
Lecture 9 of TDA384/DIT391

Principles of Concurrent Programming

Nir Piterman and Gerardo Schneider

Chalmers University of Technology | University of Gothenburg

Parallelizing computations

Today’s menu

1/43

• Challenges to parallelization

• Fork/join parallelism

• Pools and work stealing

Today’s menu

Concurrent programming introduces:

+ the potential for parallel execution (faster, better resource usage)

− the risk of race conditions (incorrect, unpredictable computations)

The main challenge of concurrent programming is thus introducing

parallelism without affecting correctness.

Parallelization: risks and opportunities

2/43

In this class, we explore several general approaches to parallelizing

computations in multi-processor systems.

A task (F, D) consists in computing the result
F (D) of applying function F to input data D.

A parallelization of (F, D) is a collection (F1, D1), (F2, D2), . . . of tasks such that

F (D) equals the composition of F1(D1), F2(D2),

We first cast the problems and solutions using Erlang’s notation and models –

message-passing between processes – since it is easier to prototype

implementations of the solutions.

Then, we will apply the same concepts and techniques to shared-

memory models such as Java threads.

General approaches to parallelization

3/43

Challenges to Parallelization

A strategy to parallelize a task (F, D) should be:

• correct: the overall result of the parallelization is F (D)

• efficient: the total resources (time and memory) used to compute the

parallelization are less than those necessary to compute (F, D) sequentially

A number of factors challenge designing correct and efficient

parallelizations:

• sequential dependencies

• synchronization costs

• spawning costs

• error proneness and composability

Challenges to parallelization

4/43

Some steps in a task computation depend on the result of other steps; this creates

sequential dependencies where one task must wait for another task to run.

Sequential dependencies limit the amount of parallelism that can be achieved.

For example, to compute the sum 1 + 2 + · · · + 8 we could split into:

a. computing 1 + 2, 3 + 4, 5 + 6, 7 + 8

b. computing (1 + 2) + (3 + 4) and (5 + 6) + (7 + 8)

c. computing ((1 + 2) + (3 + 4)) + ((5 + 6) + (7 + 8))

The computations in each group depend on the computations in the previous group,

and hence the corresponding tasks must execute after the latter have completed.

The synchronization problems (producer-consumer, dining philosophers, etc.) we

discussed in various classes capture kinds of sequential dependencies that may occur

when parallelizing.

Sequential dependencies

5/43

Some steps in a task computation depends on the result of other steps; this

creates sequential dependencies where one task must wait for another task to run.

We represent tasks as the nodes in a graph, with arrows connecting a task to the ones

it depends on. The graph must be acyclic for the decomposition to be executable.

+

Dependency graph

+

+

1 2

+

3 4

+

+

5 6

+

7 8

6/43

We represent tasks as the nodes in a graph, with arrows connecting a task to the ones it depends on.

The graph must be acyclic for the decomposition to be executable.

The time to compute a node is the maximum of the times to compute its children, plus the time

computing the node itself. Assuming all operations take a similar time, the longest path from the root to a

leaf is proportional to the optimal running time with parallelization (ignoring overhead and assuming all

processes can run in parallel).

Dependency graph

6/43

+

+

1 2

+

3 4

+

+

5 6

+

7 8

+

Digression: some latency numbers

Chart by ayshen, based on Peter Norvig’s “Teach Yourself Programming in Ten Years”.

More numbers at https://gist.github.com/hellerbarde/2843375.

7/43

https://gist.github.com/ayshen
http://norvig.com/21-days.html#answers
https://gist.github.com/hellerbarde/2843375

Synchronization is required to preserve correctness, but it also introduces
overhead that add to the overall cost of parallelization.

