
Lecture 3 of TDA384/DIT391

Principles of Concurrent Programming

Nir Piterman and Gerardo Schneider

Chalmers University of Technology | University of Gothenburg

Models of concurrency &
synchronization algorithms

• Analyzing concurrency

• Mutual exclusion with only atomic reads and writes
• Three failed attempts

• Peterson’s algorithm

• Mutual exclusion with bounded waiting

• Implementing mutual exclusion algorithms in Java

• Implementing semaphores

Today's menu

1

Analyzing concurrency

2

We capture essential elements of concurrent programs using state/transition
diagrams

• Also called: (finite) state automata, (finite) state machines, or transition systems

• States in a diagram capture possible program states

• Transitions connect states according to execution order

Structural properties of a diagram capture semantic properties of the
corresponding program

State/transition diagrams

3

A state captures the shared and local states of a concurrent program:

States

4

When unambiguous, we simplify a state with only the essential information:

States

A state captures the shared and local states of a concurrent program:

5

The initial state of a computation is marked with an incoming arrow:

Initial states

6

The final states of a computation – where the program terminates – are marked
with double-line edges:

Final states

7

A transition corresponds to the execution of one atomic instruction, and it is an
arrow connecting two states (or a state to itself):

Transitions

8

A complete state/transition diagram

The complete state/transition diagram for the concurrent counter example
explicitly shows all possible interleavings:

9

Wrong outcome!
(want to avoid it)

State/transition diagram with locks?

The state/transition diagram of the concurrent counter example we would like
to achieve using locks:

10

Locking and unlocking are considered atomic operations

Locking

This transition is only allowed if the lock is not held by another thread
11

Counter with locks: state/transition diagram

The state/transition diagram of the concurrent counter example using locks
should contain no (states representing) race conditions:

12

Transition tables are equivalent representations of the information of
state/transition diagrams

Transition tables

14

The structural properties of a diagram capture semantic properties of the program:

Mutual exclusion: there are no states where two threads are in their critical section

Deadlock freedom: for every (non-final) state, there is an outgoing transition

Starvation freedom: there is no (looping) path such that a thread never enters its
critical section while trying to do so

No race conditions: all the final states have the same (correct) result

• We will build and analyze state/transition diagrams only for simple examples, since it
quickly becomes tedious

• Model checking is a technique that automates the construction and analysis of
state/transition diagrams with billions of states

• We’ll give a short introduction to model checking in one of the last classes

Reasoning about program properties

15

Mutual exclusion with only
atomic reads and writes

16

A lock is a data structure (an object in Java) with interface:

interface Lock {

void lock(); // acquire lock

void unlock(); // release lock

}

• Several threads share the same object lock of type Lock

• Threads calling lock.lock(): exactly one thread 𝑡 acquires the lock:
• 𝑡’s call lock.lock() returns: 𝑡 is holding the lock

• other threads block on the call lock.lock(), waiting for the lock to become available

• A thread 𝑡 that is holding the lock calls lock.lock()to release the lock:
• 𝑡’s call lock.unlock() returns: the lock becomes available

• another thread waiting for the lock may succeed in acquiring it

Locks: recap

17

Can we implement locks using only atomic instructions – reading and writing

shared variables?

• We present some classical algorithms for mutual exclusion using only atomic

reads and writes

• The presentation builds up to the correct algorithms in a series of attempts, which

highlight the principles that underlie how the algorithms work

Mutual exclusion without locks

• It is possible

• But it is also tricky!

