
Chalmers | Göteborgs Universitet

Concurrent Programming TDA384/DIT392

17 August 2023

Exam supervisors: N. Piterman (piterman@chalmers.se, 073 856 49 10)
and G. Schneider (gersch@chalmers.se, 072 974 49 64)

(Exam set by N. Piterman and G. Schneider, based on the course given in
Aug-Oct 2022 and Jan-Mar 2023)

Material permitted during the exam (hjälpmedel):

Two textbooks; four sheets of A4 paper with notes (single or double-sided);
English dictionary (no smart phones allowed).

Grading: You can score a maximum of 70 points. Exam grades are: be-
tween 28�41 (3), between 42�55 (4), 56 or more (5).

Passing the course requires passing the exam and passing the labs. The
overall grade for the course is determined as follows: between 40�59 (3),
between 60-79 (4), 80 or more (5).

The exam results will be available in Ladok within 15 working days after
the exam's date.

Instructions and rules:

� Please write your answers clearly and legibly: unnecessarily compli-
cated solutions will lose points, and answers that cannot be read will
receive no points!

� Justify your answers, and clearly state any assumptions that your so-
lutions may depend on for correctness.

� Answer each question on a new page. Glance through the whole paper
�rst; �ve questions, numbered Q1 through Q5. Do not spend more
time on any question or part than justi�ed by the points it carries.

� Be precise. In your answers, try to use the programming notation and
syntax used in the questions. You can also use pseudo-code, provided
the meaning is precise and clear. If need be, explain your notation.

1



Q1 (15p). In what follows you will get 5 assertions concerning locks and
semaphores. For each assertion, you need to say whether it is correct
(true) or not (false). You need to justify your answer in each case (an
answer without a justi�cation will not be granted full points).

1 A semaphore with capacity 2 can be implemented by using exactly
one lock. That is, everything you can do with a semaphore with
capacity 2 can be done with one lock. (2p)

2 The pseudocode of the program shown in Fig. 1 guarantees mu-
tual exclusion, it is deadlock-free and it is starvation-free. If you
answer true, then explain how the semaphore guarantees all those
properties. If you answer false, explain, which of the three proper-
ties are violated and why (you should also provide the right code
that guarantees the three properties). (4p)

int counter; Semaphore sem = new Semaphore(1);

thread t thread u
int c,d; int c;

1 sem.down();

2 c = counter - 1;

3 d = c * 2;

4 counter = c + d + 1;

5 sem.up();

6sem.up();

7c = counter + 1;

8counter = c - 1;

9sem.down();

Figure 1: Q1-2: Pseudocode of program someCounting.

3 In the correct version of the pseudocode of the program shown in
Fig. 1, the semaphore could be replaced by a lock. If you answer
true, then explain how this is done (provide the replacements to
be done in the program). If you answer false, explain why this
cannot be done. NOTE: Your answer should be based on the
correct version of the program, meaning that if you answered true

in the previous question then you should use the original program;
if you answered false then you should use your corrected version.
(3p)

4 The capacity of a Java semaphore puts a limit on the number of
times one may call up(). (2p)

5 The pseudocode of the program in Fig. 2 shows the use of two
semaphores on two threads. The programmer wanted to im-
plement a barrier. That is, ensure deadlock-freedom and that

2



thread t cannot execute code #2 unless thread u has �nished
executing code #3 (and similarly for the other thread: thread u

cannot execute code #4 unless thread t has �nished executing
code #1). Does the program guarantee those properties? If you
answer true explain how the properties are guaranteed. If you an-
swer false explain why this is not the case and provide the right
code so the properties are guaranteed (you should use exactly 2
semaphores). NOTE: You can assume that all the pieces of code
are before and after the use of the semaphores make progress, that
is, there is no starvation nor deadlocks occurring in those parts of
the program. (4p)

Semaphore done0 = new Semaphore(0), done1 = new Semaphore(1);

thread t thread u

1 // some code #1

2 done0.down();

3 done0.up();

4 // some code #2

5// some code #3

6done1.up();

7done1.down();

8// some code #4

Figure 2: Q1-5: Pseudocode of program someSemaphore.