In shared-memory concurrency:

• synchronization is based on locking
• locking synchronizes data from cache to main memory, which may involve a 100x

overhead
• other costs associated with locking may include context switching (wait/signal) and

system calls (mutual exclusion primitives)

In message-passing concurrency:

• synchronization is based on messages
• exchanging small messages is efficient, but sending around large data is quite

expensive (still goes through main memory)
• other costs associated with message passing may include extra acknowledgment

messages and mailbox management (removing unprocessed messages)

Synchronization costs

8/43

https://gist.github.com/jboner/2841832

Creating a new process is generally expensive compared to sequential

function calls within the same process, since it involves:

• reserving memory

• registering the new process with runtime system

• setting up the process’s local memory (stack and mailbox)

Even if process creation is increasingly optimized, the cost of spawning

should be weighted against the speed up that can be obtained by

additional parallelism. In particular, when the processes become way

more than the available processors, there will be diminishing returns with

more spawning.

Spawning costs

9/43

Synchronization is prone to errors such as data races, deadlocks, and
starvation. Message-based synchronization may improve the situation,
but it is far for being straightforward and problem free.

From the point of view of software construction, the lack of composability
is a challenge that prevents us from developing parallelization strategies
that are generally applicable.

Error proneness and composability

10/43

Consider an Account class with methods deposit and withdraw that execute atomically.
What happens if we combine the two methods to implement a transfer operation?

Method transfer does not execute uninterruptedly: other threads can execute between the call to
withdraw and the call to deposit, possibly preventing the transfer from succeeding (for example,
account other may be closed; or the total balance temporarily looks lower than it is!).

Error proneness and composability

class TransferAccount

extends Account {

// transfer from ‘this’ to ‘other’

void transfer(int amount, Account other)

{ this.withdraw(amount);

other.deposit(amount); }

}

class Account {

synchronized void

deposit(int amount)

{ balance += amount; }

synchronized void

withdraw(int amount)

{ balance -= amount; }

}

10/43

execute uninterruptedly

}

None of the natural solutions to composing is fully satisfactory:

• let clients of Account do the locking where needed –error proneness, revealing

implementation details, scalability

• recursive locking – risk of deadlock, performance overhead

Even if there is no locking with message passing, we still encounter similar problems – synchronizing

the effects of messaging two independent processes.

Composability
class Account {

void // thread unsafe!

deposit(int amount)

{ balance += amount; }

void // thread unsafe!

withdraw(int amount)

{ balance -= amount; }

}

class TransferAccount

extends Account {

// transfer from ‘this’ to ‘other’

synchronized void

transfer(int amount, Account other)

{ this.withdraw(amount);

other.deposit(amount); }

A number of factors challenge designing correct and efficient parallelizations:

• sequential dependencies

• synchronization costs

• spawning costs

• error proneness and composability

In the rest of this class, we present:

• fork/join parallelism techniques, which help naturally capture sequential

dependencies

• pools, which help curb the spawning costs

In future classes we will address the remaining problems of reducing synchronization

costs and achieving composability.

Sequential dependencies and spawning costs

12/43

Fork/join parallelism

A server’s event loop offers clear opportunities for parallelism:

• each request sent to the server is independent of the others

• instead of serving requests sequentially, a server spawns a new process for every request

• a child processes computes, sends response to the client, and terminates

Parallel servers

loop(State, Operation) ->

receive

{request, From, Ref, Data} ->

From ! {reply, Ref,

Operation(Data)},

loop(new_state(State));

% other operations...

end.

ploop(State, Operation) ->

receive

{request, From, Ref, Data} ->

spawn(fun ()->

Result = Operation(Data),

From ! {reply, Ref, Result}

end),

loop(new_state(State));

% other operations...

end.

The structure of recursive functions lends itself to parallelization

according to the structure of recursion.

Recursion is easier to parallelize when it is expressed in a mostly side-

effect free language like sequential Erlang:

• spawn a process for every recursive call

• no side effects means no hidden dependencies – a process’s results

only depends on its explicit input

Parallel recursion

Parallel recursion: merge sort
merge_sort(List)

when length(List) =< 1 ->

List;

merge_sort(List) ->

Mid = length(List) div 2,

% split in two halves

{L, R} = lists:split(Mid, List),

% recursively sort each half

SL = merge_sort(L),

SR = merge_sort(R),

% merge sorted halves

merge(SL, SR).

pmerge_sort(List)

when length(List) =< 1 ->

List;

pmerge_sort(List) ->

Mid = length(List) div 2,

{L, R} = lists:split(Mid, List),

Pid = self(),

spawn(fun ()-> Pid !

