Revision Lecture on Concurrent
Programming

Lecture 14 of TDA384/DIT391

Principles of Concurrent Programming

UNIVERSITY OF
GOTHENBURG

Nir Piterman and Gerardo Schneider

Chalmers University of Technology | University of Gothenburg

UNIVERSITY OF TECHNOLOGY

“~y CHALMERS

UNIVERSITY OF TECHNOLOGY

(%)) UNIVERSITY OF GOTHENBURG

DISCLAIMER!

This is NOT a sample of how the
exam will be

It’s just a revision of some of the
topics we have seen in the
course

“y CHALMERS

UNIVERSITY OF TECHNOLOGY

(®%)) UNIVERSITY OF GOTHENBURG

Outline

* Mentimeter on concurrency topics

* One question from an old exam

CHALMERS

UNIVERSITY OF TECHNOLOGY

g UNIVERSITY OF GOTHENBURG

Mentimeter

{®%)) UNIVERSITY OF GOTHENBURG

Review of topics in concurrency

https://www.mentimeter.com/s/0569b7837a2a99b0219albed74a94559/ef3ede
c180dd/edit

https://www.mentimeter.com/s/0569b7837a2a99b0219a1bed74a94559/ef3edec180dd/edit
https://www.mentimeter.com/s/0569b7837a2a99b0219a1bed74a94559/ef3edec180dd/edit

“»Y CHALMERS

=T UNIVERSITY OF TECHNOLOGY

(%)) UNIVERSITY OF GOTHENBURG

Old Exam Question

CHALMERS

UNIVERSITY OF TECHNOLOGY

(%)) UNIVERSITY OF GOTHENBURG

1 public class PMergeSort extends RecursiveAction {

2 private Integer[] data;
3 private int low, high;
4
We have seen the 5 @override
. 6 protected void compute() {
followmg paraIIeI 7 if (high - low <= 1) {
. . 8 sort(data, low,high); // sort sequentially small chunks of 1024
implementation of . eturn. L or less
merge sort e | o
11 int mid = low + (high - low)/2; // mid point
12 // left and right halves
13 PMergeSort left = new PMergeSort(data, low,mid);
(|ecture 091 14 PMergeSort right = new PMergeSort(data,mid,high);
slides 21’ 22’ and 25) 15 left.fork(); // fork thread working on left
16 right.fork(); // fork thread working on the right
17 left.join(); // wait for sorted left half
18 right.join(); // wait for sorted right half
19 merge(mid); // merge halves
20}
21 }

“2y CHALMERS

S UNIVERSITY OF TECHNOLOGY

(%)) UNIVERSITY OF GOTHENBURG

The following appears somewhere in the main:

1 RecursiveAction sorter = new PMergeSort(numbers,,numbers.length);
2 ForkJoinPool.commonPool().invoke(sorter);

Based on the dependency graph (or otherwise) for a run of invoke(sorter)
when the array numbers has 8 elements, answer the following.

“~Yy CHALMERS

OOOOOOOOOOOOOOOOOOOOOO

(%)) UNIVERSITY OF GOTHENBURG

(Part a). How many threads participate in the computation? (4p)

(Part b). What is the [maximum number of tasks that can be executed
in parallel in this implementation on the same data (excluding parent
tasks waiting for a child task to finish)? (4p)

You apply the second optimization in slide 25. That is, you change
line 16 to right.compute(); and comment out line 18.

(Part c). How many threads participate now in the computation?

(4p)

“y CHALMERS

UNIVERSITY OF TECHNOLOGY

A UNIVERSITY OF GOTHENBURG

(Part a). How many threads participate in the computation? (4p)

Answer: there are 8 +4 4+ 2 + 1 = 15 nodes.

1: original thread
2: first call

4: second call

8: third call

(%)) UNIVERSITY OF GOTHENBURG

(Part b). What is the [maximum number of tasks that can be executed
in parallel in this implementation on the same data (excluding parent
tasks waiting for a child task to finish)? (4p)

Answer: 8 calls — the width of the dependency graph.

CHALMERS

UNIVERSITY OF TECHNOLOGY

(®)) UNIVERSITY OF GOTHENBURG

You apply the second optimization in slide 25. That is, you change
line 16 to right.compute(); and comment out line 18.

