Chalmers | GOTEBORGS UNIVERSITET

Concurrent Programming TDA384 /DIT391
Monday, 14 March 2022
Exam supervisor: G. Schneider (gersch@chalmers.se, 072 974 49 64)
(Exam set by G. Schneider, based on the course given Jan-Mar 2022)

Material permitted during the exam (hjidlpmedel):
Two textbooks; four sheets of A4 paper with notes; English dictionary.

Grading: You can score a maximum of 70 points. Exam grades are:

points in exam Grade Chalmers Grade GU

28-41 3 G
42-55 4 G
56-70 5] VG

Passing the course requires passing the exam and passing the labs. The
overall grade for the course is determined as follows:

points in exam + labs Grade Chalmers Grade GU

40-59 3 G
60-79 4 G
80-100 5 VG

The exam results will be available in Ladok within 15 working days after
the exam’s date.

Instructions and rules:

e Please write your answers clearly and legibly: unnecessarily compli-
cated solutions will lose points, and answers that cannot be read will
not receive any points!

e Justify your answers, and clearly state any assumptions that your so-
lutions may depend on for correctness.

e Answer each question on a new page. Glance through the whole paper
first; five questions, numbered Q1 through Q5. Do not spend more
time on any question or part than justified by the points it carries.

e Be precise. In your answers, try to use the programming notation and
syntax used in the questions. You can also use pseudo-code, provided
the meaning is precise and clear. If need be, explain your notation.

Q1 (18 p).

Figure 1 shows the pseudocode of program countMany. Let us assume that
a main program launches the two threads and whenever both terminate, it
prints the result of counter.

int counter = 0; int i = 0;
thread t thread u
int cnt; int cnt;
1 while (i<10) { while (i<10) { 7
2 i = 1i+1; i = 1i+1; 8
3 cnt = counter; cnt = counter; 9
4 counter = cnt + 1; counter = cnt + 1; 10
5} } 11
6 // end // end 12

Figure 1: Q2: Pseudocode of program countMany.

(Part a). (4 p) What is the minimum and the maximum values the pro-
gram can print (the value of counter after termination)? Justify your answer.

Answer: Minimum: 1 (Thread t enters the loop once and stops in line 4,
so i=1 and cnt=0; thread u executes the whole loop 9 ttmes and exits with
i=10 and counter=8 (since i is incremented at the beginning of the loop,
the counter is only incremented 8 times); thread t executes line 4 making
counter=1 (since cnt=0) and then exits the loop).

Mazimum: 11 (Thread t enters the loop and stops before executing line 2.
Thread u ezecutes the whole loop exiting with =10 and counter=10. Thread
t now ezecutes lines 3 and 4, making counter=1

NOTE: As mentioned in the course and in the exam hall: we assume that
interleaving only happens in between instructions, and not “inside” an in-
struction (e.g., between lines 2 and 3, but not in line 2 — between reading
the value of i, incrementing i and assigning the new updated value to i) .)

(Part b). (4 p) How many data races the program has? List them (use
the line numbers of the code).

Answer: There are 3 concerning the variable counter, one for each com-
bination when the variable is being written (and written or read by the other
thread):
lines 8 and 10,
lines 4 and 9,

lines 4 and 10.

Besides, there are 8 more for the looping variable (i)
lines 2 and 7,

lines 2 and 8

lines 1 and 8.

So, 6 data races in total.

(Part c¢). (5 p) How many possible values the program can print? List
them and explain.

Answer: The program can print any value between 1 and 11. They cor-
respond to the possible interleavings by one thread iterating a certain number
of times and “recording” the value of the local variable cnt before updating
counter.

(Part d). (5 p) Let us assume that the intention of the programmer was
that program countMany always terminates with counter=10. How would
you guarantee that by adding synchronisation primitives? Name at least
one mechanism to enforce that, and explain how to do it (Give the new
code).

Answer: The solution could be to use a lock. You need to declare a
Lock lock = new ReentrantLock(); (using Java syntaz), and in both threads
then use the lock as follows:

Call Tock. lock() just before the while, and call lock.unlock() at the end of
the loop.

Q2 (18 p)

Figure 2 shows the Java code of an implementation of strong semaphores
using Java’s explicit mechanism for scheduling threads (for suspending and
resuming threads), and figure 3 shows the method calling the semaphore.
NOTE: blocked is a queue.