18

Given 𝑁 threads, each executing:

// continuously
while (true) {
entry protocol
critical section {
// access shared data

}
exit protocol

} /* ignore behavior
outside critical section */

Design the entry and exit protocols to ensure:
• mutual exclusion
• freedom from deadlock
• freedom from starvation

Initially we limit ourselves to 𝑁 = 2 threads, 𝑡0 and 𝑡1

The mutual exclusion problem - recap

Now protocols can use
only reads and writes
of shared variables

19

In the pseudo-code, we will use the shorthand

await(c) ≜ while (!c) {}

to denote busy waiting (also called spinning):
• keep reading shared variable c as long as it is false

• proceed when it becomes true

• Busy waiting is generally inefficient (unless typical waiting times are shorter than
context switching times), so you should avoid using it
• We use it only because it is a good device to illustrate the nuts and bolts of mutual

exclusion protocols

• Note that await is not a valid Java keyword
• We highlight it in a different color – but we will use it as a shorthand for better readability

Busy waiting

20

Mutual exclusion with only
atomic reads and writes
Three failed attempts

21

Use Boolean flags enter[0] and enter[1]:
• each thread waits until the other thread is not trying to enter the critical section

• before thread 𝑡𝑘 is about to enter the critical section, it sets enter[k] to true

Double-threaded mutual exclusion: First naive attempt

22

The first attempt does not guarantee mutual
exclusion: 𝑡0 and 𝑡1 can be in the critical section at
the same time

The first naive attempt is incorrect!

The problem seems to be that await is executed before setting enter, so one thread
may proceed ignoring that the other thread is also proceeding

23

Both threads here! How?

When thread 𝑡𝑘 wants to enter the critical section:

• it first sets enter[k]to true

• then it waits until the other thread is not trying to enter the critical section

Double-threaded mutual exclusion: Second naive attempt

24

The second attempt:
• guarantees mutual exclusion: 𝑡0 is in the critical section iff enter[1] is false, iff
𝑡1 has not set enter[1] to true, iff 𝑡1 has not entered the critical section (𝑡1 has
not executed line yet)

• does not guarantee freedom from deadlocks

The second naive attempt may deadlock!

The problem seems to be that the two variables enter[0] and enter[1] are accessed
independently
• each thread may be waiting for permission to proceed from the other thread

25

Both threads might end
up here, blocked. Why?

Use one single integer variable yield:
• thread 𝑡𝑘 waits for its turn while yield is 𝑘

• when it is done with its critical section, it yields control to the other thread by setting
yield = 𝑘

Double-threaded mutual exclusion: Third naive attempt

26

The third attempt:

• guarantees mutual exclusion:

𝑡0 is in the critical section

iff yield is 1

iff yield was initialized to 1 or 𝑡1 has set yield to 1

iff 𝑡1 is not in the critical section (𝑡0 has not executed line 6 yet).

• guarantees freedom from deadlocks: each thread enables the other thread, so
that a circular wait is impossible

• does not guarantee freedom from starvation: if one stops executing in its non-
critical section, the other thread will starve (after one last access to its critical
section)

Later in the course: we will discuss how model checking can help to verify whether
such correctness properties hold in a concurrent program

The third naive attempt may starve some thread!

27

Peterson’s algorithm

28

Combine the ideas behind the second and third attempts:
• thread 𝑡𝑘 first sets enter[k] to true
• but lets the other thread go first – by setting yield

Peterson's algorithm

Works even if two reads
are non-atomic

29

Equivalent to:
wait while

(enter[1]=true
&

yield=0)

Enter only when
(enter[1]=false

OR
yield=1)

30

State/transition diagram of Peterson's algorithm

0

1

0

1 1 1

0

1

0

1 1 1

0 0 0

1

0

0 0

1

pc0=3

pc0=6

pc0=5

pc0=4

pc1=12 pc1=14 pc1=15pc1=13

enter[1]=T
en

te
r[

0
]=

T

31

Another state/transition
diagram of

Peterson's algorithm

Critical Section

By inspecting the state/transition diagram, we can check that Peterson’s
algorithm satisfies:

mutual exclusion: there are no states where both threads are 𝑐 – that is, in the
critical section

deadlock freedom: every state has at least one outgoing transition

starvation freedom: if thread 𝑡0 is in its critical section, then thread 𝑡1 can reach its
critical section without requiring thread 𝑡0’s collaboration after it executes the exit
protocol