{sl, pmerge_sort(L)} end),

spawn(fun ()-> Pid !

{sr, pmerge_sort(R)} end),

receive {sl, SL} -> sl end,

receive {sr, SR} -> sr end,

merge(SL, SR).cannot be computed inside closure

in spawn: must be the parent’s pid

15/43

This recursive subdivision of a task that assigns new processes to smaller tasks is called fork/join

parallelism:

• forking: spawning child processes and assigning them smaller tasks

• joining: waiting for the child processes to complete and combining their results

The order in which we wait at a join node for forked children does not affect the total waiting time: if we
wait for a slower process first, we won’t wait for the others later.

Fork/join parallelism

fork

fork

done
join

join

start end

done

done

Function map’s recursive structure lends itself to parallelization.

Parallel map

% apply F to all

% elements of list

map(_, []) -> [];

map(F, [H|T]) ->

[F(H)|map(F,T)].

% parallel map

pmap(F, L) ->

Me = self(), % my pid

Ref = make_ref(),

% for every E in L:

Children = map(fun(E) ->

% spawn a process

spawn(fun() ->

% sending Me result of F(E)

Me ! {self(), Ref, F(E)}

end) end, L),

% collect and return results

gather(Children, Ref).

17/43

list comprehension ensures results are collected in order

% wait for all Children

% and collect results in order

gather(Children, Ref) ->

[receive {Child, Ref, Res}

-> Res end

|| Child <- Children].

The parallel version of reduce (also called foldr) uses a halving strategy
similar to merge sort.

Parallel reduce

N. Piterman 23Principles of Concurrent Programming

reduce(_, A, []) -> A;

reduce(F, A, [H|T]) ->

F(H, reduce(F, A, T)).

preduce(F,A,L) equals reduce(F,A,L) if:

• Function F is associative (preduce does not

apply F right-to-left)

• For every list element E:

F(E, A)= F(A, E) = E
(preduce reduces A in every base case, not

just once)

(the data is a monoid with F as the binary operation

and A its identity element).

preduce(_, A, []) -> A;

preduce(F, A, [E]) -> F(A, E);

preduce(F, A, List) ->

Mid = length(List) div 2,

{L, R} = lists:split(Mid, List),

Me = self(), % L ++ R =:= Listn

Lp = spawn(fun() -> % on left half

Me ! {self(), preduce(F, A, L)} end),

Rp = spawn(fun() -> % on right half

Me ! {self(), preduce(F, A, R)} end),

% combine results of left, right half

F(receive {Lp, Lr} -> Lr end,

receive {Rp, Rr} -> Rr end).

MapReduce is a programming model based on parallel distributed

variants of the primitive operations map and reduce. MapReduce is a

somewhat more general model, since it may produce a list of values from

a list of key/value pairs, but the underlying ideas are the same.

MapReduce implementations typically work on very large, highly-

parallel, distributed databases or filesystems.

• The original MapReduce implementation was proprietary

developed at Google

• Apache Hadoop offers a widely-used open-source Java

implementation of MapReduce

MapReduce

Java package java.util.concurrent includes a library for fork/join parallelism.
To implement a method T m() using fork/join parallelism:

RecursiveAction and RecursiveTask<T> provide methods:

• fork(): schedule for asynchronous parallel execution
• T join(): wait for termination, and return result if T != void

• T invoke(): arrange synchronous parallel execution (fork and join) and return result if
T != void

• invokeAll(Collection<T> tasks) invoke all tasks in collection (fork all and join all),
and return collection of results

Fork/join parallelism in Java

If m is a procedure (T is void):

• create a class that inherits

from RecursiveAction

• override void compute()

with m’s computation

If m is a function:

• create a class that inherits

from RecursiveTask<T>

• override T compute() with

m’s computation

public class PMergeSort extends RecursiveAction {
private Integer[] data; // values to be sorted

private int low, high; // to be sorted: data[low..high)

@Override
protected void compute() {

if (high - low <= 1) return; // size <= 1: sorted already

int mid = low + (high - low)/2; // mid point

// left and right halves

PMergeSort left = new PMergeSort(data, low, mid);

