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A Motivating Example
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We illustrate the challenges introduced by concurrent programming on a simple 
example: a counter modeled by a Java class

• First, we write a traditional, sequential version

• Then, we introduce concurrency and…run into trouble!

As simple as counting to two
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Sequential counter
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public class Counter {

private int counter = 0;

// increment counter by one

public void run() {

int cnt = counter; 

counter = cnt + 1; 

}                     

// current value of counter

public int counter() {

return counter;

}

}

public class SequentialCount {

public static

void main(String[] args) {

Counter counter = new Counter();

counter.run(); // increment once

counter.run(); // increment 

twice

// print final value of counter

System.out.println(

counter.counter());

}

}

– What is printed by running: java SequentialCount?

– May the printed value change in different reruns?



Modeling sequential computation

public void run() {

int cnt = counter; 

counter = cnt + 1; 

}                     

counter.run(); // first call: steps 1-3

counter.run(); // second call: steps 4-6
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Adding concurrency

Now, we revisit the example by introducing concurrency:

Each of the two calls to method run can be executed in parallel

• In Java, this is achieved by using threads

• Do not worry about the details of the syntax for now, we will explain it later

The idea is just that:

– There are two independent execution units (threads) t and u

– Each execution unit executes run on the same counter object

– We have no control over the order of execution of t and u
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Concurrent counter

public class CCounter

extends Counter

implements Runnable

{

// threads

// will execute

// run()

}

public class ConcurrentCount {

public static void main(String[] args) {

CCounter counter = new CCounter();

// threads t and u, sharing counter

Thread t = new Thread(counter);

Thread u = new Thread(counter);

t.start(); // increment once

u.start(); // increment twice

try { // wait for t and u to terminate

t.join(); u.join();

} catch (InterruptedException e) {

System.out.println("Interrupted!");

} // print final value of counter

System.out.println(counter.counter()); 

} }

– What is printed by running: java ConcurrentCount?

– May the printed value change in different reruns?



$ javac Counter.java CCounter.java ConcurrentCount.java

$ java ConcurrentCount.java

2

$ java ConcurrentCount.java

2

...

$ java ConcurrentCount.java

1

$ java ConcurrentCount.java

2

What?!

The concurrent version of counter 
occasionally prints 1 instead of the 
expected 2

• It seems to do so unpredictably

Welcome to concurrent programming!
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Why concurrency?
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Why do we need concurrent programming in the first place?

• Abstraction:

• Separating different tasks, without worrying about when to execute 
them (Ex: download files from two different websites)

• Responsiveness:

• Providing a responsive user interface, with different tasks executing 
independently (Ex: browse the slides while downloading your email)

• Performance:

• Splitting complex tasks in multiple units, and assign each unit to a 
different processor (Ex: compute all prime numbers up to 1 billion)

Reasons for using concurrency
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Principles of concurrent programming

vs. 

Principer för parallell programmering

Huh?

Concurrency vs. parallelism
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We will mostly use concurrency and parallelism as synonyms

However, they refer to similar but different concepts:

• Concurrency: nondeterministic composition of independently executing units 
(logical parallelism)

• Parallelism: efficient execution of fractions of a complex task on multiple processing units 
(physical parallelism)

• You can have concurrency without physical parallelism: operating systems running on 
single-processor single-core systems

• Parallelism is mainly about speeding up computations by taking advantage of redundant 
hardware

Concurrency vs. parallelism
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Ideal situation 

Photo: Summer Olympics 2016, Sander van Ginkel.

Concurrency vs. parallelism
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More common situation 

Photos: World Cup Nordic ’07, Tomoyoshi Noguchi – Vasaloppet ’06, Steven Hale.

Concurrency vs. parallelism
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Real world situation 

Challenges:

– Concurrency: Everyone gets to do their laundry (fairness)
Machines are operated by at most one user (mutual exclusion)

– Parallelism: Distribute load evenly over machines/rooms (load balancing)

Solutions: schedules, locks, signs/indicators…

Photo: Daniel Mott 2009 Photo: Wolfgangus Mozart 2010

Concurrency vs. parallelism
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The spectacular advance of computing in the last 60+ years has been driven by 
Moore’s law (1965)

1975: The density of transistors in integrated circuits
doubles approximately every 2 years

Moore's law and its end (?)
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Later updated: 

Doubling every 
18 months

(instead of 2 years)



Moore's Law in January 2017
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Physical restrictions force to change from increasing processing speed to having multiple 
processing having a major impact on the practice of programming:

– Before: CPU speed increases without significant architectural changes

• Concurrent programming was a niche skill (for operating systems, databases, high-
performance computing)

• Program as usual and wait for your program to run faster

– Now: CPU speed remains the same, but number of cores increases

• Concurrent programming is pervasive

• Program with concurrency in mind, otherwise your programs remain slow

– desktop PCs,

– smart phones,

– video-games consoles,

– embedded systems,

– the Raspberry Pi,

– cloud computing, …

Concurrency everywhere
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Very different systems all require concurrent programming:



We have 𝑛 processors that can run in parallel

How much speedup can we achieve?