3



Q2 (14p). (Part a). (3p)

Here is the implementation of the add function of a Sequential Set
data structure. The set stores items in increasing key order. Recall
that the �nd function returns a pair of nodes pred and curr such that
pred.key() < node.key() ≤ curr.key().

public boolean add(T item) {

Node<T> node = new Node(item);

Node<T> pred = null, curr = null;

(pred, curr) = find(head, node.key());

if (curr.key() == node.key())

return false; // item already in set

else { // insert node between pred and curr

node.setNext(curr);

pred.setNext(node);

return true;

}

}

Can this implementation be used by multiple threads simultaneously
(thread safe)? If it is, explain why. If it is not, give an example of how
things could go wrong.

(Part b). (4p)

Here are parts of the implementation of a set with lazy node removal,
which reduces the amount of locking required.

class ValidatedNode<T> extends ReadWriteNode<T>

{

private volatile boolean valid;

boolean valid() { return valid; } // is node valid?

void setValid() { valid = true; } // mark valid

void setInvalid() { valid = false; } // mark invalid

}

public boolean has(T item) {

// find position without locking

Node<T> (pred, curr) = find(head, item.key());

// check validity and item without locking

return curr.valid() && curr.key() == item.key();

}

4



public boolean remove(T item) {

do {

Node<T> (pred, curr) = find(head, item.key()); // no locking

pred.lock(); curr.lock(); // now lock position

try { // if position still valid, while locking:

if (valid(pred, curr)) {

if (curr.key() > item.key())

return false; // item not in the set

else { // item in the set at curr: remove it

curr.setInvalid(); // logical removal

pred.setNext(curr.next()); // physical removal

return true;

}

}

} finally { pred.unlock(); curr.unlock(); }// done: unlock

} while (true); // if not valid: try again!

}

Explain the role of the volatile keyword in the de�nition of ValidateNode.
What is the role it plays in the correctness of the has function? Why
is locking still required for removal?

(Part c). (4p)

Here is an implementation of the remove function of a lock-free version
of the Set data structure. The find function, is as before.

public boolean remove(T item) {

boolean done;

do {

Node<T> (pred, curr) = find(head, item.key());

if (curr.key() > item.key()) return false; // item not in set

else

// try to remove curr by setting pred.next using compareAndSet

done = pred.next().compareAndSet(pred.next(), curr.next());

} while (!done); return true;

}

Is this implemetation thread safe? If it is, explain why. If it is not,
give an example of how things could go wrong.

(Part d). (3p)

What advantages does lock-free programming o�er? Under what con-
ditions is it a good idea to use it?

5



Q3 (12p). The following code shows part of a telephone system imple-
mented in Erlang:

ringing(A, B) ->

receive

{A, on_hook} ->

A ! {stop_tone, ring},

B ! terminate,

idle();

{B, answered} ->

A ! {stop_tone, ring},

switch ! {connect, A, B},

conversation(A, B)

end.

The provided Erlang program de�nes the function ringing/2 that han-
dles the ringing phase of a telephone call between two parties, repre-
sented by processes A and B. This is what the program does:

1 The function ringing/2 expects two parameters: A and B, i.e.,
the processes representing the parties involved in the call.

2 The receive statement is used to listen for incoming messages sent
to the process running ringing/2.

3 If the received message matches the tuple {A, on_hook}, it means
that process A has gone on-hook (hung up) before process B an-
swered. In this case:
i. Process A is sent a message {stop_tone, ring} to inform it
that the ringing tone should stop;

ii. Process B is sent a message terminate to inform it that the
call has ended;

iii. The function idle/0 (not de�ned in the provided code) is
called. This function handles the idle state of the server.

4 If the received message matches the tuple {B, answered}, it means
that process B has answered the call. In this case:
i. The process A is sent a message {stop_tone, ring} to inform
it that the ringing tone should stop;

ii. A process named switch handles the telephone switching sys-
tem and in particular can receive a message {connect, A, B}

to establish a connection between A and B. This message
triggers further actions in the system to set up the call.

iii. The function conversation/2 (not de�ned in the provided
code) is called with A and B as arguments. This function
handles the conversation phase between the two parties.