(Part c). How many threads participate now in the computation?

(4p)

1 public class PMergeSort extends RecursiveAction {

—_ =
_ O O 00 N O O = W N

private Integer[] data;
private int low, high;

@override
protected void compute() {

if (high - low <= 1) {
sort(data,low,high); // sort sequentially small chunks of 1024
return; // or less
}
int mid = low + (high - low)/2; // mid point
// left and right halves
PMergeSort left = new PMergeSort(data, low,mid);
PMergeSort right = new PMergeSort(data,mid,high);
left.fork(); // fork thread working on left
right.compute();
left.join(); // wait for sorted left half

T T T T

merge(mid); // merge halves

(%)) UNIVERSITY OF GOTHENBURG

o <
rrys

You apply the second optimization in slide 25. That is, you change
line 16 to right.compute(); and comment out line 18.

(Part c). How many threads participate now in the computation?

(4p)

Answer: There are 8 nodes. There is one thread that does the work
that 4 threads did previously, one thread that does the work that 3

threads did previously, and two threads that do the work that 4 threads

(2 for each) did previously. Overall the number of saved threads is
Bt A L=

N

[Not considering the father thread, there 14 threads, and by replacing
right.fork with right.compute we eliminate half of those]

12

“~Yy CHALMERS

OOOOOOOOOOOOOOOOOOOOOO

(%)) UNIVERSITY OF GOTHENBURG

(Part d). What is the maximum number of tasks that can be executed
in parallel? (3p)

(Part e).

You now get an array with 9000 elements. Change the program ac-
cording to the first advice in slide 25 so that the number of threads
that participate in thefComputation does not change to all the previous
answers. (4p)

[To set a threshold (different from 1 on when to start sorting)]

{®%)) UNIVERSITY OF GOTHENBURG

(Part d). What is the maximum number of tasks that can be executed
in parallel? (3p)

Answer: This is still 8 — the width of the dependency graph.

CHALMERS

UNIVERSITY OF TECHNOLOGY

(®)) UNIVERSITY OF GOTHENBURG

(Part e).

You now get an array with 9000 elements. Change the program ac-
cording to the first advice in slide 25 so that the number of threads
that participate in the computation does not change to all the previous
answers. (4p)

public class PMergeSort extends RecursiveAction {
private Integer[] data;
private int low, high;

1

2

3

! | New threshold!
5 @override

6 protected void computf/

7 if (high - low <=1

8

sort(data, low,high); // sort sequentially small chunks of 1024

9 return; // or less

10 }

11 int mid = low + (high - 1low)/2; // mid point

12 // left and right halves

13 PMergeSort left = new PMergeSort(data, low,mid);
14 PMergeSort right = new PMergeSort(data,mid,high);
15 left.fork(); // fork thread working on left

16 right.fork(); // fork thread working on the right
17 left.join(); // wait for sorted left half

18 right.join(); // wait for sorted right half

19 merge(mid) ; // merge halves

(®%)) UNIVERSITY OF GOTHENBURG

(Part e).

You now get an array with 9000 elements. Change the program ac-
cording to the first advice in slide 25 so that the number of threads
that participate in the computation does not change to all the previous
answers. (4p)

Answer: Line 7 should be changed to, for example:

if (high - low <= 1200) {

\ Why 12007

We need to find a number that makes the recursion stop after 3 calls (in order
to keep the same number of threads as before): (((9000/2)/2)/2) = 1125
(so any number between 1125 and 2249 would make it)

<Y CHALMERS

LU UNIVERSITY OF TECHNOLOGY

(®%)) UNIVERSITY OF GOTHENBURG

Exam: Monday March 13 at 14:00 (Johanneberg)

Remember: Material permitted during the exam (hjdlpmedel):

* Two textbooks

 four sheets of A4 paper with notes
* English dictionary

* NOTHING MORE!

* NOTE: You cannot bring photocopies of the books!

“rY CHALMERS

-
OOOOOOOOOOOOOOOOOOOOOOOO

(®%)) UNIVERSITY OF GOTHENBURG

Please answer
the

Course Survey