1 class SemaphoreStrong implements Semaphore {

2 public synchronized void up()

3 { if (blocked.isEmpty()) count = count + 1;

4 else notifyAll(); } // wake up all waiting threads
5

6 public synchronized void down() throws InterruptedException
7 { Thread me = Thread.currentThread();

8 blocked.add(me); // enqueue me

9 while (count == 0 || blocked.element() != me)

10 wait(); // I'm enqueued when suspending

11 // now count > 0 and it’s my turn: dequeue me and decrement
12 blocked.remove(); count = count - 1; }

13

14 private final Queue<Thread> blocked = new LinkedList<>();

Figure 2: Q2: A Java implementation of strong semaphores

15 class StrongSemUser implements Runnable {

16 private SemaphoreStrong sem = new SemaphoreStrong(l);
17

18 public wvoid run()

19 { while (true) {

20

21 sem.down () ;

22

23 sem.up();

24 }

25 }

Figure 3: Q2: Run method calling the semaphore.

(Part a). (2 p) We have shown in the lectures that the code is wrong.
Explain why this is the case (what is the reason for the error, and what is
the error). What is the fix? (You do not need to write the whole code, just
say what needs to be added or removed from the wrong code.)

Answer: The problem is that it might deadlock. The reason is the line
checking whether blocked is empty before incrementing the counter in the
up() method. As shown in Lecture 3, slide 64, the fix is to remove the

if-then-else in lines 3-4 (just increment and notify all)

(Part b). (3 p) Can you reproduce the error if there is at most one
thread active? What is the minimum number of threads you need to (re)produce
the error?

Answer: One thread is not enough. You need at least 2 threads (the red

and the blue threads in the slides). [Comment: “active” means thatl threads
are, or have been, executing (including those blocked).]
Partially correct answer: If you interpret being active as threads not being
blocked in a wait() statement, then the answer is Yes (since all the other
threads will be blocked, and then, according to this interpretation they are
not “active”). In any case, note that the second question does not refer to
“active” threads so no confusion should arise: you still need at least 2 threads
to reproduce the error.

(Part c). (6 p) Reproduce the error with the minimum number of
threads.

Note: Indicate which threads are in the blocked queue at any moment, and
the value of count Use names for different threads with indexes (e.g., t0, t1,
t2, etc.) and indicate in which line number they are at each execution step.
For instance, t0.21, t0.7, t0.8, t1.21 indicates four steps of the execution of
threads t0 and t1: the first three instructions being executed by thread t0
(before calling sem.down () and then taking two steps into the method), and
then fact that t1 has arrived to instruction with number 21. In case there
are more than one instruction in a line (e.g., 1.12) and the thread executes
both instructions, then you repeat that in your sequence: £0.9, t0.12, t012...
Also, you should skip the comments.

Start with thread t0 in line 21, with an empty blocked queue (blocked= {}),
and count = 1. We encourage you to write comments at each step, to help
you understand what is going on. These are the first two steps:

t0.21, blocked = {}, count=1 % First thread wants to call down
t0.7, blocked = {}, count=1 % First thread calls down and starts executing
method

Answer: Only 2 threads, t0 and t1. Deadlock can be witnessed with the
following sequence of instructions: t0.21, blocked = {}, count=1
t0.7, blocked = {}, count=1
t0.8, blocked = {}, count—1
t0.9, blocked = {t0}, count=1

t0.12, blocked = {t0}, count=1

t0.12, blocked = {}, count=1

t0.23, blocked = {}, count=0

t1.21, blocked = {}, count=0

t1.7, blocked = {}, count=0

1.8, blocked = {}, count=0

t1.9, blocked = {t1}, count=0

t1.10, blocked = {t1}, count=0

t0.3, blocked = {t1}, count=0

t0.4, blocked = {t1}, count=0

t0.24, blocked = {t1}, count=0 % thread t0 finishes executing the loop once,
and then it will call down() again, getting into a deadlock.

(Part d). (8 p) Can more than one thread go into the down() method
at the same time? Explain.

Answer: Yes, because of the semantics of the wait(): the lock of the syn-
chronized method is released when calling wait(), allowing other threads to
come in.

(Part e). (2 p) Would the error still be such if the down() method is
not declared as synchronized? Explain.

Answer: Yes. Making the method not to be synchronized just would al-
low more threads to enter the method “at the same time”, but that would not
correct the error.

