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Parallelizing computations



Today’s menu
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• Challenges to parallelization

• Fork/join parallelism

• Pools and work stealing

Today’s menu



Concurrent programming introduces:

+ the potential for parallel execution (faster, better resource usage)

−  the risk of race conditions (incorrect, unpredictable computations)

The main challenge of concurrent programming is thus introducing

parallelism without affecting correctness.

Parallelization: risks and opportunities
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In this class, we explore several general approaches to parallelizing  

computations in multi-processor systems.

A task (F, D) consists in computing the result
F (D) of applying function F to input data D.

A parallelization of (F, D) is a collection (F1, D1), (F2, D2), . . . of tasks  such that

F (D) equals the composition of F1(D1), F2(D2), . . ..

We first cast the problems and solutions using Erlang’s notation and  models –

message-passing between processes – since it is easier to  prototype 

implementations of the solutions.

Then, we will apply the same concepts and techniques to  shared-

memory models such as Java threads.

General approaches to parallelization
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Challenges to Parallelization



A strategy to parallelize a task (F, D) should be:

• correct: the overall result of the parallelization is F (D)

• efficient: the total resources (time and memory) used to compute  the 

parallelization are less than those necessary to compute  (F, D) sequentially

A number of factors challenge designing correct and efficient  

parallelizations:

• sequential dependencies

• synchronization costs

• spawning costs

• error proneness and composability

Challenges to parallelization
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Some steps in a task computation depend on the result of other  steps; this creates 

sequential dependencies where one task must  wait for another task to run. 

Sequential dependencies limit the  amount of parallelism that can be achieved.

For example, to compute the sum 1 + 2 + · · · + 8 we could split into:

a. computing 1 + 2, 3 + 4, 5 + 6, 7 + 8

b. computing (1 + 2) + (3 + 4) and (5 + 6) + (7 + 8)

c. computing ((1 + 2) + (3 + 4)) + ((5 + 6) + (7 + 8))

The computations in each group depend on the computations in the  previous group, 

and hence the corresponding tasks must execute after the latter have completed.

The synchronization problems (producer-consumer, dining  philosophers, etc.) we 

discussed in various classes capture kinds of  sequential dependencies that may occur 

when parallelizing.

Sequential dependencies
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Some steps in a task computation depends on the result of other  steps; this 

creates sequential dependencies where one task must  wait for another task to run.

We represent tasks as the nodes in a graph, with arrows connecting a  task to the ones 

it depends on. The graph must be acyclic for the  decomposition to be executable.
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We represent tasks as the nodes in a graph, with arrows connecting a  task to the ones it depends on. 

The graph must be acyclic for the  decomposition to be executable.

The time to compute a node is the maximum of the times to compute  its children, plus the time 

computing the node itself. Assuming all  operations take a similar time, the longest path from the root to a 

leaf  is proportional to the optimal running time with parallelization  (ignoring overhead and assuming all 

processes can run in parallel).

Dependency graph
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Digression: some latency numbers

Chart by ayshen, based on Peter Norvig’s “Teach Yourself Programming in Ten Years”.

More numbers at https://gist.github.com/hellerbarde/2843375.
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Synchronization is required to preserve correctness, but it also  introduces 
overhead that add to the overall cost of parallelization.

In shared-memory concurrency:

• synchronization is based on locking
• locking synchronizes data from cache to main memory, which  may involve a 100x

overhead
• other costs associated with locking may include context switching (wait/signal) and 

system calls (mutual exclusion primitives)

In message-passing concurrency:

• synchronization is based on messages
• exchanging small messages is efficient, but sending around large data is quite 

expensive (still goes through main memory)
• other costs associated with message passing may include extra acknowledgment 

messages and mailbox management (removing  unprocessed messages)

Synchronization costs
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Creating a new process is generally expensive compared to  sequential 

function calls within the same process, since it involves:

• reserving memory

• registering the new process with runtime system

• setting up the process’s local memory (stack and mailbox)

Even if process creation is increasingly optimized, the cost of  spawning 

should be weighted against the speed up that can be  obtained by 

additional parallelism. In particular, when the processes  become way 

more than the available processors, there will be  diminishing returns with 

more spawning.

