
Chalmers | Göteborgs Universitet

Concurrent Programming TDA384/DIT391

18 August 2022

Exam supervisors: N. Piterman (piterman@chalmers.se, 073 856 49 10)
and G. Schneider (gersch@chalmers.se, 072 974 4964)

(Exam set by G. Schneider and N. Piterman, based on the courses given in
September-October 2021 and January-February 2022)

Material permitted during the exam (hjälpmedel):

Two textbooks; four sheets of A4 paper with notes; English dictionary.

Grading: You can score a maximum of 70 points. Exam grades are:

points in exam Grade

28�41 3
42�55 4
56�70 5

Passing the course requires passing the exam and passing the labs. The
overall grade for the course is determined as follows:

points in exam + labs Grade

40�59 3
60�79 4
80�100 5

The exam results will be available in Ladok within 15 working days after
the exam's date.

Instructions and rules:

� Please write your answers clearly and legibly: unnecessarily compli-
cated solutions will lose points, and answers that cannot be read will
receive no points!

� Justify your answers, and clearly state any assumptions that your so-
lutions may depend on for correctness.

� Answer each question on a new page. Glance through the whole paper
�rst; four questions, numbered Q1 through Q4. Do not spend more
time on any question or part than justi�ed by the points it carries.

� Be precise. In your answers, try to use the programming notation and
syntax used in the questions. You can also use pseudo-code, provided
the meaning is precise and clear. If need be, explain your notation.

1

Q1 (18p). This question is concerned with implementing a semaphore-like
functionality in Erlang.

(Part a). (6p) Implement a semaphore server. You need to support
four functions: start, value, signal, and wait. The interface is given
below. Notice that the wait function could block until the semaphore is
increased (using a signal call). For convenience, the code for gserver
is given in Appendix A. You may either call gserver code or create
your own server functionality.

-module(semaphore).

-compile(export_all).

start(InitialValue) ->

...

signal(Server) ->

...

wait(Server) ->

...

value(Server) ->

...

ANSWER: Here is a sample implementation.

-module(semaphore).

-compile(export_all).

% The state of the Handler

%

% { value, pids_refs_list }

start(InitialValue) ->

gserver:start({InitialValue,[]}, fun semaphore_loop/2).

signal(Server) ->

gserver:request(Server, signal).

% In order for the wait to block, it awaits another message

% with another reference.

% gserver always answers immediately, but the answer to the

% wait may be delayed a long time.

2

wait(Server) ->

Ref = make_ref(),

gserver:request(Server, { wait, self(), Ref }),

receive { response, Ref } -> ok end.

value(Server) ->

gserver:request(Server, value).

semaphore_loop({Val, List}, value) ->

{ reply, {Val, List}, Val };

% On signal w no waiting processes increase the value of the semaphore

semaphore_loop({Val, []}, signal) ->

{ reply, {Val+1,[]}, ok };

% On signal w processes waiting serve one waiting process

semaphore_loop({Val, [{From, Ref} | List]}, signal) ->

From ! { response, Ref },

{ reply, {Val, List }, ok };

% On wait when value is 0 add the process to the list

semaphore_loop({0, List}, { wait, From, Ref }) ->

{ reply, {0, [{From, Ref} | List]}, ok };

% On wait when value is not 0 award the incoming request

semaphore_loop({Val, List}, { wait, From, Ref}) ->

From ! { response, Ref },

{ reply, {Val-1, List}, ok}.

(Part b). (6p) Is your semaphore strongly fair? If so, explain why.
If not, explain how you would change it so that it would be (no need
to change the implementation).

ANSWER: No. My semaphore is not strongly fair. When the value
of the semaphore is 0 and new requests come they are put at the head
of the list. In order to make the semaphore strongly fair new requests
would have to be added to the end of the list and when there is a new
wait request, the value is not-zero, and the list is not empty, handle
�rst those that are waiting and not the new comer (though it is not
possible to reach such a state).

(Part c). (6p) What is the problem with the gserver:stop function-
ality? Explain how you would change gserver and your own imple-
mentation to avoid this problem while maintaining correct semaphore
functionality (even after termination).

3

ANSWER: It would leave the process in the waiting list of the semaphore
deadlocked forever. In order to resolve his, the stop functionality would
have to �rst send a stop request to the loop and only then stop the
server. The loop would handle the stop request by sending abort mes-
sages to all the waiting processes. The wait function would have to be
modi�ed to receive either the extra response it has now or a stop mes-
sage that would make the function return in a di�erent way or raise an
exception.