(Part a). (3p)

6



Extend the code such that the function ringing/2 can receive a mes-
sage matching {A, timeout}, in which case the connection is not es-
tablished due to a timeout. That is: i) A should get a message that
the ringing tone should stop; ii) B should be informed that the call has
ended; iii) the server should be idle.

(Part b). (5p)

Assume that the code is extended with the reception of a message for
{A, timeout}, as in Part a), but that in this case process A should wait
for 2000 time units and then call again automatically. In order to do
so, a programmer extended the function ringing/2 with the following
additional message in receive:

{A, timeout} ->

A ! {stop_tone, ring},

B ! terminate,

timer:sleep(2000),

ringing(A, B);

Is this correct? If you answer positively then explain why it works. If
you answer that it is not correct, then explain why this is wrong and
suggest how this should be done (you do not need to provide code on
how this should be done, but just explain the idea on how you would
add the additional functionality).

(Part c). (4p)

The ringing/2 function does not seem to be symmetric: it only handles
calls from the �rst parameter A to the second parameter B. Is this
general enough? Would you need to change the code of the function
so we can also handle calls from the process being instantiated by B
to the one instantiated by A?

7



Q4 (14p). The four necessary conditions for a deadlock are:

� Mutual exclusion - threads may have exclusive access to shared
resources.

� Hold and wait - a thread may request one resource while holding
another one.

� No preemption - resources cannot forcibly be released from threads
that hold them.

� Circular wait - two or more threads form a circular chain where
each thread waits for a resource that the next thread in the chain
is holding.

Here is an implementation of a protocol for the dining philosophers

problem. There are n philosophers and n forks that are implemented
by locks. Every philosopher has an identi�er in the range 1, . . . , n,
and the left_fork of philosopher i is fork i and the right_fork of
philosopher i is fork (i mod n) + 1.

entry () {

left_fork.acquire(); // pick up left fork

right_fork.acquire();// pick up right fork

}

critical section { eat(); }

exit () {

left_fork.release(); // release left fork

right_fork.release();// release right fork

}

(Part a). (4p)

Explain how this program satisifes all four necessary conditions for a
deadlock.

(Part b). (4p)

The following solution to the dining philosophers problem adds one
more lock. The eat() and release() functions are as before.

entry () {

global_lock.acquire();

left_fork.acquire(); // pick up left fork

right_fork.acquire();// pick up right fork

global_lock.release();

}

8



Explain how this solution ensures that there is no circular waiting.

(Part c). (2p)

Does this solution work? That is, if all locks are fair and philosophers
eat and release fairly, will the protocol ensure mutual exclusion of eat-
ing by adjacent philosophers and lack of starvation for all philosophers?

(Part d). (4p)

Here is the implementation of the fork and the functions get_fork

and put_fork from the Erlang solution to dining philosophers that was
studied in class.

% a fork not held by anyone

fork() ->

receive

{get, From, Ref} -> From ! {ack, Ref},

fork(From) % fork held

end.

% a fork held by Owner

fork(Owner) ->

receive

{put, Owner, _Ref} -> fork() % fork not held

end.

get_fork(Fork) ->

Ref = make_ref(),

Fork ! {get, self(), Ref},

receive {ack, Ref} -> ack end.

put_fork(Fork) ->

Ref = make_ref(),

Fork ! {put, self(), Ref}.

Suggest an implementation of get_fork_preempt that will allow to pre-
empt a process waiting for a fork by the following philosopher:

philosopher(Forks) ->

think(),

get_fork(Forks#forks.left), % pick up left fork

get_fork_preempt(Forks#forks.left,Forks#forks.right), % pick up right

%fork

eat(),

put_fork(Forks#forks.left), % put down left fork

9



put_fork(Forks#forks.right), % put down right fork

philosopher(Forks).

Explain how this function would be used.

Partial marks will be given for implementations that require further
changes to philosopher or fork (explain what changes would be re-
quired, no need to implement them). There is no need to create changes
that apply the preemption mechanism on other philosophers.