Spawning costs
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Synchronization is prone to errors such as data races, deadlocks,  and 
starvation. Message-based synchronization may improve the  situation, 
but it is far for being straightforward and problem free.

From the point of view of software construction, the lack of  composability 
is a challenge that prevents us from developing  parallelization strategies 
that are generally applicable.

Error proneness and composability
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Consider an Account class with methods deposit and withdraw that  execute atomically. 
What happens if we combine the two methods to  implement a transfer operation?

Method transfer does not execute uninterruptedly: other threads can execute between the call to 
withdraw and the call to deposit, possibly  preventing the transfer from succeeding (for example, 
account other may be closed; or the total balance temporarily looks lower than it is!).

Error proneness and composability

class TransferAccount  

extends Account {

// transfer from ‘this’ to ‘other’

void transfer(int amount, Account other)

{ this.withdraw(amount);  

other.deposit(amount); }

}

class Account {

synchronized void

deposit(int amount)

{ balance += amount; }

synchronized void

withdraw(int amount)

{ balance -= amount; }

}
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execute uninterruptedly



}

None of the natural solutions to composing is fully satisfactory:

• let clients of Account do the locking where needed –error  proneness, revealing 

implementation details, scalability

• recursive locking – risk of deadlock, performance overhead

Even if there is no locking with message passing, we still encounter  similar problems – synchronizing 

the effects of messaging two  independent processes.

Composability
class Account {

void // thread unsafe!

deposit(int amount)

{ balance += amount; }

void // thread unsafe!

withdraw(int amount)

{ balance -= amount; }

}

class TransferAccount  

extends Account {

// transfer from ‘this’ to ‘other’

synchronized void

transfer(int amount, Account other)

{ this.withdraw(amount);  

other.deposit(amount); }



A number of factors challenge designing correct and efficient  parallelizations:

• sequential dependencies

• synchronization costs

• spawning costs

• error proneness and composability

In the rest of this class, we present:

• fork/join parallelism techniques, which help naturally capture sequential

dependencies

• pools, which help curb the spawning costs

In future classes we will address the remaining problems of reducing  synchronization 

costs and achieving composability.

Sequential dependencies and spawning costs
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Fork/join parallelism



A server’s event loop offers clear opportunities for parallelism:

• each request sent to the server is independent of the others

• instead of serving requests sequentially, a server spawns a new  process for every request

• a child processes computes, sends response to the client, and  terminates

Parallel servers

loop(State, Operation) ->

receive

{request, From, Ref, Data} ->  

From ! {reply, Ref,

Operation(Data)},  

loop(new_state(State));

% other operations...

end.

ploop(State, Operation) ->

receive

{request, From, Ref, Data} ->

spawn(fun ()->

Result = Operation(Data),  

From ! {reply, Ref, Result}

end),

loop(new_state(State));

% other operations...

end.



The structure of recursive functions lends itself to parallelization  

according to the structure of recursion.

Recursion is easier to parallelize when it is expressed in a mostly  side-

effect free language like sequential Erlang:

• spawn a process for every recursive call

• no side effects means no hidden dependencies – a process’s  results 

only depends on its explicit input

Parallel recursion



Parallel recursion: merge sort
merge_sort(List)

when length(List) =< 1 ->  

List;

merge_sort(List) ->

Mid = length(List) div 2,

% split in two halves

{L, R} = lists:split(Mid, List),

% recursively sort each half

SL = merge_sort(L),  

SR = merge_sort(R),

% merge sorted halves

merge(SL, SR).

pmerge_sort(List)

when length(List) =< 1 ->  

List;

pmerge_sort(List) ->

Mid = length(List) div 2,

{L, R} = lists:split(Mid, List),  

Pid = self(),

spawn(fun ()-> Pid !

{sl, pmerge_sort(L)} end),  

spawn(fun ()-> Pid !

