism in C is unions. Consider the the following struct
that describes a vehicle in a video game:

1 typedef struct {
2 int speed;
3 int weight;
4 short type; // 0 = CAR, 1 = BOAT, 2 = AIRPLANE
5 char num_wings; // Only applies to airplanes
6 char num_sails; // Only applies to boats
7 short num_wheels; // Only applies to cars
8 } Vehicle;

The last three fields in this struct take up 12 bytes, but only one of them will carry
any important data (depending on the type of the vehicle). Here, we can use a
union to create a more compact representation:
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1 typedef struct {
2 int speed;
3 int weight;
4 short type; // 0 = CAR, 1 = BOAT, 2 = AIRPLANE
5 union {
6 char num_wings; // Only applies to airplanes
7 char num_sails; // Only applies to boats
8 short num_wheels; // Only applies to cars
9 };

10 } Vehicle;

By grouping the fields together in a union, we tell the compiler that these three
variable will occupy the same memory. So if we, for instance, change the value of
num_sails, we also change the value of num_wings and num_wheels, but that is
okay if the values are mutually exclusive.
Unions can also be very useful if we want to access the same memory in different
ways, depending on the situation:

1 union TwoBytes {
2 unsigned short data;
3 struct {
4 unsigned char lower_byte;
5 unsigned char upper_byte;
6 };
7 struct {
8 unsigned short first_bit : 1;
9 unsigned short second_bit : 1;

10 };
11 };
12

13 int main()
14 {
15 union TwoBytes word;
16 word.data = 0xFFFF;
17 word.lower_byte = 0x01;
18 word.second_bit = 1;
19 }

Here, we use both unions and bit fields to create a type where we have immediate
access to either the whole two-byte word, the upper and lower bytes, or individual
bits.

5.4 Enums
Finally, we will look at final bit of syntactic sugar in C, called enumerations or enum.
In our ”Vehicle” struct in the previous section, we had an integer field called ”type”,
and in the comment we explain what different values of that field would mean. C
allows us to use an enumeration type instead, so that we can use readable names,
rather than numbers to describe the type of vehicle:

39



5. Advanced data types

1 enum VEHICLE_TYPE { CAR, BOAT, AIRPLANE };
2 typedef struct {
3 int speed;
4 int weight;
5 VEHICLE_TYPE type;
6 union { ... };
7 } Vehicle;
8

9 int main()
10 {
11 Vehicle vehicle;
12 vehicle.type = BOAT;
13 }

It should be noted that the underlying type of an enum is still just an integer. In the
example above, CAR is 0, BOAT is 1, and AIRPLANE is 2. We can, if we want,
assign specific values to the different names. Enums do not provide much in terms
of type safety, but can be used to make the programmers intention clear, and make
the code more readable.
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