Checking the correctness of Peterson's algorithm

32

0

1

0

1 1 1

0

1

0

1 1 1

0 0 0

1

0

0 0

1

pc0=3

pc0=6

pc0=5

pc0=4

pc1=12 pc1=14 pc1=15pc1=13

enter[1]=T
en

te
r[

0
]=

T

33

Peterson's algorithm
satisfies mutual exclusion
and is deadlock free

Critical Section

By inspecting the state/transition diagram, we can check that Peterson’s
algorithm satisfies:

mutual exclusion: there are no states where both threads are 𝑐 – that is, in the
critical section

deadlock freedom: every state has at least one outgoing transition

starvation freedom: if thread 𝑡0 is in its critical section, then thread 𝑡1 can reach
its critical section without requiring thread 𝑡0’s collaboration after it executes
the exit protocol

Checking the correctness of Peterson's algorithm

34

0

1

0

1 1 1

0

1

0

1 1 1

0 0 0

1

0

0 0

1

pc0=3

pc0=6

pc0=5

pc0=4

pc1=12 pc1=14 pc1=15pc1=13

enter[1]=T
en

te
r[

0
]=

T

35

Peterson's algorithm
is starvation free

Peterson's algorithm satisfies mutual exclusion

Instead of building the state/transition diagram, we can also prove mutual exclusion
by contradiction:

• Assume 𝑡0 and 𝑡1 both are in their critical section

• We have enter[0] == true and enter[1] == true
(𝑡0 and 𝑡1 set them before last entering their critical sections)

• Either yield == 0 or yield == 1
Without loss of generality, assume yield == 0

• Before last entering its critical section, 𝑡0 must have set yield to 0; after that it cannot
have changed yield again

• To enter its critical section, 𝑡0 must have read yield == 1 (since enter[1] ==
true), so 𝑡1 must have set yield to 1 after 𝑡0 last changed yield to 0

• Since neither thread can have changed yield to 0 after that, we must have
yield == 1

Contradiction!

36

Peterson's algorithm is starvation free
Suppose 𝑡0 is waiting to enter its critical section. At the same time, 𝑡1 must be doing
one of four things:

1. 𝑡1 is in its critical section: then, it will eventually leave it;
2. 𝑡1 is in its non-critical section: then, enter[1] == false, so 𝑡0 can enter its critical

section;
3. 𝑡1 is waiting to enter its critical section: then, yield is either 0 or 1, so one thread can

enter the critical section;
4. 𝑡1 keeps on entering and exiting its critical section: this is impossible because after 𝑡1

sets yield to 1 it cannot cycle until 𝑡0 has a chance to enter its critical section (and
reset yield).

In all possible cases, 𝑡0 eventually gets a chance to enter the critical section, so there is
no starvation

Since starvation freedom implies deadlock freedom:

Peterson’s algorithm is a correct mutual exclusion protocol
37

Peterson’s algorithm easily generalizes to 𝑛 threads

Peterson's algorithm for n threads

wait until all other
threads are in lower levels

or another thread
is yielding

38

39

Peterson's algorithm for n threads

Every thread goes through 𝑛 − 1 levels to enter the critical
section:

• when a thread is at level 0 it is outside the entry region;

• when a thread is at level 𝑛 − 1 it is in the critical section;

• Thread x is in level i when it has finished the loop at line 6
with enter[x]=i;

• yield[l] indicates the last thread that wants to enter
level l last;

• to enter the next level, wait until there are no processes in
higher levels, or another process (which entered the
current level last) is yielding;

• mutual exclusion: at most 𝑛 − ℓ processes are in level ℓ,
thus at most 𝑛 − (𝑛 − 1) = 1 processes in critical section.