{sr, pmerge_sort(R)} end),  

receive {sl, SL} -> sl end,  

receive {sr, SR} -> sr end,

merge(SL, SR).cannot be computed inside closure  

in spawn: must be the parent’s pid
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This recursive subdivision of a task that assigns new processes to  smaller tasks is called fork/join 

parallelism:

• forking: spawning child processes and assigning them smaller  tasks

• joining: waiting for the child processes to complete and  combining their results

The order in which we wait at a join node for forked children does not  affect the total waiting time: if we 
wait for a slower process first, we  won’t wait for the others later.

Fork/join parallelism

fork

fork

done
join

join

start end

done

done



Function map’s recursive structure lends itself to parallelization.

Parallel map

% apply F to all

% elements of list

map(_, []) -> [];  

map(F, [H|T]) ->

[F(H)|map(F,T)].

% parallel map

pmap(F, L) ->

Me = self(), % my pid

Ref = make_ref(),

% for every E in L:

Children = map(fun(E) ->

% spawn a process

spawn(fun() ->

% sending Me result of F(E)

Me ! {self(), Ref, F(E)}

end) end, L),

% collect and return results

gather(Children, Ref).
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list comprehension ensures results are collected in order

% wait for all Children

% and collect results in order

gather(Children, Ref) ->  

[receive {Child, Ref, Res}

-> Res end

|| Child <- Children].



The parallel version of reduce (also called foldr) uses a halving  strategy 
similar to merge sort.

Parallel reduce
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reduce(_, A, []) -> A;

reduce(F, A, [H|T]) ->

F(H, reduce(F, A, T)).

preduce(F,A,L) equals reduce(F,A,L) if:

• Function F is associative (preduce does not 

apply F right-to-left)

• For every list element E: 

F(E, A)= F(A, E) = E
(preduce reduces A in  every base case, not

just  once)

(the data is a monoid with F as the binary operation 

and A its identity element).

preduce(_, A, []) -> A;

preduce(F, A, [E]) -> F(A, E);

preduce(F, A, List) ->

Mid = length(List) div 2,

{L, R} = lists:split(Mid, List),  

Me = self(), % L ++ R =:= Listn

Lp = spawn(fun() -> % on left half

Me ! {self(), preduce(F, A, L)} end),

Rp = spawn(fun() -> % on right half

Me ! {self(), preduce(F, A, R)} end),

% combine results of left, right half

F(receive {Lp, Lr} -> Lr end,  

receive {Rp, Rr} -> Rr end).



MapReduce is a programming model based on parallel distributed  

variants of the primitive operations map and reduce. MapReduce is a  

somewhat more general model, since it may produce a list of values  from 

a list of key/value pairs, but the underlying ideas are the same.

MapReduce implementations typically work on very large,  highly-

parallel, distributed databases or filesystems.

• The original MapReduce implementation was proprietary  

developed at Google

• Apache Hadoop offers a widely-used open-source Java  

implementation of MapReduce

MapReduce



Java package java.util.concurrent includes a library for fork/join  parallelism. 
To implement a method T m() using fork/join parallelism:

RecursiveAction and RecursiveTask<T> provide methods:

• fork(): schedule for asynchronous parallel execution
• T join(): wait for termination, and return result if T != void

• T invoke(): arrange synchronous parallel execution (fork and  join) and return result if 
T != void

• invokeAll(Collection<T> tasks) invoke all tasks in collection  (fork all and join all), 
and return collection of results

Fork/join parallelism in Java

If m is a procedure (T is void):

• create a class that inherits  

from RecursiveAction

• override void compute()

with m’s computation

If m is a function:

• create a class that inherits  

from RecursiveTask<T>

• override T compute() with

m’s computation



public class PMergeSort extends RecursiveAction {
private Integer[] data; // values to be sorted

private int low, high; // to be sorted: data[low..high)

@Override
protected void compute() {

if (high - low <= 1) return; // size <= 1: sorted already

int mid = low + (high - low)/2; // mid point

// left and right halves

PMergeSort left = new PMergeSort(data, low, mid);  

PMergeSort right = new PMergeSort(data, mid, high);

left.fork(); // fork thread working on left

right.fork(); // fork thread working on right

left.join(); // wait for sorted left half

right.join();  // wait for sorted right half

merge(mid); // merge halves

}

}

Parallel merge sort using fork/join

}



The top computation of a fork/join task is started by a pool object:

// to sort array ‘numbers’ using PMergeSort:

RecursiveAction sorter = new PMergeSort(numbers, 0, numbers.length);

// schedule ‘sorter’ for execution, and wait for computation to finish

ForkJoinPool.commonPool().invoke(sorter);
// now ‘numbers’ is sorted

The pool takes care of efficiently dispatching work to threads, as we  describe in the rest of this class.

