
W
IT
H
A
N
SW
E
R
S!
!!

Chalmers | Göteborgs Universitet

Principles of Concurrent Programming
TDA384/DIT392

25 October 2023

Exam supervisor: N. Piterman (piterman@chalmers.se, 073 856 49 10)

(Exam set by N. Piterman based on the course given in Aug-Oct 2023)

Material permitted during the exam (hjälpmedel):

Two textbooks; four sheets of A4 paper with notes (single or double-sided);

English dictionary (no smart phones allowed).

Grading: You can score a maximum of 70 points. Exam grades are: be-

tween 28�41 (3), between 42�55 (4), 56 or more (5).

Passing the course requires passing the exam and passing the labs. The

overall grade for the course is determined as follows: between 40�59 (3),

between 60-79 (4), 80 or more (5).

The exam results will be available in Ladok within 15 working days after

the exam's date.

Instructions and rules:

� Please write your answers clearly and legibly: unnecessarily compli-

cated solutions will lose points, and answers that cannot be read will

receive no points!

� Justify your answers, and clearly state any assumptions that your so-

lutions may depend on for correctness.

� Answer each question on a new page. Glance through the whole paper

�rst; �ve questions, numbered Q1 through Q5. Do not spend more

time on any question or part than justi�ed by the points it carries.

� Be precise. In your answers, try to use the programming notation and

syntax used in the questions. You can also use pseudo-code, provided

the meaning is precise and clear. If need be, explain your notation.

1



W
IT
H
A
N
SW
E
R
S!
!!

Q1 (15p). In what follows you will get 5 assertions. For each assertion, you

need to say whether it is correct (true) or not (false). You need to

justify your answer in each case (an answer without a justi�cation will

not be granted full points).

1 The following diagram shows the state-transition diagraom of Pe-

terson's algorithm. The diagram shows that Peterson's algorithm

guarantees mutual exclusion. (3p)

Answer: True. States where both threads are in location 6 simul-

taneously are not reachable.

2 The diagram of Peterson's algorithm shows that it guarantees lack

of starvation. (3p)

Answer: True. There is no loop when we restrict attention only

to the states satisfying pc0 = 4 or pc0 = 5. Similarly, there is

no loop when we restrict attention only to the states satisfying

pc1 = 13 or pc1 = 14.

2



W
IT
H
A
N
SW
E
R
S!
!!

3 A lock is a data structure that guarantees (a) exactly one thread

acquires the lock and (b) only the thread that acquired the lock

can release the lock. Does the following Java code implements a

lock? (3p)

Answer: False. It guarantees (a) above but not (b).

4 The program below is an implementation of a barrier using the

Java language based monitor. (3p)

Answer: True. The integrity of the number of current waiting

threads is ensured by the await method being synchronized. The

�rst expect−1 threads to arrive wait on the condition. The expect
thread to arrive, resets the barrier and noti�es all the others to

continue.

This answer does not take into account spurious wakeups. An-

swers explaining that this does not work due to spuriour wakeups

would also be fully accepted.

3



W
IT
H
A
N
SW
E
R
S!
!!

5 The program below is an implementation of a barrier using one

Semaphore and one Lock. (3p)

Answer: False. For example, one thread could go very fast through

the barrier and pass multiple times.

4



W
IT
H
A
N
SW
E
R
S!
!!

Q2 (18p). A barbershop consists of a waiting room with n − 1 chairs and

the barber chair. Overall, n clients can be in the shop. If there are

no customers to be served, the barber sleeps. If a customer opens the

doors and sees that there are n clients inside, they leave (even if one

client is on the way out). If the barber is busy but chairs are available,

the customer sits in a free chair. If the barber is asleep, the customer

wakes up the barber. It is OK for the customer to be slow (and pick up

their coat) on the way out. We supply three programs that attempt

to solve the barbershop problem. One based on monitors and two

based on semaphores. You have to analyze these programs and decide

whether and how they solve the problem. For every solution: (1) Does

the suggested program solve the barbershop problem? (2) Does it

promise deadlock freedom? (2) Does it promise lack of starvation? If

the solution works, explain why. If the solution does not work, give

examples that show this.

