Introduction to Concurrent
Programming

Lecture 1 of TDA384/DIT391

Principles of Concurrent Programming

UNIVERSITY OF
GOTHENBURG

Nir Piterman and Gerardo Schneider

Chalmers University of Technology | University of Gothenburg

UNIVERSITY OF TECHNOLOGY

“2y CHALMERS

UNIVERSITY OF TECHNOLOGY

(®)) UNIVERSITY OF GOTHENBURG

Today’s menu

* A motivating example

* Why concurrency?

* Basic terminology and abstractions
* Java threads

* Traces

42y CHALMERS

P
S5 UNIVERSITY OF TECHNOLOGY

(®%)) UNIVERSITY OF GOTHENBURG

A Motivating Example

£-y CHALMERS

UNIVERSITY OF TECHNOLOGY

(%)) UNIVERSITY OF GOTHENBURG

As simple as counting to two

We illustrate the challenges introduced by concurrent programming on a simple
example: a counter modeled by a Java class

* First, we write a traditional, sequential version

* Then, we introduce concurrency and...run into trouble!

Sequential counter

public class Counter ({
private int counter = 0;

// 1lncrement counter by one

public void run () {
int cnt = counter;
counter = cnt + 1;

// current value of counter
public int counter () {
return counter;

}

“7y CHALMERS

UNIVERSITY OF TECHNOLOGY

(®)) UNIVERSITY OF GOTHENBURG

public class SequentialCount {
public static
void main (String[] args) {
Counter counter = new Counter();
counter.run(); // increment once
counter.run(); // increment
twice
// print final value of counter
System.out.println (
counter.counter()) ;

— What is printed by running: java SequentialCount?

— May the printed value change in different reruns?
g

CHALMERS

UNIVERSITY OF TECHNOLOGY

(®%)) UNIVERSITY OF GOTHENBURG

Modeling sequential computation

5 public void run () {

6 int cnt = counter; e
7 counter = cnt + 1; e
8 } °

e counter.run(); // first call: steps 1-3
e counter.run(); // second call: steps 4-6

LOCAL STATE OBJECT STATE
1 pc:6 cnt: L counter: 0
2 pc:7 cnt: O counter: 0
3 pc:8 cnt: 0 counter: 1
4 pc:6 cnt: L counter: 1
5 pc:7 cnt: 1 counter: 1
6 pc:8 cnt: 1 counter: 2
7 done counter: 2

(®%)) UNIVERSITY OF GOTHENBURG

Adding concurrency

Now, we revisit the example by introducing concurrency:

Each of the two calls to method run can be executed in parallel

* |nJava, this is achieved by using threads
Do not worry about the details of the syntax for now, we will explain it later

The idea is just that:
— There are two independent execution units (threads) t and u

— Each execution unit executes run on the same counter object
— We have no control over the order of execution of t and u

Concurrent counter

public class CCounter public class ConcurrentCount ({
extends Counter public static void main (String[] args) {
implements Runnable CCounter counter = new CCounter ()
{ // threads t and u, sharing counter
// threads Thread t = new Thread (counter);
// will execute Thread u = new Thread (counter) ;
// run() t.start(); // increment once
} u.start(); // increment twice
try { // wait for t and u to terminate
t.join(); u.join();

} catch (InterruptedException e) {
System.out.println("Interrupted!");

} // print final value of counter

System.out.println (counter.counter())

bl

— What is printed by running: java ConcurrentCount?

— May the printed value change in different reruns?
D

“7y CHALMERS

UNIVERSITY OF TECHNOLOGY

(®)) UNIVERSITY OF GOTHENBURG

What?!
$ javac Counter.java CCounter.java ConcurrentCount.java
$ java ConcurrentCount.java
2
$ java ConcurrentCount.java
2 .
The concurrent version of counter
java ConcurrentCount.java — occasionally prints 1 instead of the
é‘* expected 2

$ java ConcurrentCount.java]
5 * |t seems to do so unpredictably

Welcome to concurrent programming!

DOES IT
WORK?

geek & poke

&9

CONCURRENCY

CHALMERS

UNIVERSITY OF TECHNOLOGY

g UNIVERSITY OF GOTHENBURG

(%)) UNIVERSITY OF GOTHENBURG

Why concurrency?

©-y CHALMERS

L. #f UNIVERSITY OF TECHNOLOGY

Reasons for using concurrency

(®%)) UNIVERSITY OF GOTHENBURG

Why do we need concurrent programming in the first place?