The framework introduces a layer of abstraction between  computational tasks and actual running 

threads that execute the  tasks. This way, the fork/join model simplifies parallelizing  computations, since 

we can focus on how to split data among tasks in  a way that avoids race conditions.

Running a fork/join task



There are a number of things that should be improved in the parallel 
merge sort example:

Revisiting parallel merge sort

protected void compute() {

if (high - low <= 1) return; // size <= 1: sorted already

int mid = low + (high - low)/2; // mid point

// left and right halves

PMergeSort left = new PMergeSort(data, low, mid);  

PMergeSort right = new PMergeSort(data, mid, high);

left.fork(); // fork thread working on left

right.fork(); // fork thread working on right

left.join(); // wait for sorted left half

right.join();  // wait for sorted right half

merge(mid);// merge halves

}

granularity too small!

the forking thread is idle!



In order to obtain good performance using fork/join parallelism:

• After forking children tasks, keep some work for the parent task  before it joins the 

children

• For the same reason, use invoke and invokeAllonly at the top level as a norm

• Perform small enough tasks sequentially in the parent task, and  fork children tasks 

only when there is a substantial chunk of work  left; Java’s fork/join framework 

recommends that each task be  assigned between 100 and 10’000 basic 

computational steps

• Make sure different tasks can proceed independently – minimize  data dependencies

The advantages of parallelism may only be visible with several  physical processors, 

and on very large inputs. (The Java runtime may  even need to warm up before it 

optimizes the parallel code more  aggressively.)

Fork/join good practices
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Revisited parallel merge sort using fork/join

30/43

before joining, do more work in current task

protected void compute() {

if (high - low <= THRESHOLD)

sequential_sort(data, low, high);

else {

int mid = low + (high - low)/2; // mid point

// left and right halves

PMergeSort left = new PMergeSort(data, low, mid);  

PMergeSort right = new PMergeSort(data, mid, high);

left.fork(); // fork thread working on left

right.compute(); // continue work on right

left.join(); // when done, wait for sorted left half

merge(mid); // merge halves

}

choose experimentally (at least 1000)



Pools and work stealing



Parallelizing by following the recursive structure of a task is simple  and 
appealing. However, the potential performance gains should be  weighted 
against the overhead of creating and running many  processes.

How many processes is lagom?
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Process creation in  Erlang is

lightweight:  1 GiB of memory 

fits  about 432’000  

processes, so one million 

processes is  quite feasible.



Parallelizing by following the recursive structure of a task is simple  and 
appealing. However, the potential performance gains should be  weighted 
against the overhead of creating and running many  processes.

How many processes is lagom?

26/43

There are still limits to  how 

many processes fit  in memory. 

Besides,  even if we have 

enough  memory, more  

processes do not  improve 

performance if  their number 

greatly  exceeds the number of  

available physical  processors.



Process pools are a technique to address the problem of using an  

appropriate number of processes.

A pool creates a number of worker processes upon initialization. The  number of 

workers is chosen according to the actual resources that  are available to run 

them in parallel – a detail which pool users need  not know about.

• As long as more work is available, the pool deals a work  assignment to 

a worker that is available

• The pool collects the results of the workers’ computations

• When all work is completed, the pool terminates and returns the  overall result

This kind of pool is called a dealing pool because it actively deals  work to

workers.

Workers and pools
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Workers are servers that run as long as the pool that created them  does. A worker can 
be in one of two states:

• idle: waiting for work assignments from the pool
• busy: computing a work assignment

As soon as a worker completes a work assignments, it sends the  result to the pool 
and goes back to being idle.