4

Q2 (18p). In lecture 8 we have seen a fair solution to the Readers-Writers
problem, that is, a solution that avoids writers' starvation (a �rst naive
solution giving priority to readers over writers has also been given).
The fair solution is based on an implementation of the state/transition
diagram shown in Fig. 1.

Figure 1: Q2: Diagram showing a fair solution to the readers-writers problem

% board with no readers and no writers

empty_board() ->

receive

% serve read request

{begin_read, From, Ref} ->

From ! {ok_to_read, Ref}, % notify reader

readers_board(1); % board has one reader

% serve write request synchronously

{begin_write, From, Ref} ->

From ! {ok_to_write, Ref}, % notify writer

receive % wait for writer to finish

{end_write, _From, _Ref} ->

empty_board() % board is empty again

end

end.

Figure 2: Q2: The server function empty_board

Figures 2 and 3 show the Erlang code implementing the diagram (as
shown in the lectures).

(Part a). (6p) The proposed solution assumes the board is empty
at the beginning so threads can only begin a write or a read. You, as

5

% board with no readers (and no writers)

readers_board(0) -> empty_board();

% board with ’Readers’ active readers (and no writers)

readers_board(Readers) ->

receive

% serve write request

{begin_write, From, Ref} ->

% wait until all ’Readers’ have finished

[receive {end_read, _From, _Ref} -> end_read end

|| _ <- lists:seq(1, Readers)],

From ! {ok_to_write, Ref}, % notify writer

receive % wait for writer to finish

{end_write, _From, _Ref} -> empty_board()

end;

% serve read request

{begin_read, From, Ref} ->

From ! {ok_to_read, Ref}, % notify reader

readers_board(Readers+1); % board has one more reader

% serve end read

{end_read, _From, _Ref} ->

readers_board(Readers-1) % board has one less reader

end.

Figure 3: Q2: The server function readers_board

a programmer, have been requested to modify/extend the diagram to
capture the more general situation when the board is not empty at the
beginning. Your task is to extend the diagram so at the beginning the
board is �cleaned� to empty the board. Then the board should behave
as speci�ed in the original diagram.

In order to do so, you may consider that initially there are NR read-
ers and MW writers in the board, and you can assume there are two
messages begin_clean and end_clean to start and end the cleaning,
respectively.

NOTE: The two messages begin_clean and end_clean are included as
we are assuming the whole process is going to be embedded into a
bigger system and some other process will call the cleaning process.

The clean procedure should not allow for any reader or writer to start
reading or writing, respectively.

ANSWER: See Fig. 4.

6

Figure 4: Q2: Solution to Part a.

(Part b). (6p) Write a program clean_board in Erlang that imple-
ments the diagram produced in Part a, so it is integrated in the whole
solution.

NOTE: You only need to write the code for the extended part of the
diagram, and �connect� it with the existing programs shown in Figures
2 and 3.

ANSWER: See Fig. 5.

(Part c). (6p) When you showed the solution to the problem de-
scribed in Part a you were told that you have misunderstood the in-
structions: the idea was not to �clean� the board just at the beginning
of the process, but at any time during the operation of the system.

For that, you should consider a third thread that at any moment can
execute a begin_clean operation that blocks any new begin_read and
begin_write, waits till all the active readers and writers �nish their
task, and restart the whole procedure again when the board is empty.

Your task is to modify / extend the diagram in Fig. 1 to capture the
above speci�cation.

ANSWER: See Fig. 6.

7

% board with some number NR of readers and MW of writers

init_board() ->

receive

{begin_clean, From, Ref, {NR, MW}} ->

clean_board(From, Ref, NR, NW)

end.

clean_board(From, Ref, 0, 0) ->

From ! {end_clean, Ref},

empty_board();

clean_board(From, Ref, NR, MW) ->

receive

{end_read, _From, _Ref} ->

clean_board(From, Ref, NR - 1, MW);

{end_write, _From, _Ref} ->

clean_board(From, Ref, NR, MW - 1)

end.

Figure 5: Q2: Solution to Part b.

8

Figure 6: Q2: Solution to Part c.

9

Q3 (18p). A solution to concurrently access a list is to use a coarse-locking
method, locking all elements of the list. In lecture 10 we have seen that
though this works (it guarantees exclusive access and avoids inconsis-
tencies), it is not satisfactory since the access is essentially sequential.

An alternative solution is to use a �ne-grained locking approach. The
questions below are concerned with statements and situations concern-
ing �ne-grained locking (with no validation) on linked lists being ac-
cessed by 2 threads t0 and t1.

(Part a) (4p) Answer whether the statements below concerning �ne-
grained locking are true or false. Justify your answer in each case (an
answer without justi�cation would not be granted full points).