 Abstraction:

* Separating different tasks, without worrying about when to execute
them (Ex: download files from two different websites)

* Responsiveness:
* Providing a responsive user interface, with different tasks executing
independently (Ex: browse the slides while downloading your email)
* Performance:

* Splitting complex tasks in multiple units, and assign each unit to a
different processor (Ex: compute all prime numbers up to 1 billion)

“~y CHALMERS

L 24 UNIVERSITY OF TECHNOLOGY

(®%)) UNIVERSITY OF GOTHENBURG

Concurrency vs. parallelism

Principles of concurrent programming
VS.
Principer for parallell programmering

Huh?

7y CHALMERS

UNIVERSITY OF TECHNOLOGY

(®%)) UNIVERSITY OF GOTHENBURG

Concurrency vs. parallelism

We will mostly use concurrency and parallelism as synonyms

However, they refer to similar but different concepts:

* Concurrency: nondeterministic composition of independently executing units
(logical parallelism)

e Parallelism: efficient execution of fractions of a complex task on multiple processing units
(physical parallelism)

* You can have concurrency without physical parallelism: operating systems running on
single-processor single-core systems

* Parallelism is mainly about speeding up computations by taking advantage of redundant
hardware

13

UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

-y CHALMERS

Concurrency vs. parallelism

|deal situation

, i%‘afh*‘%*z‘.&m’ﬁm“ﬁ"-a‘d"pﬁﬂn o

Photo: Summer Olympics 2016, Sander van Ginkel.

UNIVERSITY OF TECHNOLOGY

CHALMERS (@8} UNIVERSITY OF GOTHENBURG

Photos: World Cup Nordic ‘07, Tomoyoshi Noguchi — Vasaloppet ‘06, Steven Hale.

15

Y CHALMERS

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Concurrency vs. parallelism

Real world situation

IIIIV%J' _ i ’
| = Lﬁ 2 @@ .O OO (N
1L i £ Deefeiseee[]e
Photo: Daniel Mott 2009 Photo: Wolfgangus Mozart 2010

Challenges:

— Concurrency: Everyone gets to do their laundry (fairness)
Machines are operated by at most one user (mutual exclusion)

— Parallelism: Distribute load evenly over machines/rooms (load balancing)

Solutions: schedules, locks, signs/indicators...

£-y CHALMERS

UNIVERSITY OF TECHNOLOGY

(%)) UNIVERSITY OF GOTHENBURG

Moore's [aw and its end (?)

The spectacular advance of computing in the last 60+ years has been driven by

Moore’s law (1965)

1975: The density of transistors in integrated circuits
doubles approximately every 2 years

I Stuttering] Chip introduction
® Transistors per chip, ‘000 ® Clock speed (max), MHz @ Thermal design power*, w dates, selected
Transistors bought per $, m Pentium 4 | | Xeon | |Core 2 Duo
p——Y) ; & ’

y. v r) L ! °
Later updated:

y 15 { J 107

10 ‘F‘.whm'l

Doubling every
18 months

(instead of 2 years)

5 F‘:mtu:l‘

0

B R e
200204 06 08 10 12 15

\\\\\\\\\\

L R A P [Ui e (e [B [B R M S e R FYH B I o S B el S P o R e e [5un e Do e i e e e g |
1970 75 80 85 90 95 2000 05 10 15
Sources: Intel; press reports; Bob Colwell; Linley Group; IB Consulting; The Economist *Maximum safe power consumption

“y CHALMERS

UNIVERSITY OF TECHNOLOGY

(®%)) UNIVERSITY OF GOTHENBURG

Moore's Law in January 2017

COMMUNICATIONS

Exponential Laws of
Computing Growth

Biasiiniy SSSaail «
| Technology ' LR 2
WArtificial. (57
iIntelligences /&
Think Again’
Cell-Graphs -

v . -~

;' Deploying. SDN

inthe Erterprise - =iy 0
Technology for. .
the Most Effective
Use’'of Mankind

Opinion

e February 16, 20
e Download a PD

¢ Contact Intel PR

More Manufac

1970

PERFORMANGIE [RPIER WA 1T

intel

Hi-K Metal Gate

Strained
Silicon

4

Intel
Intel 65nm
90nm

Enhanced Strain

Intel
Intel 32nm
45nm
lLl
.