(Part f). (2 p) Would there still be an error if the wait() would hold
the lock? Explain.

Answer: Yes, because the error is there even if only one thread is inside
the down() method. (Any other thread will be then deadlocked not being able
to execute down().)

Q3 (10p).

The pseudocode below shows a sequential program inc(k):

int n = 1;
int x;

while (n =< k) {
X = n;
n=n+x;

}

print(n);

Note that the program always prints 2° for all values of k such that
2i=1 <k < 2% So, it prints:

2(i=1)ifk=1;
4 (i = 2) for values of k s.t. 2 < k < 4,
8 (i = 3) for values of k s.t. 4 < k < 8§;

(Part a). (2 p) How many iterations does the program do, for different
values of k7

Answer: It loops i times for all values of k such that 2771 < k < 2%,

So, it iterates 1 time (i = 1) if k = 1; it iterates 2 times (i = 2) for values
of k s.t. 2 < k < 4; it iterates 3 times (i = 3) for values of k s.t. 4 <k <8;
...; 1t iterates 6 times (1 = 6) for values of k s.t. 32 < k < 64; and so on.

(Part b). (5 p) A programmer wants to write a program based on
threads to parallelise inc(k) and writes a first version as follows:

int n = 1;

thread ¢,

int x;

LoV NI
o

> S

+

X

Besides that, there is a main program that prints the result (n) after all the
threads have finished.

Answer the following questions (Note: you should only consider the case
when n is shared and x is local to each thread):

1. The programmer wrote that there are i threads. What are the possible

results if A = 10 (what would the program print)? (You don’t need to
enumerate all the possible results but rather explain the pattern.)
What is the maximum amount of threads you can have in order to
get the same result as the sequential version assuming the threads are
each executed atomically. That is, you should assume that there is no
interleaving in between the commands executed by each thread: the
only interleaving is between threads.

Answer:
1. If h=10 and all the threads are executed sequentially without interleav-

ing, this would correspond to iterate 10 times, meaning (according to
Part a) that the result would be 1024 (2'°). That said, if there is in-
terleaving, 1t may print other values. The minimum value the program
will print would be 11 (when all the threads have ezecuted line 3 so
all have the local variable x to be equal to 1 and then the threads will
be updating the shared variable n as many times as threads there are
starting with n = 1)

As many as the iterations needed for each wvalue of k as indicated in
Part a. For instance, if k = 10 (k is the parameter of the sequential
program inc()) then you are in the case 8 < k < 16, and you need J
iterations.

(Part c). (3 p) Write a parallel version of the program based on threads,

taking into account the answer you gave in Part b. Your solution should
guarantee determinism, and the program should give the same result as the
original program. Use semaphores as a synchronisation mechanism.

Answer: See below (Note: there are i threads, where i is as in Part b).

int n = 1; Semaphore s = new Semaphore(1); //capacity 1
thread t;

1 int x;

2

3 s.down();

4 X =n;

b) n=n+x;

6 s.up();

Q4 (12p).

A programmer wants to provide an Erlang solution to the problem of
concurrent access to a spreadsheet, where many so-called checkers can access
the shared resource simultaneously, while so-called updaters may access it
exclusively. The programmer implements a module (sheet) with the following
functions:

o°

init (Name) register spreadsheet with Name
begin_update(Sheet) s access Sheet for updating
end_update(Sheet) release updating access
begin_check(Sheet) access Sheet for checking
end_check(Sheet) % release checking access

o° o°

o°

The init() function initialises an empty spreadsheet and registers it with
name Name.

Checkers and updaters continuously, and asynchronously, try to access
the spreadsheet, as shown below.

For checkers:

checker(Sheet) ->
sheet:begin_check(Sheet),
% code to check spreadsheet
sheet:end_check(Sheet),
checker(Sheet) .

For updaters:

updater(Sheet) ->
sheet:begin_update(Sheet),
% code to update spreadsheet
sheet:end_update(Sheet),
updater(Sheet).