(Part a). (6p)

Check the monitor based solution above. The code run by the barber

and by clients is given on the right hand side. They both call functions

of the same monitor instance.

Answer: The implementation does not solve the barbershop problem.

For example, the barber starts, waits for the �rst client. The �srt client

comes and signals to the barber and waits for the barber. The barber

wakes up (either because the signalling policy is signal and wait or

because there is no one else around) and signals back to the client. The

client comes in (either because the signalling policy is signal and wait

or because there is no one else around). Now a second client comes,

signals to the barber and waits for the barber. The barber and the �rst

5



W
IT
H
A
N
SW
E
R
S!
!!

client �nish, the �rst client goes out, the barber waits for a client. But

the signal that the client sent when they entered has already been sent.

This is a deadlock.

(Part b). (6p)

Check the semaphore based solution above. The code run by the barber

and by clients is given on the right hand side. They both call functions

of the same barbershop instance.

Answer: This implementation solves the barbershop problem. The

client semaphore holds the number of clients in the shop minus the one

on the barber sit. The barber semaphore is a binary semaphore signaling

when the barber is free. The barberDone and clientDone semaphores

are binary semaphores behaving like a barrier at the exit from the shop.

The correctness of the client integer variables is maintained by synchro-

nizing the access to it. When there are no clients, the barber waits on

the client semaphore. When a client enters the shop they increase the

client semaphore (waking up the barber if they are asleep). Once the

barber picked a ticket from the client semaphore, they signal their avail-

ability by increasing the barber semaphore. One of the clients waiting

on barber will pick up the barber. They both go for the haircut. On

leaving, the client says that they are done, the barber picks it up and

con�rms that they are done as well and then the client can leave, reduc-

ing the number of customers upon going out. If the barber semaphore

is fair, then the solution o�ers lack of starvation.

6



W
IT
H
A
N
SW
E
R
S!
!!

(Part c). (6p)

Check the semaphore based solution above. The code run by the barber

and by clients is given on the right hand side. They both call functions

of the same instance of the barbershop class.

Answer: The implementation does not solve the barbershop problem.

There could be multiple clients that check if clients.count()==0 at the

same time. All of them proceeding to the clients.down(), e�ectively

waiting inside the shop while no sits are available.

7



W
IT
H
A
N
SW
E
R
S!
!!

Q3 (10p). The following code shows the Erlang solution of the producer-

consumer problem that was shown in class. It includes the server loop

(buffer) and the two service functions for producers (put) and for

consumers (get).

This implementation strongly relies on the mailbox of the process run-

ning the server in order. Change the server loop so that it does not rely

on the mailbox for managing the queue of those waiting to produce or

to consume. Namely, add extra memory to the state of the server so

that it manages the queue of those that are waiting to produce or to

consume (2pt). Change the server loop so that those waiting in your

new queues are served in FIFO order (4pt producers; 4pt consumers).

Answer: Here is a �rst simple solution:

8



W
IT
H
A
N
SW
E
R
S!
!!

And a solution using an Okasaki queue that is more e�cient:

9



W
IT
H
A
N
SW
E
R
S!
!!

10



W
IT
H
A
N
SW
E
R
S!
!!

11



W
IT
H
A
N
SW
E
R
S!
!!

Q4 (15p). You are trying to design a junction to be used by automated

vehicles (in Sweden, so driving on the rhs). The junction is partitioned

to four areas and a lock is associated with each of these areas:

Here is an initial implementation:

public class Junction {

private Lock ne = new ReentrantLock();

private Lock se = new ReentrantLock();

private Lock nw = new ReentrantLock();

private Lock sw = new ReentrantLock();

void approachFromNW() { nw.lock(); sw.lock(); }

void leaveFromSW() { nw.unlock(); sw.unlock(); }

void approachFromSE() { se.lock(); ne.lock(); }

void leaveFromNE() { se.unlock(); ne.unlock(); }

void approachFromEN() { ne.lock(); nw.lock(); }

void leaveFromWN() { ne.unlock(); nw.unlock(); }

void approachFromWS() { sw.lock(); se.lock(); }

void leaveFromES() { sw.unlock(); se.unlock(); }

...