Enhanced

EUV Litho

Super
MIM Capacitor HH “T

/'/’

Angstrom era

COAG

First FInFET P

‘ Ribbon
- innovation

increased

Intel - RibbonFET performance

10nm +PowerVia
SuperFIN Denser design Continued

libraries = metal linewidth
=) reduction
Transistor Incregsed
optimization t.ransvstor
for performance drive current

}m Metal stack Redyced via

) enhancements resistance
Increased

use of EUV

Enhanced
FinFET

Enhanced
FinFET

22} CHALMERS

UNIVERSITY OF TECHNOLOGY

(®%)) UNIVERSITY OF GOTHENBURG

Concurrency everywhere

Physical restrictions force to change from increasing processing speed to having multiple
processing having a major impact on the practice of programming:

— Before: CPU speed increases without significant architectural changes

e Concurrent programming was a niche skill (for operating systems, databases, high-
performance computing)

* Program as usual and wait for your program to run faster
— Now: CPU speed remains the same, but number of cores increases
* Concurrent programming is pervasive
* Program with concurrency in mind, otherwise your programs remain slow

Very different systems all require concurrent programming:

— desktop PCs, — embedded systems,
— smart phones, — the Raspberry Pi,
— video-games consoles, — cloud computing, ...

20

(®%)) UNIVERSITY OF GOTHENBURG

We have n processors that can run in parallel

How much speedup can we achieve?

sequential execution time

speedup = :
e p parallel execution time

Amdahl’s [aw shows that the impact of introducing parallelism is limited by the

fraction p of a program that can be parallelized:
1

(1-p)+p/n
~ N

sequential part parallel part

maximum speedup =

“2y CHALMERS

UNIVERSITY OF TECHNOLOGY

(®%)) UNIVERSITY OF GOTHENBURG

Amdahl's law: Examples

1
(1-p)+p/n

maximum speedup =

With n=10 processors, how close can we get to a 10x speedup?

% SEQUENTIAL % PARALLEL MAX SPEEDUP

20% 80% 3.57
10% 90% 5.6
| 1% 99% 9.17

With n=100 processors, how close can we get to a 100x speedup?

% SEQUENTIAL % PARALLEL MAX SPEEDUP

20% 80% 4381
10% 90% 9.17
[1% 99% 50.25 |

CHALMERS

UNIVERSITY OF TECHNOLOGY

J UNIVERSITY OF GOTHENBURG

Amdahl's law: Examples

Amdahl’'s Law
20 “'__—__—_____________________—_:___:—_——_ p——
p—
//
18 // | :
s] Parallel porfion N 95% parallelism:
A | | | || s i \ Speedup up to 4096
14 £ | —.— 90%
/ . mw processors
L 12 // | (uselss to add more)
=)
S /
= 10 - F—=F——f—=— = 7 ————————— e e ey Tl T frrmm— e e e
0 - > 4 7
50% parallelism: o .
. /1~
Adding more than / |/
. 6 y B
16 processors is ViV
i
useless ARE st e _/éA——*T':.::_j*_:.’:.r:-T-rf-ﬂrr-f-mﬂ"-ﬂrrrr-mﬂmﬂrrr"m“mﬂmﬂ-"ﬂm'-m'-"
0
— (9] N @© [{=} N 5 o0} [de] N ~F @ [{e] N g o] [{=}
" 888 EER B
Number of processors

Source: Communications of the ACM, Dec. 2017

(®%)) UNIVERSITY OF GOTHENBURG

Basic terminology and
abstractions

“2y CHALMERS

UNIVERSITY OF TECHNOLOGY

(®)) UNIVERSITY OF GOTHENBURG

Processes

A process is an independent unit of execution — the abstraction of a running
sequential program:

— identifier
— program counter (PC)
— memory space

The runtime/operating system schedules processes for execution on the
available processors:

CPU; running process Fs CPU; running process Py

suspend

scheduler

Process P, 1S waiting |e—

25

22} CHALMERS

UNIVERSITY OF TECHNOLOGY

(®%)) UNIVERSITY OF GOTHENBURG

Process states

The scheduler is the system unit in charge of setting process states:

Ready: ready to be executed, but not allocated to any CPU
Blocked: waiting for an event to happen

Running: running on some CPU

blocked
eventl resume
new —| ready UNNINg [oo inate
suspend

26

7y CHALMERS

UNIVERSITY OF TECHNOLOGY

(®%)) UNIVERSITY OF GOTHENBURG

Threads

A thread is a lightweight process —an independent unit of execution in the same program
space:

* identifier @red memory
e program counter (PC) / \

°* memory Thread T} . Thread T,
* |ocal memory, separate for each thread I I

e global memory, shared with other threads

T7’s local memory | |7},’s local memory

In practice, the difference between processes and threads is fuzzy and implementation
dependent. In our course:

Processes: executing units that do not share memory (in Erlang)
Threads: executing units that share memory (in Java)

27

(®%)) UNIVERSITY OF GOTHENBURG

Shared memory models: Distributed memory models:
— communication by writing to shared — communication by message passing
memory — e.g., distributed systems

— e.g., multi-core systems

Thread Ty| ... |Thread T, Process P; Process P,

~ v

message

CHALMERS

UNIVERSITY OF TECHNOLOGY

(®%)) UNIVERSITY OF GOTHENBURG

Java threads

constructor

Created

Creating Threads
* What does a thread need to do?

join

Main Memory

A
start() Start a thread by calling run() method Slocked
run() Entry point for a thread
join() Wait for a thread to end
isAlive() Checks if thread is still running or not
setName() Swapped out and waiting Swapped out and blocked
getName()
getPriority() Page file / swap space

https://en.wikipedia.org/wiki/Process_state

CHALMERS 1‘: ®)) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Extend Thread

class MyThread extends Thread

-
1

public void run()

{

System.out.println("concurrent thread started running..");

classMyThreadDemo

{

public static void main(String args[])

-
1

MyThread mt = new MyThread();
mt.start();

. . P (%) UNIVERSITY OF GOTHENBURG
Hierarchy: Animals
EXtend ? * Animal
* Mammal .
Object - Bank Account
* Dog
e Accounts have certain data and operations
* Cat - . .
« Fish Dalt?aegardless of whether checking, savings, etc.
o Kinds of Bank Accounts
. Reptile — account nu
« Crocodile — balance °
! I Account
: — Checking
« Operations
* Monthly fees
— open o
— close . M.mlmum balance.
— get balancg — Savings
— deposit * Interest rate
— withdraw

» Each type shares some data and operations
of "account", and has some data and
operations of its own.

Advanced C++ Programming 15

CHALMERS

UNIVERSITY OF TECHNOLOGY

(%)) UNIVERSITY OF GOTHENBURG

Implement Runnable

* Java does not support multiple inheritance
* If you need your class to inherit

lass MyThread implements Runnable

public void run()

r
1

System.out.println("concurrent thread started running..");

lass MyThreadDemo

public static void main(String args[])
1
MyThread mt = new MyThread();
Thread t = new Thread(mt);

t.start();

<~y CHALMERS

UNIVERSITY OF TECHNOLOGY

(%)) UNIVERSITY OF GOTHENBURG

Java threads

Cannot use
Two ways to build multi-threaded programs in Java: Thread class!
— inherit from class Thread, override method run o
It inherits from
— implement interface Runnable, implement method run Counter
So,
public class Ccounter can only use
extends Counter er Cc — new CCounter(); second method
implements Runnable
{ Thread t = new Thread(c) ;
// thread's computation: Thread u = new Thread(c);
public void run() {
int cnt = counter; t.start () ;
counter = cnt + 1; u.start () ;

22}y CHALMERS

UNIVERSITY OF TECHNOLOGY

(®%)) UNIVERSITY OF GOTHENBURG

States of a Java thread

blocked/ For d Thread ObjeCt T:
waiting sleep() — t.start ():markthe thread t ready
l Join() for execution
event resume
jpensntT e — Thread.sleep (n): block the
ready running current thread for n milliseconds
DLt { (correct timing depends on JVM
new; start() suspend terminate implementation)

— t.join () : block the current thread
until t terminates
Resuming and suspending is done by the
JVM scheduler, outside the program’s
control

35

(®%)) UNIVERSITY OF GOTHENBURG

Thread execution model

. Shared vs. thread-local memory:
@Ed objects — Shared objects: the objects on
/ \ which the thread operates, and
thread t; [... [thread t, all reachable objects
I I — Local memory: local variables,
and special thread-local

t1’s local memory | t,,’s local memory

attributes

Threads proceed asynchronously, so they have to coordinate with other threads
accessing the same shared objects

i0) CHALMERS @8} UNIVERSITY OF GOTHENBURG

SE: UNIVERSITY OF TECHNOLOGY

One possible execution of the concurrent counter

. public class CCounter implements Runnable {
int counter = 0; // shared object state