1) (2p) In order to guarantee that the concurrent access works well
(i.e., there are no inconsistencies), it is enough that both threads
lock only their pred pointed node when executing the find method.

2) (2p) Fine-grained locking does not work well if there are too many
threads executing the validation process to ensure no two threads
are accessing the same node at the same time.

ANSWER:

1) False: the find method is required to lock both the pred and curr
nodes for all accessing threads, otherwise an inconsistency may arise
when one of the threads tries to remove its curr node while the other
thread has already updated its curr pointer, pointing then to a non-
existing node. (See Lecture 10, slide 33.)

2) False: there is no validation process in �ne-grained locking as pre-
sented in the lectures (the find function in �ne-grained locking locks
both pred and curr and does not need validation. Validation is
needed when find does not use locking (as in the optimistic locking
case).

(Part b) (8p) This question concerns the design of a protocol to
be used on parallel linked lists using a �ne-grained locking approach
(without validation).

Let's assume you have the list shown in Fig. 7 and two threads t0 and
t1 accessing it:

b
head

d j m p q
tail

Figure 7: Q3: A list accessed concurrently by 2 threads t0 and t1

Let's assume the initial con�guration is as follows:

10

� thread t0 has pred pointing to the head and holds a lock on the
node, and curr points to the �rst node (b) also holding a lock;

� thread t1 has pred pointing to node d (holding a lock on the node),
and curr points to node j also holding a lock.

According to this protocol, the threads would proceed as follows:

1 thread t1 releases both locks (on d and j), and keeps pointing to
d and j;

2 thread t0 moves both pred and curr one position forward (so pred
points to b and curr points to d), keeping a lock on both nodes;

3 thread t0 moves again so pred points to d and curr points to j)
(still keeping a lock on both nodes).

So, the �nal situation is that both t0 and t1 are pointing to the same
nodes (d and j), but only t0 holds a lock over the nodes.

Is this protocol �safe� (nothing can go wrong)?

If you think nothing can go wrong, explain why.

If you think there might be an issue, continue the scenario above with
the next steps that would lead to a bad situation. Explain why this
happens and provide a �x (what is to be done in order to avoid the
bad situation).

ANSWER: The situation is not safe since thread t1 might end up point-
ing to a non-existing node. This could happen if the following steps are
executed:

1 thread t0 removes node j and updates the pointer from d to m;
2 thread t0 terminates and releases both locks;
3 thread t1 updates pred and curr so pred points to j and curr points
to m) (holding a lock on both nodes).

Clearly this is a problem since node j has been deleted by thread t0 but
thread t1 believes it is still in the list.

The problem is that thread t1 released the locks. The solution is to force
that both threads always keep a lock over the nodes pointed by pred and
curr.

(Part c) (6p) A programmer has been given the task to implement the
find method for a �ne-grained locking solution (without validation) to
access a parallel linked list. The programmer took an existing solution
and slightly modi�ed it, producing the following code:

1 protected Node<T>, Node<T> find(Node<T> start, int key) {

2 Node<T> pred, curr;

3 pred = start; curr = start.next();

4 pred.lock();

5 while (curr.key < key) {

11

6 curr.lock();

7 pred.unlock();

8 pred = curr;

9 curr = curr.next();

10 curr.unlock();

11 }

12 return (pred, curr);

13 }

The supervisor is not happy at all with the solution of the programmer
claiming that the code is not correct.

Explain why the solution is wrong and provide a correct version so
the find method can be used as expected in a �ne-grained locking
algorithm (with no validation).

ANSWER: The code is incorrect since both pred and curr should be
locked before the loop starts otherwise an inconsistency may arise (e.g.,
another thread might remove the node pointed by curr before the condi-
tion of the while is checked). (We are in a setting without validation.)

Besides, the last sentence of the loop (curr.unlock();) is not correct
since the curr node is not holding a lock (it now points to a new node
and the lock is not acquired yet).

The correct solution is as shown in lecture 10, slide 34 (code reproduced
below)

protected Node<T>, Node<T> find(Node<T> start, int key) {

Node<T> pred, curr; // predecessor and current node in iteration

pred = start; curr = start.next(); // from start node

pred.lock(); curr.lock(); // lock pred and curr nodes

while (curr.key < key) {

pred.unlock(); // unlock pred node

pred = curr;

curr = curr.next(); // move to next node

curr.lock(); // lock next node

} // until curr.key >= key

return (pred, curr); // return position

}

12

Q4 (16p). The program below guarantees mutual-exclusion between two
processes. It uses a compare-and-swap operation.

boolean turn= false; boolean flaga= false; boolean flagb= false;

p q

while(true) { while(true) {
p1 //NCS (non-critical section) q1 //NCS (non-critical section)
p2: flaga= true; q2: flagb= true;
p3: while(!turn.CAS(false,true) q3: while(!turn.CAS(false,true)

&& flagb) { }; && flaga) { };
p4 //CS (critical section) q4 //CS (critical section)
p5: turn= flaga= false; q5: turn=flagb= false;

} }

For simplicity, we ignore the locations p1 and p4 and similarly q1 and
q4. Process p moves directly from p3 to p5 and from p5 to p2 and
similarly for q. We treat p5 and q5 as the critical section.