40

Peterson's algorithm for n threads

Mutual exclusion with bounded
waiting

42

Peterson’s algorithm guarantees freedom from starvation, but threads may get access
to their critical section before other ”older” threads

To describe this, we introduce more precise properties of fairness:

Finite waiting (starvation freedom): when a thread 𝑡 is waiting to enter its critical
section, it will eventually enter it

Bounded waiting: when a thread 𝑡 is waiting to enter its critical section, the maximum
number of times other arriving threads are allowed to enter their critical section
before 𝑡 is bounded by a function of the number of contending threads

𝑟-bounded waiting: when a thread 𝑡 is waiting to enter its critical section, the
maximum number of times other arriving threads are allowed to enter their critical
section before 𝑡 is less than 𝑟 + 1

First-come-first-served: 0-bounded waiting

Bounded waiting (also called bounded bypass)

43

Lamport’s Bakery algorithm achieves mutual exclusion, deadlock freedom, and first-
come-first-served access

It is based on the idea of waiting threads getting a ticket number:
• Because of lack of atomicity, two threads may end up with the same ticket number

• In that case, their thread identifier number is used to force an order

• The tricky part is evaluating multiple variables (the ticket numbers of all other waiting
processes) consistently

• Idea: a thread raises a flag when computing the number; other threads then wait to
compute the numbers

Main drawback (compared to Peterson’s algorithm: the original version of the Bakery
algorithm may use arbitrarily large integers (the ticket numbers) in shared variables

The Bakery algorithm

44

Implementing mutual exclusion
algorithms in Java

45

… don’t do it!

Learning how to achieve mutual exclusion using only atomic reads and writes
has educational value, but you should not use it in realistic programs

• Use the locks and semaphores available in Java’s standard library

• We will still give an overview of the things to know if you were to
implement Peterson’s algorithm, and similar ones, from the ground up

Now that you know how to do it…

46

class PetersonLock implements Lock {

private volatile boolean enter0 = false, enter1 = false;

private volatile int yield;

public void lock()

{ int me = getThreadId();

if (me == 0) enter0 = true;

else enter1 = true;

yield = me;

while ((me == 0) ? (enter1 && yield == 0)

: (enter0 && yield == 1)) {} }

public void unlock()

{ int me = getThreadId();

if (me == 0) enter0 = false;

else enter1 = false; }

private volatile long id0 = 0;

Peterson's lock in Java: 2 threads

volatile is required
for correctness

47

The loop will exit:
if me=0 and (enter1 is false or yield is 1),

or
if me=1, and enter0 is false or yield is 0.

When we designed and analyzed concurrent algorithms, we implicitly assumed that threads
execute instructions in textual program order

This is not guaranteed by the Java language – or, for that matter, by most programming
languages – when threads access shared fields

(Read “The silently shifting semicolon” http://drops.dagstuhl.de/opus/volltexte/2015/5025/ for a nice
description of the problems)

Instruction execution order

• Compilers may reorder instructions based on static
analysis, which does not know about threads.

• Processors may delay the effect of writes to when the
cache is committed to memory

This adds to the complications of writing low-level concurrent
software correctly

48

http://drops.dagstuhl.de/opus/volltexte/2015/5025/

Instruction execution order

49

class PetersonLock implements Lock {
private volatile boolean enter0 = false, enter1 = false;
private volatile int yield;

public void lock()
{ int me = getThreadId();

if (me == 0) enter0 = true;
else enter1 = true;
yield = me;
while ((me == 0) ? (enter1 && yield == 0)

: (enter0 && yield == 1)) {} }

public void unlock()
{ int me = getThreadId();

if (me == 0) enter0 = false;
else enter1 = false; }

private volatile long id0 = 0;

• Compilers may reorder instructions based on static
analysis, which does not know about threads.