The programmer wrote the following implementation of the server func-
tion sheet_Cal, claiming it guarantees mutual exclusion concerning access
to the shared spreadsheet (remember: many checkers can access the spread-
sheet at the same time, but updaters must get exclusive access to it):

sheet_CaU(Updaters, Checkers) ->
receive

{begin_update, Who, Ref} when (Updaters =:=0) ->
Who ! {ok_to_update, Ref},
sheet_CaU(Updaters+1l, Checkers);

{end_update, Who, Ref} ->
Who ! {ok, Ref},
sheet_CaU(Updaters-1, Checkers)

{begin_check, Who, Ref} when Updaters =:= 0 ->

© 00 1 O Ot = W N =

Who ! {ok_to_check, Ref},
sheet_CaU(Updaters, Checkers+l);
{end_check, Who, Ref} ->
Who ! {ok, Ref},
sheet_CaU(Updaters, Checkers-1);
end.

(Part a) (5 p) Is the claim that the server sheet_CaU guarantees mutual
exclusion correct? If so, give an informal argument on why this is the case.
If the claim is not true: explain what is wrong with the implementation of
the server and give a correct implementation to satisfy mutual exclusion (if
the new implementation only concerns a couple of lines, just indicate what
is the change to be done to those lines).

Answer: No, it doesn’t guarantee mutual exclusion. The programmer did
a mistake by forgetting to check that there are no checkers when trying to
update. The solution is to change line 3 by adding a condition as follows:

{begin_update, Who, Ref} when (Updaters
and (Checkers

1= 0)
o) ->

(Part b) (5 p) Does the (correct) solution guarantee starvation freedom?
Explain.

Answer: No, the server gives priority to checkers over updaters:

e new checking requests get served without waiting as long as a checker
1$ active

e updating requests waiting in the mailboxr have to wait until the last
checker sends an end_check message

o if checking requests keep arriving (queuing in the mailbox), the waiting
updating requests will never execute (and may thus starve).

(Part c) (2 p) What happens with those requests that cannot be served
immediately by the server? Are they lost?

Answer: No, they are not lost. Requests that cannot be served implicitly
queue in the sheet’s mailboz; they will be served as soon as the spreadsheet is

freed.

10

10
11
12
13
14
15

Q5 (12 p)

Let us assume that you want to implement a queue and use a linked list
as the underlying data structure. You look at the implementation of the
fine-grained locking version of a parallel linked set (code shown in Figures 4
and 5) for inspiration, and you want to refactor it. In particular, you want
to implement a bounded queue (instead of a set), and you will then write a
class Queue<T>.

Background: A queue is a FIFO (First In, First Out) data structure with
the following operations:

enqueue(Q,E): Adds element E to the queue Q. If the queue is full, then
it is said to be an Overflow condition and no element can be added. It gives
as result the updated new queue with the new element added, or the very
same queue in case of an Overflow condition.

dequeue(Q): It retrieves (removes) an element of the queue. The ele-
ments are popped (dequeued) in the same order in which they are pushed
(enqueued). If the queue is empty, then it is said to be an Underflow con-
dition and no element is given; otherwise it gives as result the dequeued
element.

front(Q): Get the front element from the queue Q without removing it.

rear(Q): Get the last element from the queue Q without removing it.

We say that a queue is bounded when there is a limit on the number
of elements it might contain; we call the maximum number of elements the
queue may contain its bound (or limit).

A queue is said to be full when it has as many elements as its limit. Note
then that you can always enqueue a new element provided the queue is not
Jull).

For bounded queues, we have the following new operation:

bound(Q): Gives the bound of the queue Q (the maximum number of
elements the queue may contain).

In what follows you will get 12 assertions concerning the implementation
of a class Queue<T> that allows for parallel access. The assertions are both
general statements about such an implementation and also related to the
possibility of reusing the code for sets (the correct version of the code shown
in Figures 4 and 5): refactoring FineSet<T> into a new class Queue<T>.

For each assertion, you need to say whether it is correct or not. You need
to justify your answer in each case.

NOTE: An answer without a justification will not be granted full points.

1. You need to use a key in the queue data structure as the elements have
to be added in order according to the key.

2. The enqueue method will be exactly the same as the add method (just
changing names). In other words, can you use add as it is to implement
enqueue?

11

10.

11.

12.

The bound (limit) of the queue is not really needed as we always know
how many elements the queue has.

The dequeue method is different from the remove among other things
because in a queue we don’t need to remove elements from the middle
of the (linked) data structure.

Implementing a Queue<T> class by refactoring the FineSet<T> class is
a good idea since there are not too many changes to be made.

A class Queue<T> that implements a linked queue that supports parallel
access requires the use of locks (in other words, it is impossible to

program a linked queue that supports parallel access without using
locks).

