Practical Information

Lecture 0 of TDA384/DIT391

SP3

Principles of Concurrent Programming

UNIVERSITY OF GOTHENBURG

Nir Piterman and Gerardo Schneider

Chalmers University of Technology | University of Gothenburg

UNIVERSITY OF TECHNOLOGY

Canvas Room and Course Website

Make sure to regularly check the Canvas Room and Course Website:

Canvas Announcements, discussion forum, videos

CTH login https://chalmers.instructure.com/courses/27957

GU login https://chalmers.instructure.com/courses/12523~27957

Website Lectures, labs, exams, ... http://www.cse.chalmers.se/edu/course/TDA384_LP3

These should be your primary sources of information about the course

Discussion Forum

Use the Canvas discussion forum for questions and discussions of general interest to the course:

https://canvas.chalmers.se/courses/27957/discussion topics https://canvas.gu.se/courses/12523~27957/discussion topics

The forum URL is of course linked from the course website.

Do not share solutions to labs on Canvas (or anywhere else) !!!

Lectures

- Most lectures are given in HB1
- Two lectures in SB-H2
- One lecture in HB3

- One lecture in **HA1**
- One lecture in **HC4**

• Check out TimeEdit!

		Mon	Wed		Fri	
		10:00-11:45	10:00-11:45	13:15-15:00	10:00-11:45	
Week 3	15/01-19/01	15 Jan 2024	17 Jan 2024	17 Jan 2024	19 Jan 2024	
Week 4	22/01-26/01	22 Jan 2024	24 Jan 2024	24 Jan 2024		
Week 5	29/01-02/02		31 Jan 2024		02 Feb 2024	
Week 6	05/02-09/02	05 Feb 2024				
Week 7	12/02-16/02	12 Feb 2024	14 Feb 2024	14 Feb 2024	16 Feb 2024	
Week 8	19/02-23/02					
Week 9	26/02-01/03					
Week 10	04/03-08/03	04 Mar 2024				

Labs

- At the beginning of the course, register in Fire
- Lab assistance requests
 - Create a Zoom meeting without password
 - Put support requests on <u>Waglys</u>
 - Name for support request (limited to 20 chars):
 - Zoom meeting ID (not link) & Add Chalmers ID (if possible)
- Demo signup
 - A doodle with available slots will be posted on the appropriate lab page before each deadline
 - Create a Zoom meeting (without password)
 - Register the day **before** the demos
 - Use group ID + Zoom meeting ID as name in the poll
 - Be on Zoom 5 minutes before your time and be ready to run the demo

		Mon	Wed			Fri		
		10:00-11:45	10:00-11:45	13:15-15:00	15:15-17:00	08:00-09:45	10:00-11:45	
Week 3	15/01-19/01				17 Jan 2024	19 Jan 2024		[LAB 0]
Week 4	22/01-26/01				24 Jan 2024	26 Jan 2024	26 Jan 2024	
Week 5	29/01-02/02	29 Jan 2024		31 Jan 2024	31 Jan 2024	02 Feb 2024		[LAB 1 DEMO]
Week 6	05/02-09/02					09 Feb 2024	09 Feb 2024	
Week 7	12/02-16/02				14 Feb 2024	16 Feb 2024		
Week 8	19/02-23/02	19 Feb 2024	21 Feb 2024	21 Feb 2024	21 Feb 2024	23 Feb 2024	23 Feb 2024	[LAB 2 DEMO]
Week 9	26/02-01/03	26 Feb 2024	28 Feb 2024	28 Feb 2024	28 Feb 2024	01 Mar 2024	01 Mar 2024	
Week 10	04/03-08/03		06 Mar 2024	06 Mar 2024	06 Mar 2024		8 Mar 2024	[LAB 3 DEMO]

Labs

- Mixing physical and online labs
 - Demos, and labs on Fridays at 8:00, will be online

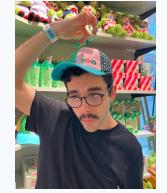
CHECK COURSE HOMEPAGE AND ANNOUNCEMENTS!

The teaching team

Lecturer/Examiner

Gerardo Schneider

Guilherme da Silva



Teaching assistants (TAs)

David Lidell

Reza Rezvan

Ali Saaeddin

If you have questions

- Ask them during lectures and lab sessions
- Post them on Canvas discussion forum
 - Questions of general interest
- Send an email to <u>pcp-teachers@lists.chalmers.se</u>
 - Questions of personal nature / requiring a quick reaction from the teachers
- Book an appointment with the teacher or TAs (by email to pcp-teachers)

Student Representatives

Chalmers

• ...

- TKDAT: August Ådahl (august.adahl@outlook.com)
- TKDAT: Isac Åkesson Jansen (<u>isacakessonjansen@gmail.com</u>)

GU • You?