• Processors may delay the effect of writes to when the
cache is committed to memory

This adds to the complications of writing low-level concurrent
software correctly

The compiler might
Decide to move this instruction

Accessing a field (attribute) declared as volatile forces synchronization, and
thus prevents any optimization from reordering instructions in a way that alters
the “happens before” relationship defined by a program’s textual order

When accessing a shared variable that is accessed concurrently:

• declare the variable as volatile

• or guard access to the variable with locks (or other synchronization
primitives)

Volatile fields

50

Arrays and volatile

Java does not support arrays whose elements are volatile

That’s why we used two scalar boolean var when implementating Peterson’s lock

Workarounds:

• use an object of class AtomicIntegerArray in package java.util.concurrent.atomic

which guarantees atomicity of accesses to its elements (the field itself need not be

declared volatile)

• make sure that there is a read to a volatile field before every read to elements of the

shared array, and that there is a write to a volatile field after every write to elements of

the shared array; this forces synchronization indirectly (may be tricky to do correctly!)

• explicitly guard accesses to shared arrays with a lock: this is the high-level solution which

we will preferably use

51

class PetersonAtomicLock implements Lock {

private AtomicIntegerArray enter = new AtomicIntegerArray(2);

private volatile int yield;

public void lock() {

int me = getThreadId();

int other = 1 - me;

enter.set(me, 1);

yield = me;

while (enter.get(other) == 1 && yield == me) {}

}

public void unlock() {

int me = getThreadId();

enter.set(me, 0);

}

Peterson's lock in Java: 2 threads, with atomic arrays

52

Peterson’s algorithm for 𝒏 threads uses 𝛩(𝑛) shared memory locations (two 𝑛-
element arrays)

• One can prove that this is the minimum amount of shared memory needed to have
mutual exclusion if only atomic reads and writes are available

• This is one reason why synchronization using only atomic reads and writes is
impractical

• We need more powerful primitive operations:

• atomic test-and-set operations

• support for suspending and resuming threads explicitly

Mutual exclusion needs n memory locations

53

The test-and-set operation boolean testAndSet() works on a Boolean variable b
as follows: b.testAndSet() atomically returns the current value of b and sets b to
true

Java class AtomicBoolean implements test-and-set:

package java.util.concurrent.atomic;
public class AtomicBoolean {

AtomicBoolean(boolean initialValue); // initialize to `initialValue'

boolean get(); // read current value
void set(boolean newValue); // write `newValue'

// return current value and write `newValue'

boolean getAndSet(boolean newValue);
// testAndSet() is equivalent to getAndSet(true)

}

Test-and-set

54

An implementation of 𝑛-process mutual exclusion using a single Boolean
variable with test-and-set and busy waiting:

A lock using test-and-set

public class TASLock implements Lock {

AtomicBoolean held = new

AtomicBoolean(false);

public void lock() {

while (held.getAndSet(true)) {

} // await (!testAndSet());

}

public void unlock() {

held.set(false); // held = false;

}

}

• Variable held is true iff the lock is held
by some thread

• When locking (executing lock):

– as long as held is true (someone
else holds the lock), keep resetting it
to true and wait

– as soon as held is false, set it to
true – you hold the lock now

• When unlocking (executing unlock):
set held to false.

55

A lock implementation using a single Boolean variable with test-and-test-and-set
and busy waiting:

A lock using test-and-test-and-set

When locking (executing lock):

• spin until held is false

• then check if held still is false, and if it is
set it to true – you hold the lock now;
return

• otherwise it means another thread
“stole” the lock from you; then repeat
the locking procedure from the
beginning

This variant tends to perform better, since the busy waiting is local to the cached
copy as long as no other thread changes the lock’s state

public class TTASLock extends TASLock {

@Override

public void lock() {

while (true) {

while(held.get()) {}

if (!held.getAndSet(true))

return;

}

}

}

56

Implementing semaphores

57

A (general/counting) semaphore is a data structure with interface:

interface Semaphore {

int count(); // current value of counter

void up(); // increment counter

void down(); // decrement counter

}

Several threads share the same object sem of type Semaphore:

• initially count is set to a nonnegative value C (the capacity)

• a call to sem.up() atomically increments count by one

• a call to sem.down(): waits until count is positive, and then atomically
decrements count by one

Semaphores: recap

58

Semaphores with locks
An implementation of semaphores using locks and busy waiting:

class SemaphoreBusy implements Semaphore {
private int count;

public synchronized void up() {
count = count + 1;

}

public void down() {
while (true) {

synchronized (this) {
if (count > 0) { // await (count > 0);

count = count - 1; return;

}

}

}

}

public synchronized int count() {
return count;

}

}

Executed
exclusively

Why not lock the whole method?