% create worker for ‘Pool’ computing ‘Function’

init_worker(Pool, Function) ->

spawn(fun ()-> worker(Pool, Function) end).

worker(Pool, Function) ->

receive {Pool, Data} ->  % assignment from pool

Result = Function(Data),  % compute work

Pool ! {self(), Result}, % send result to pool

worker(Pool, Function) % back to idle

end.

Workers
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A pool keeps track of:

• the remaining work – not assigned yet

• the busy workers

• the idle workers

-record(pool, {work, busy, idle}).

The pool also stores:

• a split function, used to extract a single work item

• a join function, used to combine partial results

• the overall result of the computation that is underway

pool(Pool#pool, Split, Join, Result) -> todo.

Pool state

state of record type pool



The pool terminates and returns the result of the computation when  there are no 

pending work items, and all workers are idle (thus all  work has been done).

% work completed, no busy workers: return result

pool(#pool{work = [], busy = []},

_Split, _Join, Result) ->  Result;

Pool termination



As long as there is some pending work and some idle workers, the  pool deals 

work to some of those idle workers.

% work pending, some idle workers: assign work

pool(Pool = #pool{work = Work = [_|_], busy = Busy, idle = [Worker|Idle]},  

Split, Join, Result) ->

{Chunk, Remaining} = Split(Work), % split pending work  

Worker ! {self(), Chunk}, % send chunk to worker  

pool(Pool#pool{work = Remaining, busy = [Worker|Busy],idle = Idle},

Split, Join, Result);

Using a function Split provides flexibility in splitting work intochunks.

Dealing work

matches if Work not empty



When there are no pending work items or all workers are busy, the  pool can only wait for workers to 

send back results.

% work completed or no idle workers: wait for results

pool(Pool = #pool{busy = Busy, idle = Idle}, Split, Join, Result) ->

% get result from worker

receive {Worker, PartialResult} -> ok end,

% join worker’s result and current result  

NewResult = Join(PartialResult, Result),  

pool(Pool#pool{busy = lists:delete(Worker, Busy),idle = Idle ++ [Worker]},    
Split, Join, NewResult).

Note that the condition “no pending work or all workers busy” is  implicit because this clause comes 

last in the definition of pool.

Collecting results
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Initializing a pool requires a function to be computed, a workload, split  and join functions, and a 

number of worker threads.

init_pool(Function, Work, Split, Join, Initial, N) ->  

Pool = self(),

% spawn N workers for the same pool

Workers = [init_worker(Pool, Function) || _ <- lists:seq(1, N)],  

[link(W) || W <- Workers], % link workers to pool

% initially all work is pending, all workers are idle

pool(#pool{work = Work, busy = [], idle = Workers},  Split, Join, Initial).

The function link ensures that the worker processes areterminated  as soon as the process 

running the pool does.

In practice we would set N to an optimal number based on the  available resources, and export 

init_pool working with thatnumber.

Pool creation



We can define a parallel version of map using a pool:

pmap(F, L, N) -> init_pool(F,  % function to be mapped

L,  % work: list to be mapped

fun ([H|T]) -> {H, T} end, % split: take first element

fun (R,Res) -> [R|Res] end, % join: cons with list

[], N).

Note that the order of the results may change from run to run. It is  possible to restore 
the original order by using a more complex join  function.

Parallel map with workers
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We can define a parallel version of reduce using apool:

preduce(F, I, L, N) ->

init_pool(fun ({X,Y}) -> F(X,Y) end, % so that a chunk is a pair

L,
fun (W) -> chunk_two(I, W) end, % split: take first two elements

F, % join: folding function!  

I, N).

chunk_two(_, [Fst|[Snd|R]]) -> {{Fst,Snd}, R};

chunk_two(I, [Fst|R]) -> {{Fst,I}, R}.

This works correctly under the same conditions as the direct  recursive version of preduce

shown before: F should be associative,  and I should be a neutral element under F.

The syntax is a bit clunky, but the basic idea is that preduce assigns to  each worker the reduction 

of two consecutive input elements.

Parallel reduce with workers



In our version of preduce using a dealing pool, a lot of reduction work  is actually done 

by the pool process when executing join for each  result. In the dependency graph, 

the bottom level is computed by the  workers; the upper levels are computed by the 

pool while joining.