Main Learning Goals

- By the end of the course, you should be able to
 - Understand the problems common to concurrent and parallel systems
 - Demonstrate techniques and patterns to reason about and write correct and efficient concurrent programs
 - Apply those techniques and patterns in modern programming languages
 - In practice, focus on Java and Erlang

Overview of the Course

- Introduction to concurrency
- Part 1. Classic, shared-memory concurrency in Java:
 - Java threads
 - Locks, semaphores and monitors
- Part 2. Message-passing concurrency:
 - Erlang and the actor model
- Part 3. Parallelizing computations:
 - fork/join parallelism
 - lock-free programming

	[
Class #	Date	Торіс	
1	Mon, Jan 15	Introduction to concurrent programming	
2	Wed, Jan 17	Races locks and semaphores	
3	Wed, Jan 17	Models of concurrency and synchronization algorithms	
4	Fri, Jan 19	Models of concurrency and synchronization algorithms	
5	Mon, Jan 22	Synchronization problems with semaphores	
6	Wed, Jan 24	Synchronization problems with semaphores & Monitors	
7	Wed, Jan 24	Intro to FP in Erlang	
8	Wed, Jan 31	Intro to FP in Erlang & Message-passing concurrency in Erlang	
9	Fri, Feb 2	Message-passing concurrency in Erlang & Sync problems with message-passing	
10	Mon, Feb 5	Parallelizing computations	
11	Mon, Feb 12	Parallel linked lists	
12	Wed, Feb 14	Lock-free programming & Verification of Concurrent Programming	
13	Wed, Feb 14	Verification of Concurrent Programming	
14	Fri, Feb 16	Concurrently writing into a data base without locks & Runtime verification of Kotlin coroutines	
15	Mon, Mar 4	Revision	

Lectures

- 13 lectures + 1 revision lecture + 1 guest lecture (Lecture 14 - TBD)
- 2 Tutorials (Java and Erlang)
- Some lectures will take less/more time -> the schema might then be rescheduled

Make sure to check up-to-date schedule <u>on the website</u>!

Labs

There will be one preparation lab and three "real" labs – one for each part of the course:

- **1.** Trainspotting (Java)
- 2. CCHAT (Erlang)
- 3. A-mazed (Java)

Descriptions of the labs, deadlines, and rules are on the website

- Lab 0: Set up and register your group (2 students) in Fire
- Make sure to check the lab/room schedule on the website

Do not share solutions to labs on Canvas (or anywhere else) !!!

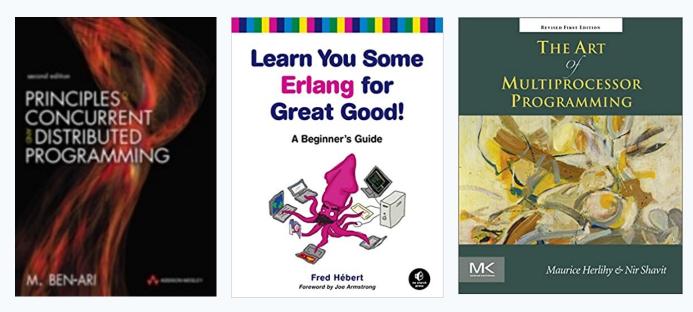
Tutorials

There will be 2 tutorials

- 1. Java tutorial: Wed Jan 17 at 15:15
- 2. Erlang tutorial: Wed Jan 24 at 15:15

NOTE: THE TUTORIALS WILL BE GIVEN IN ONE OF THE ROOM, BUT SINCE THERE ARE 3 ALLOCATED ROOMS, IT WILL BE DONE VIA ZOOM

-> PLEASE BRING EARPHONES!



Slides and Reading Material

Lecture slides: will be <u>on the website</u> Books:

- Ben-Ari: Principles of concurrent and distributed programming, 2nd edition
- Hébert: Learn you some Erlang for great good (free online)
- Herlihy & Shavit: The art of multiprocessor programming

UNIVERSITY OF GOTHENBURG

Exam

- Open-book exam:
 - max. 2 textbooks
 - max. 4 two-sided A4 sheets of notes (printed or handwritten)
 - an English dictionary
- All topics in the lectures can be examined (except guest lectures)
- See exams of previous years for examples (on the website)
- Exam dates:
 - 11 March 2024
 - 22 August 2024 (re-exam)
 - October 2024 (TBA)
- Check the website for updates!
- Exam grading: <u>see the course website</u>

Computing Resources

- Install Java and Erlang/OTP on your computers
- Try out the examples presented in class; the complete examples will be available <u>on the website</u> for each lecture
- Lab 1 (Trainspotting) requires a simulator, which runs on the lab computers (Unix/Linux workstations)
- See the course website for instructions on how to
 - use the lab computers, and
 - set up Java & Erlang/OTP on your own computers

There are two lab sessions this week (Wed and Fri) – What's the point of that?

- LAB 0: Setup the system, create your group, etc.
- Setup the train system!
- Start playing with it with sequential programs:
 - Have only one train
 - Start and stop
 - Check distances and speeds
 - When is a train on a switch?
 - Make plans

Check the webpage regularly!

• And of course, the Java Tutorial

Erlang, Erlang, Erlang, ...

- Start early!
- Install the Erlang environment
- Start the online tutorial
- Especially if you have never done functional programming before
- Attend the Erlang Tutorial!

Course Evaluation

- Please remember to fill in the course evaluation ("kursvärdering") when the time comes!
 - Important feedback for us
 - To know what can be improved as well as what is working well