59

To avoid locking other threads!

Does this have to be synchronized?

Yes, if count is not volatile

To avoid busy waiting, we have to rely on more powerful synchronization primitives than only
reading and writing variables

A standard solution uses Java’s explicit scheduling of threads

Suspending and resuming threads

60

Waiting and notifying only affects the threads that are locked on the same shared object
(using synchronized blocks or methods)

• calling wait() suspends the
currently running thread

• calling notify() moves one
(nondeterministically chosen) blocked
thread to the ready state

• calling notifyAll() moves all
blocked threads to the ready state

An implementation of weak semaphores using wait() and notify()

class SemaphoreWeak implements Semaphore {
private int count;

public synchronized void up() {
count = count + 1;
notify(); // wake up a waiting thread

}

public synchronized void down() throws InterruptedException {
while (count == 0) wait(); // suspend running thread
count = count - 1; // now count > 0

}

public synchronized int count() {
return count;

}

}

Weak semaphores with suspend/resume

Since notify is nondeterministic
this is a weak semaphore

wait releases the object lock

In general, wait must be called in a loop in case of spurious wakeups;
this is not busy waiting (and it’s required by Java’s implementation)

61

An implementation of strong semaphores using wait() and notifyAll()

class SemaphoreStrong implements Semaphore {

public synchronized void up() {
if (blocked.isEmpty()) count = count + 1;
else notifyAll(); // wake up all waiting threads

}

public synchronized void down() throws InterruptedException {
Thread me = Thread.currentThread();
blocked.add(me); // enqueue me
while (count == 0 || blocked.element() != me)

wait(); // I'm enqueued when suspending
// now count > 0 and it's my turn: dequeue me and decrement
blocked.remove(); count = count - 1;

}

private final Queue<Thread> blocked = new LinkedList<>();

private int count;

Strong semaphores with suspend/resume

62

count

blocked

10

63

Remember that
wait releases the object

lock (that’s why the
yellow thread can go in)

An implementation of strong semaphores using wait() and notifyAll()

class SemaphoreStrong implements Semaphore {

public synchronized void up() {
count = count + 1;
notifyAll(); // wake up all waiting threads

}

public synchronized void down() throws InterruptedException {
Thread me = Thread.currentThread();
blocked.add(me); // enqueue me
while (count == 0 || blocked.element() != me)

wait(); // I'm enqueued when suspending
// now count > 0 and it's my turn: dequeue me and decrement
blocked.remove(); count = count - 1;

}

private final Queue<Thread> blocked = new LinkedList<>();

private int count;
}

Strong semaphores with suspend/resume

64

65

Debugging concurrent
programs is very

difficult!

General semaphores using binary semaphores
A general semaphore can be implemented using just two binary semaphores

Barz’s solution in pseudocode (with capacity> 0):

BinarySemaphore mutex = 1; // protects access to count

BinarySemaphore delay = 1; // blocks threads in down until count >0

int count = capacity; // value of general semaphore

void up()

{ mutex.down(); // get exclusive access to count

count = count + 1; // increment count

if (count == 1) delay.up(); // release threads blocking on down

mutex.up(); } // release exclusive access to count

void down()

{ delay.down(); // block other threads starting down

mutex.down(); // get exclusive access to count

count = count - 1; // decrement count

if (count > 0) delay.up(); // release threads blocking on down

mutex.up(); } // release exclusive access to count

66

68

72