𝒔𝒑𝒆𝒆𝒅𝒖𝒑 =
𝒔𝒆𝒒𝒖𝒆𝒏𝒕𝒊𝒂𝒍 𝒆𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝒕𝒊𝒎𝒆

𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍 𝒆𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝒕𝒊𝒎𝒆

Amdahl’s law shows that the impact of introducing parallelism is limited by the 
fraction 𝑝 of a program that can be parallelized:

𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒔𝒑𝒆𝒆𝒅𝒖𝒑 =
𝟏

𝟏 − 𝒑 + 𝒑/𝒏

Amdahl's law: Concurrency is no free lunch

sequential part parallel part
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𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒔𝒑𝒆𝒆𝒅𝒖𝒑 =
𝟏

𝟏 − 𝒑 + 𝒑/𝒏

With 𝑛=10 processors, how close can we get to a 10x speedup?

With 𝑛=100 processors, how close can we get to a 100x speedup?

26

Amdahl's law: Examples



Source: Communications of the ACM, Dec. 2017

Amdahl's law: Examples
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50% parallelism:
Adding more than
16 processors is 
useless

95% parallelism:
Speedup up to 4096
processors 
(uselss to add more)



Basic terminology and 
abstractions
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A process is an independent unit of execution – the abstraction of a running 
sequential program:

– identifier

– program counter (PC)

– memory space

The runtime/operating system schedules processes for execution on the 
available processors:

Processes

suspend
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The scheduler is the system unit in charge of setting process states:

Process states

Ready: ready to be executed, but not allocated to any CPU

Blocked: waiting for an event to happen

Running: running on some CPU
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A thread is a lightweight process – an independent unit of execution in the same program 
space:

• identifier

• program counter (PC)

• memory

• local memory, separate for each thread

• global memory, shared with other threads

In practice, the difference between processes and threads is fuzzy and implementation 
dependent. In our course:

Processes: executing units that do not share memory (in Erlang)

Threads: executing units that share memory (in Java)

Threads
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Shared memory models:

– communication by writing to shared 
memory

– e.g., multi-core systems

Distributed memory models:

– communication by message passing

– e.g., distributed systems

Shared memory vs. message passing
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Java threads
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Creating Threads
• What does a thread need to do?

https://en.wikipedia.org/wiki/Process_state

constructor

start

join

Method

start() Start a thread by calling run() method

run() Entry point for a thread

join() Wait for a thread to end

isAlive() Checks if thread is still running or not

setName()

getName()

getPriority()



Extend Thread



Extend?



Implement Runnable
• Java does not support multiple inheritance

• If you need your class to inherit



Two ways to build multi-threaded programs in Java:

– inherit from class Thread, override method run

– implement interface Runnable, implement method run

public class Ccounter

extends Counter

implements Runnable

{

// thread's computation:

public void run() {

int cnt = counter;

counter = cnt + 1;

}

}

CCounter c = new CCounter();

Thread t = new Thread(c);

Thread u = new Thread(c);

t.start();

u.start();

Java threads

38

Cannot use 
Thread class!

It inherits from 
Counter

So,
can only use 

second method



For a Thread object t:

– t.start(): mark the thread t ready
for execution

– Thread.sleep(n): block the 
current thread for n milliseconds 
(correct timing depends on JVM 
implementation)

– t.join(): block the current thread
until t terminates

Resuming and suspending is done by the 

JVM scheduler, outside the program’s 

control

States of a Java thread
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Shared vs. thread-local memory:

– Shared objects: the objects on 
which the thread operates, and 
all reachable objects

– Local memory: local variables, 
and special thread-local
attributes

Threads proceed asynchronously, so they have to coordinate with other threads 
accessing the same shared objects

Thread execution model
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1:  public class CCounter implements Runnable {

2:    int counter = 0;     // shared object state

3:

4: // thread's computation:

5: public void run() {

6:      int cnt = counter; 

7:      counter = cnt + 1; 

8: } }                     

One possible execution of the concurrent counter
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1:  public class CCounter implements Runnable {

2:    int counter = 0;     // shared object state

3:

4: // thread's computation:

5: public void run() {

6:      int cnt = counter; 

7:      counter = cnt + 1; 

8: } }                     

One alternative execution of the concurrent counter
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Traces
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The sequence of states gives an 
execution trace of the concurrent 
program 

Traces

46

A trace is an abstraction of 

concrete executions:

– atomic/linearized

– complete

– interleaved

Another trace
A different 
interleaving



Trace abstractions

Atomic/linearized: The effects of each thread appear as if they 
happened instantaneously, when the trace snapshot is 
taken, in the thread’s sequential order

Complete: The trace includes all intermediate atomic states

Interleaved: The trace is an interleaving of each thread’s linear trace 
(in particular, no simultaneity)
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When convenient, we will use an abstract notation for multi-threaded applications, which is 
similar to the pseudo-code used in Ben-Ari’s book but uses Java syntax

Each line of code includes exactly one instruction that can be executed atomically:

– atomic statement ≅ single read or write to global variable

– precise definition is tricky in Java, but we will learn to avoid pitfalls

Abstraction of concurrent programs

code

local memory

shared memory
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Lesson’s menu

• Concurrent programs and ConcurrentCounter (recap)

• What can be done?
• Locks

• Semaphores

• Theory and abstract problems
• Races

• Synchronization problems

• Synchronization with semaphores
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Concurrent programs
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When convenient, we will use an abstract notation for multi-threaded applications, which is 
similar to the pseudo-code used in Ben-Ari’s book but uses Java syntax.

Each line of code includes exactly one instruction that can be executed atomically:

– atomic statement ≅ single read or write to global variable

– precise definition is tricky in Java, but we will learn to avoid pitfalls

Abstraction of concurrent programs

code

local memory

shared memory
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Traces
A sequence of states gives an execution trace of the concurrent program 

(The program counter  points to the atomic instruction that will be executed next)

4

One trace
(One possible
Interleaving)



Concurrent counter

public class CCounter

extends Counter

implements Runnable

{

// threads

// will execute

// run()

}

public class ConcurrentCount {

public static void main(String[] args) {

CCounter counter = new CCounter();

// threads t and u, sharing counter

Thread t = new Thread(counter);

Thread u = new Thread(counter);

t.start(); // increment once

u.start(); // increment twice

try { // wait for t and u to terminate

t.join(); u.join();

} catch (InterruptedException e) {

System.out.println("Interrupted!");

} // print final value of counter

System.out.println(counter.counter()); 

} }

Prints different values in different runs!



• Introducing:
• Locks

• Semaphores

“magical” shared memory objects that achieve the impossible.

• For some internal details see Lecture 03 …

Is all lost?



Locks
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Lock objects

• Several threads share the same object lock of type Lock

• Many threads calling lock.lock(): exactly one thread 𝑡 acquires the lock
• 𝒕’s call lock.lock() returns: 𝒕 is holding the lock

• other threads block on the call lock.lock(), waiting for the lock to become available

• A thread 𝒕 that is holding the lock calls lock.unlock()to release the lock
• 𝒕’s call lock.unlock() returns: the lock becomes available

• another thread waiting for the lock may succeed in acquiring it

Locks are also called mutexes (they guarantee mutual exclusion)

9

interface Lock {

void lock();     // acquire lock

void unlock();   // release lock

}

A lock is a data structure with interface:



Using locks
With lock objects ensuring no interference is trivial:

• Before: call lock.lock()

• After: call lock.unlock()

10

The implementation of the Lock interface should guarantees
mutual exclusion and more (deadlock freedom & starvation freedom)

Only one thread
will succeed in 
getting the lock

Only when releasing
the lock, the other 

thread can get it



Using locks in Java

// package with lock-related classes

import java.util.concurrent.locks.*;

// shared with other synchronizing threads

Lock lock;

lock.lock();   // entry protocol

try {

// code that needs to be run in 

// mutual exclusion. Guaranteed

// by the lock protocol

} 

finally { // lock released even if an exception

// is thrown above

lock.unlock(); // exit protocol

}

11

Why is this
inside a try-finally?

To avoid holding the lock in 
case of an exception

(blocking all other threads)



Counter with mutual exclusion

public class LockedCounter extends CCounter
{

@Override
public void run() {

lock.lock();
try {

// int cnt = counter;
// counter = counter + 1;
super.run();

} 

finally {
lock.unlock();

}
}
// shared by all threads working 
// on this object
private Lock lock = new ReentrantLock();

}

The main is as before, but 
instantiates an object of class 
LockedCounter

• What is printed by running: 
java ConcurrentCount?