// thread's computation:
public void run() {

O J o O W DN —

int cnt = counter; o o
counter = cnt + 1; e e
! o o # t’S LOCAL u’S LOCAL SHARED

1 pce:6cente: L | pey:6enty: L | counter: 0
2 pci:7centy: O | pc,: 6 cnt,: | | counter: 0
3 pcr:8cnty:0 | pc,:6ent,: L | counter: 1
4 done | _pc,:6cnt,: L | counter: 1
5 done | _pc,:7cnt,: 1 | counter: |
6 done | pcy:8cnty: 1 | counter:?2
7 done ‘ done | counter: 2

37

¢) CHALMERS (8§} UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

One alternative execution of the concurrent counter

1. public class CCounter implements Runnable {

2 ¢ int counter = 0; // shared object state

3:

4 // thread's computation:

5: public void run() {

6 : int cnt = counter; o o

7 counter = cnt + 1; e e ’ Q

8: 1) . o # t’S LOCAL u’S LOCAL SHARED
1 pce:6cente: L | pcy:6centy: L | counter: 0O
2 pci:7ente: O pc,: 6 ent,: L | counter: 0
3 pce:7ente: 0 pc,: 7 cnt,: 0 counter: (
4 pcy:7centy: 0 pc,: 8 cnt,: 0 counter: 1
5 pce:8cente: 0 done counter: 1
6 done | done | counter:1

CHALMERS

UNIVERSITY OF TECHNOLOGY

A UNIVERSITY OF GOTHENBURG

Traces

Traces

t’S LOCAL u’s LOCAL SHARED
1 pce:6centy: L | pcy: 6centy: L | counter: 0
2 pce:7centy: 0 | pcy:6centy: L | counter: 0
3 pce:T7enty: 0 | pey:7centy: 0 | counter:
4 pce:Tente: 0 pcy: 8 cnt,: 0 counter: 1
5 pce:8centy: 0 done counter: 1
6 done done counter: 1

The sequence of states gives an
execution trace of the concurrent
program

“~y CHALMERS

UNIVERSITY OF TECHNOLOGY

(%)) UNIVERSITY OF GOTHENBURG

A trace is an abstraction of

concrete executions:

— atomic/linearized

—_ Complete Another trace
A different
— interleaved interleaving
t’S LOCAL u’S LOCAL SHARED
I pce:6centy: L | pcy: 6centy: L | counter: 0
2 pct:7cente: 0 pcy: 6 cnty: L | counter: 0
3 pce:8centy: 0 pcy: 6 cnty: L | counter: 1
4 done pc,: 6 cnt,: L | counter: 1
5 done pcy: 7 cnty: 1 counter: 1
6 done pcy: 8 cnty: 1 counter: 2
7 done done counter: 2

£-y CHALMERS

UNIVERSITY OF TECHNOLOGY

(%)) UNIVERSITY OF GOTHENBURG

5 < ;"
I

Trace abstractions

cnt = counter counter = ¢cnt + 1
threadt ____ | \ | [) |
ﬁ cnt = counter - counter = cnt + 1
thread u v / : __/ \
counter - 0 - KX
trace states: 1 5 3 A5 8

Atomic/linearized: The effects of each thread appear as if they

happened instantaneously, when the trace snapshot is
taken, in the thread’s sequential order

Complete: The trace includes all intermediate atomic states

Interleaved: The trace is an interleaving of each thread’s linear trace

(in particular, no simultaneity)
R R

Y CHALMERS

T UNIVERSITY OF TECHNOLOGY

Abstraction of concurrent progréms

When convenient, we will use an abstract notation for multi-threaded applications, which is
similar to the pseudo-code used in Ben-Ari’s book but uses Java syntax

(%)) UNIVERSITY OF GOTHENBURG

int counter = 0;<« shared memory
thread t thread u
int cnt; int cnt; < local memory
1 ¢cnt = counter; cnt = counter; 1
2 counter = ¢cnt + 1; counter = cnt + 1; -]
code

Each line of code includes exactly one instruction that can be executed atomically:
— atomic statement = single read or write to global variable

— precise definition is tricky in Java, but we will learn to avoid pitfalls

42

“y CHALMERS

UNIVERSITY OF TECHNOLOGY

(®%)) UNIVERSITY OF GOTHENBURG

© 2016—-2019 Carlo A. Furia, Sandro Stucki

©N0le

Except where otherwise noted, this work is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/.