PMergeSort right = new PMergeSort(data, mid, high);

left.fork(); // fork thread working on left

right.fork(); // fork thread working on right

left.join(); // wait for sorted left half

right.join(); // wait for sorted right half

merge(mid); // merge halves

}

}

Parallel merge sort using fork/join

}

The top computation of a fork/join task is started by a pool object:

// to sort array ‘numbers’ using PMergeSort:

RecursiveAction sorter = new PMergeSort(numbers, 0, numbers.length);

// schedule ‘sorter’ for execution, and wait for computation to finish

ForkJoinPool.commonPool().invoke(sorter);
// now ‘numbers’ is sorted

The pool takes care of efficiently dispatching work to threads, as we describe in the rest of this class.

The framework introduces a layer of abstraction between computational tasks and actual running

threads that execute the tasks. This way, the fork/join model simplifies parallelizing computations, since

we can focus on how to split data among tasks in a way that avoids race conditions.

Running a fork/join task

There are a number of things that should be improved in the parallel
merge sort example:

Revisiting parallel merge sort

protected void compute() {

if (high - low <= 1) return; // size <= 1: sorted already

int mid = low + (high - low)/2; // mid point

// left and right halves

PMergeSort left = new PMergeSort(data, low, mid);

PMergeSort right = new PMergeSort(data, mid, high);

left.fork(); // fork thread working on left

right.fork(); // fork thread working on right

left.join(); // wait for sorted left half

right.join(); // wait for sorted right half

merge(mid);// merge halves

}

granularity too small!

the forking thread is idle!

In order to obtain good performance using fork/join parallelism:

• After forking children tasks, keep some work for the parent task before it joins the

children

• For the same reason, use invoke and invokeAllonly at the top level as a norm

• Perform small enough tasks sequentially in the parent task, and fork children tasks

only when there is a substantial chunk of work left; Java’s fork/join framework

recommends that each task be assigned between 100 and 10’000 basic

computational steps

• Make sure different tasks can proceed independently – minimize data dependencies

The advantages of parallelism may only be visible with several physical processors,

and on very large inputs. (The Java runtime may even need to warm up before it

optimizes the parallel code more aggressively.)

Fork/join good practices

29/43

Revisited parallel merge sort using fork/join

30/43

before joining, do more work in current task

protected void compute() {

if (high - low <= THRESHOLD)

sequential_sort(data, low, high);

else {

int mid = low + (high - low)/2; // mid point

// left and right halves

PMergeSort left = new PMergeSort(data, low, mid);

PMergeSort right = new PMergeSort(data, mid, high);

left.fork(); // fork thread working on left

right.compute(); // continue work on right

left.join(); // when done, wait for sorted left half

merge(mid); // merge halves

}

choose experimentally (at least 1000)

Pools and work stealing

Parallelizing by following the recursive structure of a task is simple and
appealing. However, the potential performance gains should be weighted
against the overhead of creating and running many processes.

How many processes is lagom?

26/43

Process creation in Erlang is

lightweight: 1 GiB of memory

fits about 432’000

processes, so one million

processes is quite feasible.

Parallelizing by following the recursive structure of a task is simple and
appealing. However, the potential performance gains should be weighted
against the overhead of creating and running many processes.

How many processes is lagom?

26/43

There are still limits to how

many processes fit in memory.

Besides, even if we have

enough memory, more

processes do not improve

performance if their number

greatly exceeds the number of

available physical processors.

Process pools are a technique to address the problem of using an

appropriate number of processes.

A pool creates a number of worker processes upon initialization. The number of

workers is chosen according to the actual resources that are available to run

them in parallel – a detail which pool users need not know about.

• As long as more work is available, the pool deals a work assignment to

a worker that is available

• The pool collects the results of the workers’ computations

• When all work is completed, the pool terminates and returns the overall result

This kind of pool is called a dealing pool because it actively deals work to

workers.

Workers and pools

27/43

Workers are servers that run as long as the pool that created them does. A worker can
be in one of two states:

• idle: waiting for work assignments from the pool
• busy: computing a work assignment

As soon as a worker completes a work assignments, it sends the result to the pool
and goes back to being idle.

