
Chalmers | Göteborgs Universitet

Concurrent Programming TDA384/DIT391

Monday, 14 March 2022

Exam supervisor: G. Schneider (gersch@chalmers.se, 072 974 49 64)

(Exam set by G. Schneider, based on the course given Jan-Mar 2022)

Material permitted during the exam (hjälpmedel):

Two textbooks; four sheets of A4 paper with notes; English dictionary.

Grading: You can score a maximum of 70 points. Exam grades are:

points in exam Grade Chalmers Grade GU

28�41 3 G
42�55 4 G
56�70 5 VG

Passing the course requires passing the exam and passing the labs. The
overall grade for the course is determined as follows:

points in exam + labs Grade Chalmers Grade GU

40�59 3 G
60�79 4 G
80�100 5 VG

The exam results will be available in Ladok within 15 working days after
the exam's date.

Instructions and rules:

� Please write your answers clearly and legibly: unnecessarily compli-
cated solutions will lose points, and answers that cannot be read will
not receive any points!

� Justify your answers, and clearly state any assumptions that your so-
lutions may depend on for correctness.

� Answer each question on a new page. Glance through the whole paper
�rst; �ve questions, numbered Q1 through Q5. Do not spend more
time on any question or part than justi�ed by the points it carries.

� Be precise. In your answers, try to use the programming notation and
syntax used in the questions. You can also use pseudo-code, provided
the meaning is precise and clear. If need be, explain your notation.

1



Q1 (18 p).

Figure 1 shows the pseudocode of program countMany. Let us assume that
a main program launches the two threads and whenever both terminate, it
prints the result of counter.

int counter = 0; int i = 0;

thread t thread u
int cnt; int cnt;

1 while (i<10) {

2 i = i+1;

3 cnt = counter;

4 counter = cnt + 1;

5 }

6 // end

7while (i<10) {

8i = i+1;

9cnt = counter;

10counter = cnt + 1;

11}

12// end

Figure 1: Q2: Pseudocode of program countMany.

(Part a). (4 p) What is the minimum and the maximum values the pro-
gram can print (the value of counter after termination)? Justify your answer.

(Part b). (4 p) How many data races the program has? List them (use
the line numbers of the code).

(Part c). (5 p) How many possible values the program can print? List
them and explain.

(Part d). (5 p) Let us assume that the intention of the programmer was
that program countMany always terminates with counter=10. How would
you guarantee that by adding synchronisation primitives? Name at least
one mechanism to enforce that, and explain how to do it (Give the new
code).

2



Q2 (18 p)

Figure 2 shows the Java code of an implementation of strong semaphores
using Java's explicit mechanism for scheduling threads (for suspending and
resuming threads), and �gure 3 shows the method calling the semaphore.
NOTE: blocked is a queue.

Figure 2: Q2: A Java implementation of strong semaphores

Figure 3: Q2: Run method calling the semaphore.

(Part a). (2 p) We have shown in the lectures that the code is wrong.
Explain why this is the case (what is the reason for the error, and what is
the error). What is the �x? (You do not need to write the whole code, just
say what needs to be added or removed from the wrong code.)

(Part b). (3 p) Can you reproduce the error if there is at most one

thread active? What is the minimum number of threads you need to (re)produce
the error?

3



(Part c). (6 p) Reproduce the error with the minimum number of
threads.

Note: Indicate which threads are in the blocked queue at any moment, and
the value of count Use names for di�erent threads with indexes (e.g., t0, t1,
t2, etc.) and indicate in which line number they are at each execution step.
For instance, t0.21, t0.7, t0.8, t1.21 indicates four steps of the execution of
threads t0 and t1: the �rst three instructions being executed by thread t0
(before calling sem.down() and then taking two steps into the method), and
then fact that t1 has arrived to instruction with number 21. In case there
are more than one instruction in a line (e.g., l.12) and the thread executes
both instructions, then you repeat that in your sequence: t0.9, t0.12, t012...
Also, you should skip the comments.

Start with thread t0 in line 21, with an empty blocked queue (blocked= {}),
and count = 1. We encourage you to write comments at each step, to help
you understand what is going on. These are the �rst two steps:

t0.21, blocked = {}, count=1 % First thread wants to call down

t0.7, blocked = {}, count=1 % First thread calls down and starts executing

method

...

(Part d). (3 p) Can more than one thread go into the down() method
at the same time? Explain.

4



1 package sets;

2

3 public class FineSet<T> extends SequentialSet<T>

4 {

5 public FineSet() {

6 super();

7 }

8

9 @Override

10 protected Position<T> find(Node<T> start, int key) {

11 Node<T> pred, curr;

12 pred = start;

13 pred.lock();

14 curr = start.next();

15 curr.lock();

16 while (curr.key() < key) {

17 pred.unlock();

18 pred = curr;

19 curr = curr.next();

20 curr.lock();

21 }

22 return new Position<T>(pred, curr);

23 }

24

25 @Override

26 public boolean add(T item) {

27 Node<T> node = newNode(item);

28 Node<T> pred = null, curr = null;

29 try {

30 Position<T> where = find(head, node.key());

31 pred = where.pred;

32 curr = where.curr;

33 return rawAdd(pred, curr, node);

34 } finally {

35 pred.unlock();

36 curr.unlock();

37 }

38 }

39

40 \\ code continues in Figure 5.

Figure 4: Q5: A ��ne-grained locking� implementation of parallel linked sets.

5



1 @Override

2 public boolean remove(T item) {

3 int key = item.hashCode();

4 Node<T> pred = null, curr = null;

5 try {

6 Position<T> where = find(head, key);

7 pred = where.pred;

8 curr = where.curr;

9 return rawRemove(pred, curr, key);

10 } finally {

11 pred.unlock();

12 curr.unlock();

13 }

14 }

15

16 @Override

17 public boolean has(T item) {

18 int key = item.hashCode();

19 Node<T> pred = null, curr = null;

20 try {

21 Position<T> where = find(head, key);

22 pred = where.pred;

23 curr = where.curr;

24 return rawHas(curr, key);

25 } finally {

26 pred.unlock();

27 curr.unlock();

28 }

29 }

30

31 @Override

32 protected Node<T> newNode(T item) {

33 return new LockableNode<>(item);

34 }

35

36 @Override

37 protected Node<T> newNode(int key) {

38 return new LockableNode<>(key);

39 }

40 }

Figure 5: Q5: A ��ne-grained locking� implementation of parallel linked sets.
[CONT.]

6