• May the printed value change 
in different reruns?

12

Entry 
protocol

Exit
protocol

Run 
exclusively

To allow threads lock a resource
more than once

NO: Always 2



Built-in locks in Java
Every object in Java has an implicit lock, which can be accessed using the 
keyword synchronized

13

Method locking (synchronized methods):

synchronized T m() {
// the exclusive code

// is the whole method body

}

Every call to m implicitly:
1. acquires the lock
2. executes m
3. releases the lock

Block locking (synchronized block):

synchronized(this) {
// the exclusive code

// is the block's content

}

Every execution of the block implicitly:
1. acquires the lock
2. executes the block
3. releases the lock



Counter with mutual exclusion: with synchronized

public class SyncCounter

extends CCounter

{

@Override

public synchronized

void run() {

// int cnt = counter;

// counter = counter + 1;

super.run();

}

}

public class SyncBlockCounter

extends CCounter

{

@Override

public void run() {

synchronized (this) {

// int cnt = counter;

// counter = counter + 1;

super.run();

}

}

}

14



Lock implementations in Java
• Many implementations of locks in java.util.concurrent.locks.

• The most common implementation of the Lock interface in Java is 
class ReentrantLock.

• The lock used by synchronized methods and blocks have the same behavior 
as the explicit locks.

• Built-in locks, and all lock implementations in java.util.concurrent.locks
are re-entrant: a thread holding a lock can lock it again without causing a 
deadlock!

15



Semaphores
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* Photo: British railway semaphores   David Ingham, 2008



Semaphores
A (general/counting) semaphore is a data structure with interface:

interface Semaphore {

int count();   // current value of counter

void up();     // increment counter

void down();   // decrement counter

}

Several threads share the same object sem of type Semaphore:
• initially count is set to a nonnegative value C (the capacity)

• a call to sem.up() uninterruptedly increments count by one

• a call to sem.down(): waits until count is positive, and then uninterruptedly
decrements count by one

17



Semaphores for permissions
A semaphore is often used to regulate access permits to a finite number of 
resources:

• the capacity C is the number of initially available resources

• up (also called signal) releases a resource, which becomes available

• down (also called wait) acquires a resource if it is available

Example: hot desks

19



Counter with mutual exclusion: with semaphores
Semaphores can be used to ensure no interference:

• initialize semaphore to 1

• Before: call sem.down()

• After: call sem.up()

20

Semaphore sem = new Semaphore(1);

thread t thread u

int cnt; int cnt;

sem.down();

cnt = counter;

counter = cnt + 1;

sem.up();

sem.down();

cnt = counter;

counter = cnt + 1;

sem.up();

1
2
3
4

1
2
3
4

Acts as a lock



Invariants

An object’s invariant is a property that always holds between calls to the 
object’s methods:

• the invariant holds initially (when the object is created)
• every method call starts in a state that satisfies the invariant
• every method call ends in a state that satisfies the invariant

Ex: A bank account that cannot be overdrawn has an invariant balance >= 0

class BankAccount {
private int balance = 0;
void deposit(int amount)

{ if (amount > 0) balance += amount; }
void withdraw(int amount)

{ if (amount > 0 && balance > amount) balance -= amount; }
}

21



Invariants in pseudo-code

• We may annotate classes with the pseudo-code keyword invariant

• Note that invariant is not a valid Java keyword – we highlight it in a different color –
but we will use it whenever it helps make more explicit the behavior of classes

class BankAccount {

private int balance = 0;

void deposit(int amount)

{ if (amount > 0) balance += amount; }

void withdraw(int amount)

{ if (amount > 0 && balance > amount) balance -= amount; }

invariant{ balance >= 0; } // not valid Java code

}

22



Invariants of semaphores
A semaphore object with initial capacity C satisfies the invariant:

interface Semaphore {

int count();

void up();

void down();

invariant{

count() >= 0;

count() == C + #up - #down;

}

}

Invariants characterize the behavior of an object, and are very useful for proofs

23

Number of calls to up up can increment 
beyond the initial capacity

NOT 
valid 

Java code

Number of calls to down



A semaphore with capacity 1 and such that count() is always at most 1 is 
called a binary semaphore

interface BinarySemaphore extends Semaphore {
invariant
{  0 <= count() <= 1;

count() == C + #up - #down; }
}

Binary semaphores

24

Mutual exclusion uses a 
binary semaphore:

Semaphore sem = new Semaphore(1);

// shared by all threads

thread t

sem.down();

// critical section

sem.up();



Binary semaphores vs. locks

Binary semaphores are very similar to locks with one difference:

• In a lock, only the thread that decrements the counter to 0 can increment it 
back to 1

• In a semaphore, a thread may decrement the counter to 0 and then let 
another thread increment it to 1

Thus (binary) semaphores support transferring of permissions

25



Barriers

27

A solution to the barrier synchronization problem for 2 threads using binary 
semaphores:

A barrier is a form of synchronization where there is a point (the barrier) 
in a program’s execution that all threads in a group have to reach 

before any of them is allowed to continue

Semaphore[] done = {new Semaphore(0), new Semaphore(0)};

t0 t1

// code before barrier

done[t0].up();  // t done
done[t1].down(); // wait u
// code after barrier

// code before barrier

done[t1].up();   // u done
done[t0].down(); // wait t
// code after barrier

Capacity 0 forces
up before down

up done
unconditionally

down waits until
the other thread
has reached the 

barrier

Is this re-usable?



Using semaphores in Java

package java.util.concurrent;

public class Semaphore {

Semaphore(int permits); 

// initialize with capacity `permits'
Semaphore(int permits, boolean fair);

// fair – explained later

void acquire();          // corresponds to down
void release();          // corresponds to up
int availablePermits();  // corresponds to count

}

Method acquire may throw an InterruptedException: catch or propagate

28



Races
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Race conditions
Concurrent programs are nondeterministic:

• Executing multiple times the same concurrent program with the same inputs may lead 
to different execution traces

• A result of the nondeterministic interleaving of each thread’s trace to determine the 
overall program trace

• In turn, the interleaving is a result of the scheduler’s decisions

The concurrent counter example has a race condition:
• in some executions the final value of counter is 2 (correct)

• in some executions the final value of counter is 1 (wrong)

Race conditions can greatly complicate debugging!

A race condition is a situation where the correctness of a

concurrent program depends on the specific execution

30



Concurrency humor

A1: Knock Knock

A2: "Who’s there?"

A1: "Race condition"

A1: Knock…

A2: "Who’s there?"

A1: Knock… 
"Race condition"

A1: Knock Knock

A1: "Race condition"

A2: "Who’s there?"

31



Data races

Race conditions are typically caused by a lack of synchronization between 
threads that access shared memory

A data race occurs when two concurrent threads:

• Access a shared memory location

• At least one access is a write

• The threads use no explicit synchronization mechanism to protect the 
shared data

32



Data races
A data race occurs when two concurrent threads:

• Access a shared memory location

• At least one access is a write

• The threads use no explicit synchronization mechanism to protect the 
shared data

Data race Data race
33

Data race



Data races vs. Race conditions

34

Not every race condition is a data race

• Race conditions can occur even when 
there is no shared memory access

• Example: filesystems or network access

Not every data race is a race condition

• The data race may not affect the result

• Example: if two threads write the same 
value to shared memory

A data race occurs when two concurrent threads:

• Access a shared memory location

• At least one access is a write

• The threads use no explicit synchronization mechanism to protect the 
shared data



Abstract Synchronization problems

35



Push out the races, bring in the speed

Concurrent programming introduces:

• the potential for parallel execution (faster, better resource usage)

• the risk of race conditions (incorrect, unpredictable computations)

The main challenge of concurrent programming is thus introducing parallelism
without introducing race conditions

This requires to restrict the amount of nondeterminism by synchronizing
processes/threads that access shared resources

36



Synchronization

We will present several synchronization problems that often appear in 
concurrent programming, together with solutions

37

• Correctness (that is, avoiding race conditions) is more important than 
performance
• An incorrect result that is computed faster is no good!

• However, we want to retain as much concurrency as possible
• Otherwise we might as well stick with sequential programming



Shared memory vs. Message passing synchronization

Shared memory synchronization:
• Synchronize by writing to and reading 

from shared memory

• Natural choice in shared memory 
systems such as threads

Message passing synchronization:
• Synchronize by exchanging messages

• Natural choice in distributed memory 
systems such as processes

38



Shared memory vs. Message passing synchronization

Shared memory synchronization: Message passing synchronization:

39

The two synchronization models overlap:
• Send a message by writing to and reading from shared memory (ex: message board)

• Share information by sending a message (ex: order a billboard)

• We start by focusing on shared memory concurrency

• But the high-level abstraction applies to both



The mutual exclusion problem
A fundamental synchronization problem which arises whenever multiple threads 
have access to a shared resource

40

Simplifications to present solutions in a uniform way:
• the critical section is an arbitrary block of code

• threads continuously try to enter the critical section

• threads spend a finite amount of time in the critical section

• we ignore what the threads do outside their critical sections

Critical Section: Part of a program that accesses the shared resource (Ex: shared variable)