% create worker for ‘Pool’ computing ‘Function’

init_worker(Pool, Function) ->

spawn(fun ()-> worker(Pool, Function) end).

worker(Pool, Function) ->

receive {Pool, Data} -> % assignment from pool

Result = Function(Data), % compute work

Pool ! {self(), Result}, % send result to pool

worker(Pool, Function) % back to idle

end.

Workers

28/43

A pool keeps track of:

• the remaining work – not assigned yet

• the busy workers

• the idle workers

-record(pool, {work, busy, idle}).

The pool also stores:

• a split function, used to extract a single work item

• a join function, used to combine partial results

• the overall result of the computation that is underway

pool(Pool#pool, Split, Join, Result) -> todo.

Pool state

state of record type pool

The pool terminates and returns the result of the computation when there are no

pending work items, and all workers are idle (thus all work has been done).

% work completed, no busy workers: return result

pool(#pool{work = [], busy = []},

_Split, _Join, Result) -> Result;

Pool termination

As long as there is some pending work and some idle workers, the pool deals

work to some of those idle workers.

% work pending, some idle workers: assign work

pool(Pool = #pool{work = Work = [_|_], busy = Busy, idle = [Worker|Idle]},

Split, Join, Result) ->

{Chunk, Remaining} = Split(Work), % split pending work

Worker ! {self(), Chunk}, % send chunk to worker

pool(Pool#pool{work = Remaining, busy = [Worker|Busy],idle = Idle},

Split, Join, Result);

Using a function Split provides flexibility in splitting work intochunks.

Dealing work

matches if Work not empty

When there are no pending work items or all workers are busy, the pool can only wait for workers to

send back results.

% work completed or no idle workers: wait for results

pool(Pool = #pool{busy = Busy, idle = Idle}, Split, Join, Result) ->

% get result from worker

receive {Worker, PartialResult} -> ok end,

% join worker’s result and current result

NewResult = Join(PartialResult, Result),

pool(Pool#pool{busy = lists:delete(Worker, Busy),idle = Idle ++ [Worker]},
Split, Join, NewResult).

Note that the condition “no pending work or all workers busy” is implicit because this clause comes

last in the definition of pool.

Collecting results

32/43

Initializing a pool requires a function to be computed, a workload, split and join functions, and a

number of worker threads.

init_pool(Function, Work, Split, Join, Initial, N) ->

Pool = self(),

% spawn N workers for the same pool

Workers = [init_worker(Pool, Function) || _ <- lists:seq(1, N)],

[link(W) || W <- Workers], % link workers to pool

% initially all work is pending, all workers are idle

pool(#pool{work = Work, busy = [], idle = Workers}, Split, Join, Initial).

The function link ensures that the worker processes areterminated as soon as the process

running the pool does.

In practice we would set N to an optimal number based on the available resources, and export

init_pool working with thatnumber.

Pool creation

We can define a parallel version of map using a pool:

pmap(F, L, N) -> init_pool(F, % function to be mapped

L, % work: list to be mapped

fun ([H|T]) -> {H, T} end, % split: take first element

fun (R,Res) -> [R|Res] end, % join: cons with list

[], N).

Note that the order of the results may change from run to run. It is possible to restore
the original order by using a more complex join function.

Parallel map with workers

34/43

We can define a parallel version of reduce using apool:

preduce(F, I, L, N) ->

init_pool(fun ({X,Y}) -> F(X,Y) end, % so that a chunk is a pair

L,
fun (W) -> chunk_two(I, W) end, % split: take first two elements

F, % join: folding function!

I, N).

chunk_two(_, [Fst|[Snd|R]]) -> {{Fst,Snd}, R};

chunk_two(I, [Fst|R]) -> {{Fst,I}, R}.

This works correctly under the same conditions as the direct recursive version of preduce

shown before: F should be associative, and I should be a neutral element under F.

The syntax is a bit clunky, but the basic idea is that preduce assigns to each worker the reduction

of two consecutive input elements.

