
Chalmers | Göteborgs Universitet

Principles of Concurrent Programming
TDA384/DIT392

25 October 2023

Exam supervisor: N. Piterman (piterman@chalmers.se, 073 856 49 10)

(Exam set by N. Piterman based on the course given in Aug-Oct 2023)

Material permitted during the exam (hjälpmedel):

Two textbooks; four sheets of A4 paper with notes (single or double-sided);

English dictionary (no smart phones allowed).

Grading: You can score a maximum of 70 points. Exam grades are: be-

tween 28�41 (3), between 42�55 (4), 56 or more (5).

Passing the course requires passing the exam and passing the labs. The

overall grade for the course is determined as follows: between 40�59 (3),

between 60-79 (4), 80 or more (5).

The exam results will be available in Ladok within 15 working days after

the exam's date.

Instructions and rules:

� Please write your answers clearly and legibly: unnecessarily compli-

cated solutions will lose points, and answers that cannot be read will

receive no points!

� Justify your answers, and clearly state any assumptions that your so-

lutions may depend on for correctness.

� Answer each question on a new page. Glance through the whole paper

�rst; �ve questions, numbered Q1 through Q5. Do not spend more

time on any question or part than justi�ed by the points it carries.

� Be precise. In your answers, try to use the programming notation and

syntax used in the questions. You can also use pseudo-code, provided

the meaning is precise and clear. If need be, explain your notation.

1



Q1 (15p). In what follows you will get 5 assertions. For each assertion, you

need to say whether it is correct (true) or not (false). You need to

justify your answer in each case (an answer without a justi�cation will

not be granted full points).

1 The following diagram shows the state-transition diagraom of Pe-

terson's algorithm. The diagram shows that Peterson's algorithm

guarantees mutual exclusion. (3p)

2 The diagram of Peterson's algorithm shows that it guarantees lack

of starvation. (3p)

3 A lock is a data structure that guarantees (a) exactly one thread

acquires the lock and (b) only the thread that acquired the lock

can release the lock. Does the following Java code implements a

lock? (3p)

2



4 The program below is an implementation of a barrier using the

Java language based monitor. (3p)

5 The program below is an implementation of a barrier using one

Semaphore and one Lock. (3p)

3



Q2 (18p). A barbershop consists of a waiting room with n − 1 chairs and

the barber chair. Overall, n clients can be in the shop. If there are

no customers to be served, the barber sleeps. If a customer opens the

doors and sees that there are n clients inside, they leave (even if one

client is on the way out). If the barber is busy but chairs are available,

the customer sits in a free chair. If the barber is asleep, the customer

wakes up the barber. It is OK for the customer to be slow (and pick up

their coat) on the way out. We supply three programs that attempt

to solve the barbershop problem. One based on monitors and two

based on semaphores. You have to analyze these programs and decide

whether and how they solve the problem. For every solution: (1) Does

the suggested program solve the barbershop problem? (2) Does it

promise deadlock freedom? (2) Does it promise lack of starvation? If

the solution works, explain why. If the solution does not work, give

examples that show this.

(Part a). (6p)

Check the monitor based solution above. The code run by the barber

and by clients is given on the right hand side. They both call functions

of the same monitor instance.

4



(Part b). (6p)

Check the semaphore based solution above. The code run by the barber

and by clients is given on the right hand side. They both call functions

of the same barbershop instance.

(Part c). (6p)

Check the semaphore based solution above. The code run by the barber

and by clients is given on the right hand side. They both call functions

of the same instance of the barbershop class.

5



Q3 (10p). The following code shows the Erlang solution of the producer-

consumer problem that was shown in class. It includes the server loop

(buffer) and the two service functions for producers (put) and for

consumers (get).

This implementation strongly relies on the mailbox of the process run-

ning the server in order. Change the server loop so that it does not rely

on the mailbox for managing the queue of those waiting to produce or

to consume. Namely, add extra memory to the state of the server so

that it manages the queue of those that are waiting to produce or to

consume (2pt). Change the server loop so that those waiting in your

new queues are served in FIFO order (4pt producers; 4pt consumers).

6



Q4 (15p). You are trying to design a junction to be used by automated

vehicles (in Sweden, so driving on the rhs). The junction is partitioned

to four areas and a lock is associated with each of these areas:

Here is an initial implementation:

public class Junction {

private Lock ne = new ReentrantLock();

private Lock se = new ReentrantLock();

private Lock nw = new ReentrantLock();

private Lock sw = new ReentrantLock();

void approachFromNW() { nw.lock(); sw.lock(); }

void leaveFromSW() { nw.unlock(); sw.unlock(); }

void approachFromSE() { se.lock(); ne.lock(); }

void leaveFromNE() { se.unlock(); ne.unlock(); }

void approachFromEN() { ne.lock(); nw.lock(); }

void leaveFromWN() { ne.unlock(); nw.unlock(); }

void approachFromWS() { sw.lock(); se.lock(); }

void leaveFromES() { sw.unlock(); se.unlock(); }

...

}

(Part a). (3p)

Suppose that vehicles approaching the junction call the approach func-

tion and upon leaving the junction call the appropriate leave function.

Does this ensure lack of collisions between cars?

(Part b). (3p)

Does the program ensure that all cars wanting to enter the junction

will eventually do so?

7



(Part c). (3p) Based on your insights from (a) and (b), change the

program so that rather than continuing straight cars would turn left.

For example, on approach from south east a car would pass through the

SE, then NE, then NW of the junction. Your solution should ensure

lack of collisions and that every car that wants to enter the junction

would do so eventually.

(Part d). (3p) How would your answer change if entrances from the

east and west are blocked so that no cars arrive from the east and

the west. Furthermore, cars from the south are now allowed to either

continue north or turn left (exiting from west; doing the trajectory SE,

NE, NW). Cars from the north continue, as before, south. You may

assume that cars coming from the same direction do not collide with

one another (even if they have to stop).

(Part e). (3p) Consider the case that multiple cars are allowed to

be in the same region of the junction. That is, the junction is actually

much larger with multiple lanes going in every direction but still only

partitioned to four regions. Now multiple cars would be coming from

south and turning left simultaneously. What coordination problem

would that be similar to and why?

8



Q5 (12p). (Part a). (4p)

Here is the �rst parallel implementation of merge sort shown in class:

How many threads would be involved in the sorting of an array with

512 entries? What is the maximal number of threads that could be

running merge simultaneously?

(Part b). (4p)

We noted that the spawning of threads can be improved by allowing

the spawning thread to do some actions:

How many threads would be involved in the sorting of an array with

512 entries? What is the maximal number of threads that could be

running merge simultaneously?

(Part c). (4p) Discuss the advantages and disadvantages of running

the above parallel version of merge sort on a machine with 8 cores vs

using a ForkJoinPool or ExecutorService for this task.

9