Mutual Exclusion Property: No more than 1 thread is in its critical section at any given time

Mutual Exclusion Problem: Devise a protocol for accessing a shared resource 
that satisfies the mutual exclusion property



T shared;

thread tj thread tk

// continuously

while (true) {

entry protocol

critical section {

// access shared data

}

exit protocol

} /* ignore behavior

outside critical section */

// continuously

while (true) {

entry protocol

critical section {

// access shared data

}

exit protocol

} /* ignore behavior

outside critical section */

41

Mutual Exclusion Problem: Devise a protocol for accessing a shared 
resource that satisfies the mutual exclusion property

The mutual exclusion problem

May depend
on thread

Depends
on computation



Mutual exclusion problem example: Concurrent Counter
Updating a shared variable consistently is an instance of the mutual exclusion 
problem

42

int counter = 0;

thread t thread u

int cnt; int cnt;

while (true) {

entry protocol

critical section {

cnt = counter;

counter = cnt + 1;

}

exit protocol

return;

}

while (true) {

entry protocol

critical section {

cnt = counter;

counter = cnt + 1;

}

exit protocol

return;

}

Take turns
incrementing
counter



What's a good solution to the mutual exclusion problem?

A fully satisfactory solution is one that achieves three properties:

1. Mutual exclusion: at most one thread is in its critical section at any given 
time

2. Freedom from deadlock: if one or more threads try to enter the critical 
section, some thread will eventually succeed

3. Freedom from starvation: every thread that tries to enter the critical 
section will eventually succeed

A good solution should also work for an arbitrary number of threads sharing the 
same memory

(NOTE: Freedom from starvation implies freedom from deadlock)

43



Deadlocks

• A mutual exclusion protocol provides exclusive access to shared resources to 
one thread at a time

• Threads that try to access the resource when it is not available will have to 
block and wait

• Mutually dependent waiting conditions may introduce a deadlock
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A deadlock is the situation where a group of threads wait forever 
because each of them is waiting for resources that are held by another 

thread in the group (circular dependency)



Deadlock: Example

A protocol that achieves mutual exclusion 
but introduces a deadlock:
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Entry protocol: Wait until all other threads 
have executed their critical section

Via, resti servita Madama brillante – E. Tommasi Ferroni, 2012

A deadlock is the situation where a group of threads wait forever 
because each of them is waiting for resources that are held by another 

thread in the group (circular dependency)



The Dining Philosophers

• Dining philosophers: A classic synchronization problem introduced by Dijkstra

• It illustrates the problem of deadlocks using a colorful metaphor (by Hoare)
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• Five philosophers are sitting around a dinner table, with 
a fork in between each pair of adjacent philosophers

• Each philosopher alternates between thinking 
(non-critical section) and eating (critical section)

• In order to eat, a philosopher needs to pick up the two 
forks that lie to the philosopher’s left and right

• Since the forks are shared, there is a synchronization
problem between philosophers (threads)



Deadlocking philosophers
An unsuccessful attempt at solving the dining philosophers problem:
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entry () {

left_fork.acquire(); // pick up left fork

right_fork.acquire();// pick up right fork

}

critical section { eat(); }

exit () {

left_fork.release(); // release left fork

right_fork.release();// release right fork

}

This protocol deadlocks if all philosophers get their 
left forks, and wait forever for their right forks to 
become available



The Coffman conditions

Necessary conditions for a deadlock to occur:

1. Mutual exclusion: threads may have exclusive access to the shared resources

2. Hold and wait: a thread may request one resource while holding another one

3. No preemption: resources cannot forcibly be released from threads that hold them

4. Circular wait: two or more threads form a circular chain where each thread waits for 
a resource that the next thread in the chain is holding.

* Avoiding deadlocks requires to break one or more of these conditions
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Breaking a circular wait
A solution to the dining philosophers problem that avoids deadlock by breaking
circular wait: pick up first the fork with the lowest id number 

It avoids circular wait since not every philosopher will pick up their left fork first
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entry () {
if (left_fork.id()< right_fork.id())
{ left_fork.acquire();

right_fork.acquire();
} 

else
{ right_fork.acquire();

left_fork.acquire();
}

}
critical section { eat(); }
exit () { /* ... */ }

Ordering shared resources and forcing all 
threads to acquire the resources in order is 
a common measure to avoid deadlocks
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Starving philosophers
A solution to the dining philosophers problem that avoids deadlock by breaking 
hold and wait (and thus circular wait): pick up both forks at once (atomic op.)
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entry () {

forks.acquire(); // pick up left and right 

// fork, atomically

}

critical section { eat(); }

exit () {

forks.release(); // release left and right 

// fork, atomically

}

It avoids deadlock, but it may introduce starvation: a 
philosopher may never get a chance to pick up the forks