Parallel reduce with workers

In our version of preduce using a dealing pool, a lot of reduction work is actually done

by the pool process when executing join for each result. In the dependency graph,

the bottom level is computed by the workers; the upper levels are computed by the

pool while joining.

Joining is working too

F

F

v1 v2

F

v3 v4

F

F

v5 v6

F

v7 v8

F

More generally, the dealing process pool we have designed works well if joining is a lightweight

operation compared to computing the work function.

A more flexible solution subdivides work in tasks. Each task consists of a function to be applied to a list

of data.

-record(task, {function, data}).

• The split function extracts a smaller task from a bigger one

• The join function creates a task consisting of computing the join

With this approach, the pool can delegate joining to the workers or do it directly if it is little work. By

creating suitable join and split functions we can make a better usage of workers and achieve a better

parallelization.

We call this kind of pool recursive (dealing) pool, because it may recursively generate new work while

combining intermediate results.

Recursive dealing pools

Dealing pools work well if:

• the workload can be split in even chunks, and

• the workload does not change over time (for example if users send new
tasks or cancel tasks dynamically)

Under these conditions, the workload is balanced evenly between workers,
so as to maximize the amount of parallel computation.

In realistic applications, however, these conditions are not met:

• it may be hard to predict reliably which tasks take more time to compute the
workload is highly dynamic

Stealing pools use a different approach to allocating tasks to workers that
better addresses these challenging conditions.

From dealing to stealing

38/43

A stealing pool associates a queue to every worker process. The pool

distributes new tasks by adding them to the workers’ queues.

When a worker becomes idle:

• first, it gets the next task from its own queue,

• if its queue is empty, it can directly steal tasks from the queue of another

worker that is currently busy.

With this approach, workers adjust dynamically to the current working

conditions without requiring a supervisor that can reliably predict the workload

required by each task. With stealing, the pool may even send all tasks to one

default thread, letting other idle threads steal directly from it, simplifying the

pool and reducing the synchronization costs it incurs.

Work stealing

This is an outline of the algorithm for work stealing. It assumes that the queue array

queue can be accessed by concurrent threads without race conditions.
public class WorkStealingThread

{ Queue [] queue; // queues of all worker threads

public void run() {

{ int me = ThreadID.get(); // my thread id

while (true) {

for (Task task: queue[me]) // run all tasks in my queue

task.run();

// now my queue is empty: select another random thread

int victim = random.nextInt(queue.length);

// try to take a task out of the victim’s queue

Task stolen = queue[victim].pop();

// if the victim’s queue was not empty, run the stolen task

if (stolen != null) stolen.run();

} } }

Work stealing algorithm

Java offers efficient implementations of thread pools in package

java.util.concurrent.

The interface ExecutorService provides:

• void execute(Runnable thread): schedule thread for execution

• Future submit(Runnable thread): schedule thread for execution, and return a Future object (to cancel

the execution, or wait for termination)

Implementations of ExecutorService with different characteristicscan also be obtained by factory

methods of class Executors:

• CachedThreadPool: thread pool of dynamically variable size

• WorkStealingPool: thread pool using work stealing

• ForkJoinPool: work-stealing pool for running fork/join tasks

Thread pools in Java

Thread pools in Java: example
Without thread pools:

Counter counter = new Counter();

// threads t and u

Thread t = new Thread(counter);

Thread u = new Thread(counter);

t.start(); // increment once

u.start(); // increment twice

try { // wait for termination

t.join(); u.join();
}

catch (InterruptedException e)

{

System.out.println("Int!");

}

With thread pools:

Counter counter = new Counter();

// threads t and u

Thread t = new Thread(counter);

Thread u = new Thread(counter);

ExecutorService pool=Executors.newWorkStealingPool();

// schedule t and u for execution

Future<?> ft = pool.submit(t);

Future<?> fu = pool.submit(u);

try {

ft.get(); fu.get();
}

catch (InterruptedException ExecutionException e){

System.out.println("Int!");

}

N. Piterman 49Principles of Concurrent Programming

Erlang provides some load distribution services in the system module
pool. These are aimed at distributing the load between different nodes,
each a full-fledged collection of processes.

Process pools in Erlang

N. Piterman 51Principles of Concurrent Programming