Joining is working too

F

F

v1 v2

F

v3 v4

F

F

v5 v6

F

v7 v8

F



More generally, the dealing process pool we have designed works well if joining is a lightweight

operation compared to computing the work function.

A more flexible solution subdivides work in tasks. Each task consists of a function to be applied to a list

of data.

-record(task, {function, data}).

• The split function extracts a smaller task from a bigger one

• The join function creates a task consisting of computing the join

With this approach, the pool can delegate joining to the workers or do  it directly if it is little work. By 

creating suitable join and split functions  we can make a better usage of workers and achieve a better  

parallelization.

We call this kind of pool recursive (dealing) pool, because it may  recursively generate new work while 

combining intermediate results.

Recursive dealing pools



Dealing pools work well if:

• the workload can be split in even chunks, and

• the workload does not change over time (for example if users  send new 
tasks or cancel tasks dynamically)

Under these conditions, the workload is balanced evenly between  workers, 
so as to maximize the amount of parallel computation.

In realistic applications, however, these conditions are not met:

• it may be hard to predict reliably which tasks take more time to  compute the 
workload is highly dynamic

Stealing pools use a different approach to allocating tasks to workers  that 
better addresses these challenging conditions.

From dealing to stealing
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A stealing pool associates a queue to every worker process. The pool  

distributes new tasks by adding them to the workers’ queues.

When a worker becomes idle:

• first, it gets the next task from its own queue,

• if its queue is empty, it can directly steal tasks from the queue of  another 

worker that is currently busy.

With this approach, workers adjust dynamically to the current working  

conditions without requiring a supervisor that can reliably predict the  workload 

required by each task. With stealing, the pool may even  send all tasks to one 

default thread, letting other idle threads steal  directly from it, simplifying the 

pool and reducing the synchronization costs it incurs.

Work stealing



This is an outline of the algorithm for work stealing. It assumes that  the queue array 

queue can be accessed by concurrent threads without  race conditions.
public class WorkStealingThread

{ Queue [] queue; // queues of all worker threads

public void run() {

{ int me = ThreadID.get(); // my thread id

while (true) {

for (Task task: queue[me]) // run all tasks in my queue

task.run();

// now my queue is empty: select another random thread

int victim = random.nextInt(queue.length);

// try to take a task out of the victim’s queue

Task stolen = queue[victim].pop();

// if the victim’s queue was not empty, run the stolen task

if (stolen != null) stolen.run();

} } }

Work stealing algorithm



Java offers efficient implementations of thread pools in package

java.util.concurrent.

The interface ExecutorService provides:

• void execute(Runnable thread): schedule thread for execution

• Future submit(Runnable thread): schedule thread for execution,  and return a Future object (to cancel 

the execution, or wait for  termination)

Implementations of ExecutorService with different characteristicscan  also be obtained by factory 

methods of class Executors:

• CachedThreadPool: thread pool of dynamically variable size

• WorkStealingPool: thread pool using work stealing

• ForkJoinPool: work-stealing pool for running fork/join tasks

Thread pools in Java



Thread pools in Java: example
Without thread pools:

Counter counter = new Counter();

// threads t and u

Thread t = new Thread(counter);  

Thread u = new Thread(counter);  

t.start(); // increment once  

u.start(); // increment twice  

try { // wait for termination

t.join(); u.join();
}

catch (InterruptedException e)

{ 

System.out.println("Int!");

}

With thread pools:

Counter counter = new Counter();

// threads t and u

Thread t = new Thread(counter);  

Thread u = new Thread(counter);

ExecutorService pool=Executors.newWorkStealingPool();

// schedule t and u for execution

Future<?> ft = pool.submit(t);

Future<?> fu = pool.submit(u);

try {

ft.get(); fu.get();
}

catch (InterruptedException ExecutionException e){ 

System.out.println("Int!");

}
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Erlang provides some load distribution services in the system module  
pool. These are aimed at distributing the load between different  nodes, 
each a full-fledged collection of processes.

Process pools in Erlang
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