10



Q5 (15p). In what follows you have 5 subquestions (Parts a to e) concern-
ing di�erent topics seen in the course. Each part a multiple-choice
question. The grading for each question is as follows:

� For a right answer you will get 3 points;
� If you do not answer the question, you will get 0 points;
� If you answer wrongly, you will get -1 (a negative point).

The total amount of points will be done summing all the points for
each part. So, if you answer correctly Part a, incorrectly Part b, and
do not answer any of the rest, you will get 2 points (3 points for Part
a minus 1 point for Part b, and 0 for the rest). Note that no negative
points for the whole question (Q5) will be given (the minimum number
of points you may get for the whole question is 0). That is, if you do
answer wrongly in each part, you will not get -5 but 0.

(Part a). (3p)

You can see in Fig. 3 for implementations of the function up() of a
semaphore using notify() and the internal counter of the semaphore,
count. The implementation of down() is shown in Fig. 4. Which one
of the four implementations of up() does NOT work?

a) up1()

b) up2()

c) up3()

d) up4()

Figure 3: Q5 - Part a: Four semaphore implementations of up().

(Part b). (3p)

This question concerns the use of monitors with di�erent signalling
policies. In Fig. 5 you see the pseudocode of a monitor program that
prints the value of counter. Threads may execute inc() and print()

11



Figure 4: Q5 - Part a: Semaphore implementation of down().

monitor class PrintCounter {

private int counter = 0;

private Condition isOne = new Condition();

public void print() {

while (counter != 1) isOne.wait();

System.out.println(counter);

}

public void inc() {

counter += 1;

if (counter == 1) isOne.signal();

}

}

Figure 5: Q5 - Part b: Pseudocode of program PrintCounter.

in every order and as many times as they want. What are the possible
printed values when calling method print()?

a) It may print �1� or it may block forever

b) It may print any number equal or bigger than �1�

c) It never prints �1�

d) It always prints �1� if the monitor uses a signal and continue disci-
pline

e) It always blocks if the monitor uses a signal and wait discipline

(Part c). (3p)

This question is about parallelisation. In Fig. 6 you get a parallel
version of a program that computes the multiplication of numbers from
m to n.

Note 1: The function has two special cases: it gives 1 if m > n, and it
gives m when m == n).

Note 2: the division operation (�/�) truncates the decimal part (e.g.,
1/2 gives 0).

12



class ParallelMul extends RecursiveTask<Integer> {

int m, n;

protected Integer compute() {

if (m > n) return 1;

if (m == n) return m;

int mid = m + (n-m)/2; // mid point

ParallelMul lower = new ParallelMul(m, mid);

ParallelMul upper = new ParallelMul(mid+1, n);

lower.fork();

upper.fork();

return lower.join() * upper.join();

}

}

Figure 6: Q5 - Part c: Java program ParallelMul.

The program is run to compute the product of integers from m = 1 to
n = k (with k > 1).

What is the maximal number of cores that would run this code e�ec-
tively? That is, adding more cores will not speed up the computation.

a) 1, there practically is no parallelism

b) 2k (that is, 2 to the power of k)

c) k

d) k! (that is, the factorial of k)

e) k2 (that is, k ∗ k)

(Part d). (3p)

According to Amdahl's law, if the fraction p of a program can be
parallelized, then, the maximum speedup that can be achieved by n
processes is 1

(1−p)+ p
n
. You have a program where 10% of the program

must be done sequentially and 90% of the program can be parallelized.
What is the maximum speedup that you can achieve given unlimited
resources (i.e., increase the number of processes as you wish).

a) One cannot achieve speedup at all.

b) With a very large number of processes, one can achieve every wanted
speedup.

c) The program cannot run more than 10 times faster.

d) The program cannot run more than 5 times faster.

13



(Part e). (3p)

Which of the following programs does not have data races? In all cases,
t1 and t2 are threads executing at the same time sharing the variables
at the top. The programs are numbered 1, 2, and 3 from left to right.

Figure 7: Q5 - Part e: Programs with or without data races.

a) Program 2.

b) Program 3.

c) Program 1 and program 2.

d) Program 1 and program 3.

14