Starvation

No deadlock means that the system makes progress as a whole

However, some thread may still make no progress because it is treated unfairly 
in terms of access to shared resources
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Avoiding starvation requires an additional assumption about the scheduler

Starvation is the situation where a thread is 

perpetually denied access to a resource it requests



Fairness

Applied to a scheduler:
• request = a thread is ready (enabled)

• fairness = every thread has a chance to execute
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Avoiding starvation requires the scheduler to

“give every thread a chance to execute”

Starvation is the situation where a thread is 

perpetually denied access to a resource it requests

Weak fairness: if a thread continuously requests (that is, without interruptions) access to a 
resource, then access is granted eventually (or infinitely often)

Strong fairness: if a thread requests access to a resource infinitely often, then access is 
granted eventually (or infinitely often)



Deadlock and Starvation in Java Locks
class ReentrantLock

Mutual exclusion:
• ReentrantLock guarantees mutual exclusion

Starvation:
• ReentrantLock does not guarantee freedom from starvation by default
• however, calling the constructor with new ReentrantLock(true) “favors granting 

access to the longest-waiting thread”
• this still does not guarantee that thread scheduling is fair

Deadlocks:
• one thread will succeed in acquiring the lock
• however, deadlocks may occur in systems that use multiple locks (remember the dining 

philosophers)
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Explicit locks used by 
synchronized give no guarantee 

about starvation!



Deadlock and Starvation in Sempahores

Every implementation of semaphores should guarantee:

• the atomicity of the up and down operations

• deadlock freedom (for one semaphore used correctly … 
Deadlocks may still occur if there are other synchronization constraints!

Fairness is optional:

Weak semaphore: threads waiting to perform down are scheduled nondeterministically

Strong semaphore: threads waiting to perform down are scheduled fairly in FIFO (First In 
First Out) order
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Mutex using binary semaphores
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If the semaphore is strong this guarantees starvation freedom

Semaphore sem = new Semaphore(1);

// shared by all threads

thread t

sem.down();

// critical section

sem.up();



The k-exclusion problem

• Mutual exclusion problem = 𝟏-exclusion problem

• The “hot desk” is an instance of the 𝑘-exclusion problem
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A solution to the 𝑘-exclusion 
problem using a semaphore of 
capacity 𝑘:  A straightforward 
generalization of mutual exclusion

Semaphore sem = new Semaphore(k);

// shared by all threads

thread t

sem.down();

// critical section

sem.up();

The k-exclusion problem: devise a protocol that allows
up to k threads to be in their critical sections at the same time
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• Analyzing concurrency

• Mutual exclusion with only atomic reads and writes
• Three failed attempts

• Peterson’s algorithm

• Mutual exclusion with bounded waiting

• Implementing mutual exclusion algorithms in Java

• Implementing semaphores

Lesson’s menu
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• Analyzing concurrency
• Evaluate correctness of solutions
• Important for understanding of race conditions

• Mutual exclusion with only atomic reads and writes
• Understand the issues and problems

• Interleaving and races
• Why stronger synchronization

• What’s not working and what’s working
• Implementing mutual exclusion algorithms in Java

• Better understanding of Java memory model
• More language constructs
• Undrestanding exact behavior

• Implementing semaphores
• Understand exact behavior
• Demonstrate issues and problems

Lesson’s menu
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Analyzing concurrency
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We capture essential elements of concurrent programs using state/transition 
diagrams

• Also called: (finite) state automata, (finite) state machines, or transition systems

• States in a diagram capture possible program states

• Transitions connect states according to execution order

Structural properties of a diagram capture semantic properties of the 
corresponding program

State/transition diagrams
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A state captures the shared and local states of a concurrent program:

States
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When unambiguous, we simplify a state with only the essential information:

States

A state captures the shared and local states of a concurrent program:
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The initial state of a computation is marked with an incoming arrow:

Initial states
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The final states of a computation – where the program terminates – are marked 
with double-line edges:

Final states
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A transition corresponds to the execution of one atomic instruction, and it is an 
arrow connecting two states (or a state to itself):

Transitions
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A complete state/transition diagram

The complete state/transition diagram for the concurrent counter example 
explicitly shows all possible interleavings:
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State/transition diagram with locks?