The implementation of a class Queue<T> allowing for parallel access
cannot be implemented with semaphores.

It is possible to implement a class Queue<T> allowing for parallel access
without using CAS (compare-and-set) operation

The bound method requires the use of a lock (or any other synchroni-
sation mechanism) as it might create inconsistency if accessed by more
than one thread.

As for FineSet<T>, any implementation of a class Queue<T> allowing
for parallel access might get an inconsistency if one thread tries to add
(enqueue) an element while another tries to remove (dequeue) it.

Adding (enqueuing) an element on a parallel queue is not problematic
in general if the list has four elements or more.

The implementation of a lock-free queue data structure (a class Queue<T>
without using locks) presented in Lecture 11 is a paradigm of how to
implement a parallel queue in every object oriented language, being
unconditionally correct.

Answer:

1.

False: You don’t need to use the key as the elements don’t need to be
added in order according to the key. The keys are used for efficiency
TEASONS.

False: You need to make a lot of changes as you add elements only at
one end of the queue (and not in a specific part of the structure). In
particular, you need to check whether the queue is not full before adding
the element (as the queue is bounded).

12

10.

11.

12.

False: the bound has nothing to do with the current length of a queue
(it is the mazimum number of elements the queue may have, and you
cannot “compute” that number).

True ADDITION: So FineSet is more general than what we need and
it would be simple to use it for the implementation of queue.

False: you need to do more than simple rename. In particular you
don’t need the key and you need to check for the bound. ALTERNA-
TIVE ANSWER: True: you just need to wrap the methods and the
implementation could be very simple (if you want to use keys and just
reimplement the way you insert and remove elements, adding a check
for the bound when needed).

False: You don’t require locks, as shown by the implementation proposed
in Lecture 11 using CAS

False: You can, as semaphores are more general than locks and you
can implement a parallel queue with locks

True: You can, as shown in Lecture 11

False: the bound just returns a value that is not supposed to be updated
anywhere (and thus it doesn’t require to be protected with any sync
mechanism,).

True

False: Adding elements on any parallel data structure might be prob-
lematic is there are more than one thread operating on it.

False: The lock-free implementation given in Lecture 11 is not uncon-
ditionally correct since requires garbage collection (slide 14). You may
also argue that the answer is false since the proposed solution is not “a
paradigm of how to implement a parallel queue in every object oriented
language” for two reasons: first, it might depend on the primitive con-
structs the language provides to ensure atomicity, second you may use
locks to implement a parallel queue.

13

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

package sets;

public class FineSet<T> extends SequentialSet<T>
{
public FineSet() {
super();

@Override
protected Position<T> find(Node<T> start, int key) {
Node<T> pred, curr;
pred = start;
pred.lock();
curr = start.next();
curr.lock();
while (curr.key() < key) {
pred.unlock();
pred = curr;
curr = curr.next();
curr.lock();

}

return new Position<T>(pred, curr);
}
@Override

public boolean add(T item) {

Node<T> node = newNode(item);
Node<T> pred = null, curr = null;
try {

Position<T> where = find(head, node.key());

pred = where.pred;

curr = where.curr;

return rawAdd(pred, curr, node);
} finally {

pred.unlock();

curr.unlock();

\\ code continues in Figure 5.

Figure 4: Q5: A “fine-grained locking” implementation of parallel linked sets.

14

1 @Override

2 public boolean remove(T item) {

3 int key = item.hashCode();

4 Node<T> pred = null, curr = null;
5 try {

6 Position<T> where = find(head, key);
7 pred = where.pred;

8 curr = where.curr;

9 return rawRemove(pred, curr, key);
10 } finally {

11 pred.unlock();

12 curr.unlock();

13 }

14 }

15

16 @Override

17 public boolean has(T item) {

18 int key = item.hashCode();

19 Node<T> pred = null, curr = null;
20 try {

21 Position<T> where = find(head, key);
22 pred = where.pred;

23 curr = where.curr;

24 return rawHas(curr, key);

25 } finally {

26 pred.unlock();

27 curr.unlock();

28 }

29 }

30

31 @Override

32 protected Node<T> newNode(T item) {
33 return new LockableNode<>(item);
34 }

35

36 @Override

37 protected Node<T> newNode(int key) {
38 return new LockableNode<>(key);
39 }

40 }

Figure 5: Q5: A “fine-grained locking” implementation of parallel linked sets.
[CONT |

15