You are going to construct the transition table of this program. A full
state is of the form (pi, qj , flaga, flagb, turn), where i and j range over
{2, 3, 5}, and flaga, flagb, and turn range over true and false. Only
8 states are reachable.

Here is a partial state transition table for the program above. As men-
tioned, only 8 states are reachable from the initial state (p2, q2, f, f, f).

state new state if p moves new state if q moves

s1 (2, 2, f, f, f) (3, 2, t, f, f) = s3

s2 (2, 3, f, t, f)

s3 (3, 2, t, f, f) (5, 2, t, f, t) = s6

s4 (3, 3, t, t, f)

s5 (2, 5, f, t, t)

s6 (5, 2, t, f, t) (2, 2, f, f, f) = s1

s7 (5, 3, t, t, t)

s8 (3, 5, t, t, t)

(Part a). (4p) Fill in the blank entries in the table.

(Part b). (2p) Does the protocol maintain mutual exclusion?

(Part c). (3p) Consider the condition !turn.CAS(false, true)&&flagb

guarding the loop for process p. Argue from the table or otherwise that
the second conjunct does not play a role in the evaluation of this con-
dition.

(Part d). (4p) Based on part (c), suggest what parts of the program
to remove so that the protocol becomes simpler but still maintains mu-
tual exclusion (write the new protocol explaining what you removed).

(Part e). (3p) For how many processes does your new protocol work?

13

ANSWER:

Part (a):

state new state if p moves new state if q moves

s1 (2, 2, f, f, f) (3, 2, t, f, f) = s3 (2, 3, f, t, f) = s2

s2 (2, 3, f, t, f) (3, 3, t, t, f) = s4 (2, 5, f, t, t) = s5

s3 (3, 2, t, f, f) (5, 2, t, f, t) = s6 (3, 3, t, t, f) = s4

s4 (3, 3, t, t, f) (5, 3, t, t, t) = s7 (3, 5, t, t, t) = s8

s5 (2, 5, f, t, t) (3, 5, t, t, t) = s8 (2, 2, f, f, f) = s1

s6 (5, 2, t, f, t) (2, 2, f, f, f) = s1 (5, 3, t, t, t) = s7

s7 (5, 3, t, t, t) (2, 3, f, t, f) = s2 �

s8 (3, 5, t, t, t) � (3, 2, t, f, f) = s3

For (b): Yes. At most one of the processes is in location 5 at every
reachable state.

For (c): In all reachable states, whenever process p is in p3 evaluating
this condition and process q is in location 2 (i.e., !flagb) it is always
the case that the CAS evaluates to true.

For (d): the following symmetric protocol works:

boolean turn= false;

while(true) {
p1: //NCS (non-critical section)
p2: while(!turn.CAS(false, true)) {};
p3: //CS (critical section)
p4: turn= false;}

For (e): it works for every number of processes.

14

A Q1: Erlang code for gserver

Here is the code for gserver, for reference. You can either use gserver or
repeat some of this code in your own server implementation. Notice that
we are not using the robust version as we do not want the processes making
requests to timeout.

-module(gserver). % generic server

-export([start/2,request/2,stop/1]).

% start a server, return server’s pid

start(InitialState, Handler) ->

spawn(fun () -> loop(InitialState, Handler) end).

% event loop

loop(State, Handler) ->

receive

% a request from ‘From’ with data ‘Request’

{request, From, Ref, Request} ->

% run handler on request

case Handler(State, Request) of

% get handler’s output

{reply, NewState, Result} ->

% the requester gets the result

From ! {response, Ref, Result},

% the server continues with the new state

loop(NewState, Handler)

end;

{stop, _From, _Ref} -> ok

end.

% issue a request to ‘Server’; return answer

request(Server, Request) ->

Ref = make_ref(), % unique reference number

% send request to server

Server ! {request, self(), Ref, Request},

% wait for response, and return it

receive {response, Ref, Result} -> Result end.

stop(Server) ->

Server ! {stop, self(), 0}, % Ref is not needed

ok.

15