}

(Part a). (3p)

Suppose that vehicles approaching the junction call the approach func-

tion and upon leaving the junction call the appropriate leave function.

Does this ensure lack of collisions between cars?

Answer: Yes. In order to cross a location that is in the path of another

vehicle, a vehicle would have to lock the appropriate lock �rst.

12



W
IT
H
A
N
SW
E
R
S!
!!

(Part b). (3p)

Does the program ensure that all cars wanting to enter the junction

will eventually do so?

Answer: No. If four vehicles approach the junction at the same time

from the four directions and acquire one lock each, the system can

deadlock.

(Part c). (3p) Based on your insights from (a) and (b), change the

program so that rather than continuing straight cars would turn left.

For example, on approach from south east a car would pass through the

SE, then NE, then NW of the junction. Your solution should ensure

lack of collisions and that every car that wants to enter the junction

would do so eventually.

Answer: Fix an order on the locks (NE,NW,SE,SW) and all approaches

would acquire the locks according to this order. For example:

void approachFromSE() { ne.lock(); nw.lock(); se.lock(); }

void leaveFromNE() { ne.unlock(); nw.unlock(); se.unlock(); }

(Part d). (3p) How would your answer change if entrances from the

east and west are blocked so that no cars arrive from the east and

the west. Furthermore, cars from the south are now allowed to either

continue north or turn left (exiting from west; doing the trajectory SE,

NE, NW). Cars from the north continue, as before, south. You may

assume that cars coming from the same direction do not collide with

one another (even if they have to stop).

Answer: It is enough to use only the NW lock for cars coming from the

north and cars coming from the south and turning left. Cars coming

from the south and continuing straight do not have to use locking.

(Part e). (3p) Consider the case that multiple cars are allowed to

be in the same region of the junction. That is, the junction is actually

much larger with multiple lanes going in every direction but still only

partitioned to four regions. Now multiple cars would be coming from

south and turning left simultaneously. What coordination problem

would that be similar to and why?

Answer: Readers-writers. Readers and writer access would still be mu-

tually exclusive but it would be allowed for multiple writers to be in

simultaneously.

13



W
IT
H
A
N
SW
E
R
S!
!!

Q5 (12p). (Part a). (4p)

Here is the �rst parallel implementation of merge sort shown in class:

How many threads would be involved in the sorting of an array with

512 entries? What is the maximal number of threads that could be

running merge simultaneously?

Answer: There will be 1023 threads involved.

9∑
i=0

2i = 210 − 1 = 1023

The maximal number of threads that could be running merge simultane-

ously is 256. This happens in the case that 256 threads handling arrays

of length 2 merge the results of the two threads spawned by them.

(Part b). (4p)

We noted that the spawning of threads can be improved by allowing

the spawning thread to do some actions:

14



W
IT
H
A
N
SW
E
R
S!
!!

How many threads would be involved in the sorting of an array with

512 entries? What is the maximal number of threads that could be

running merge simultaneously?

Answer: There will be 512 threads involved. Every thread now handles

a unique section of the array of length 1. The maximal number of

threads that could be running merge simultaneously does not change.

(Part c). (4p) Discuss the advantages and disadvantages of running

the above parallel version of merge sort on a machine with 8 cores vs

using a ForkJoinPool or ExecutorService for this task.

Answer: Just using threads is simple to implement. The main opti-

mization that is requird for sorting such a small array is probably just

to allow a larger part of the sort to be done sequentially.

On the other hand, threads will be competing with each other for re-

sources adding time would be spent on swapping in and out of memory.

Using a pool, swapping of threads will not happen. It still uses quite

complex concepts for doing something quite simple.

15