The state/transition diagram of the concurrent counter example we would like 
to achieve using locks:
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Locking and unlocking are considered atomic operations

Locking

This transition is only allowed if the lock is not held by another thread
13



Counter with locks: state/transition diagram

The state/transition diagram of the concurrent counter example using locks
should contain no (states representing) race conditions:
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Transition tables are equivalent representations of the information of 
state/transition diagrams

Transition tables
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The structural properties of a diagram capture semantic properties of the program: 

Mutual exclusion: there are no states where two threads are in their critical section

Deadlock freedom: for every (non-final) state, there is an outgoing transition

Starvation freedom: there is no (looping) path such that a thread never enters its 
critical section while trying to do so

No race conditions: all the final states have the same (correct) result

• We will build and analyze state/transition diagrams only for simple examples, since it 
quickly becomes tedious

• Model checking is a technique that automates the construction and analysis of 
state/transition diagrams with billions of states 

• We’ll give a short introduction to model checking in one of the last classes

Reasoning about program properties

18



Mutual exclusion with only 
atomic reads and writes
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A lock is a data structure (an object in Java) with interface:

interface Lock {

void lock();     // acquire lock

void unlock();   // release lock

}

• Several threads share the same object lock of type Lock

• Threads calling lock.lock(): exactly one thread 𝑡 acquires the lock:
• 𝑡’s call lock.lock() returns: 𝑡 is holding the lock

• other threads block on the call lock.lock(), waiting for the lock to become available

• A thread 𝑡 that is holding the lock calls lock.lock()to release the lock:
• 𝑡’s call lock.unlock() returns: the lock becomes available

• another thread waiting for the lock may succeed in acquiring it

Locks: recap
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Can we implement locks using only atomic instructions – reading and writing 

shared variables?

• We present some classical algorithms for mutual exclusion using only atomic 

reads and writes

• The presentation builds up to the correct algorithms in a series of attempts, which 

highlight the principles that underlie how the algorithms work

Mutual exclusion without locks

• It is possible

• But it is also tricky!
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Given 𝑁 threads, each executing:

// continuously
while (true) {

entry protocol
critical section {

// access shared data
}
exit protocol

} /* ignore behavior
outside critical section */

Design the entry and exit protocols to ensure:
• mutual exclusion
• freedom from deadlock
• freedom from starvation

Initially we limit ourselves to 𝑁 = 2 threads, 𝑡0 and 𝑡1

The mutual exclusion problem - recap

Now protocols can use 
only reads and writes 
of shared variables
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In the pseudo-code, we will use the shorthand

await(c) ≜ while (!c) {}

to denote busy waiting (also called spinning):
• keep reading shared variable c as long as it is false

• proceed when it becomes true

• Busy waiting is generally inefficient (unless typical waiting times are shorter than 
context switching times), so you should avoid using it
• We use it only because it is a good device to illustrate the nuts and bolts of mutual 

exclusion protocols

• Note that await is not a valid Java keyword
• We highlight it in a different color – but we will use it as a shorthand for better readability

Busy waiting
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Mutual exclusion with only 
atomic reads and writes
Three failed attempts
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Use Boolean flags enter[0] and enter[1]:
• each thread waits until the other thread is not trying to enter the critical section

• before thread 𝑡𝑘 is about to enter the critical section, it sets enter[k] to true

Double-threaded mutual exclusion: First naive attempt

25



The first attempt does not guarantee mutual 
exclusion: 𝑡0 and 𝑡1 can be in the critical section at 
the same time

The first naive attempt is incorrect!

The problem seems to be that await is executed before setting enter, so one thread 
may proceed ignoring that the other thread is also proceeding

26

Both threads here! How?



When thread 𝑡𝑘 wants to enter the critical section:
• it first sets enter[k]to true

• then it waits until the other thread is not trying to enter the critical section

Double-threaded mutual exclusion: Second naive attempt
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The second attempt:
• guarantees mutual exclusion: 𝑡0 is in the critical section iff enter[1] is false, iff
𝑡1 has not set enter[1] to true, iff 𝑡1 has not entered the critical section (𝑡1 has 
not executed line yet)

• does not guarantee freedom from deadlocks

The second naive attempt may deadlock!

The problem seems to be that the two variables enter[0] and enter[1] are accessed 
independently
• each thread may be waiting for permission to proceed from the other thread

28

Both threads might end 
up here, blocked. Why?



Use one single integer variable yield:
• thread 𝑡𝑘 waits for its turn while yield is 𝑘

• when it is done with its critical section, it yields control to the other thread by setting 
yield = 𝑘

Double-threaded mutual exclusion: Third naive attempt
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The third attempt:

• guarantees mutual exclusion:

𝑡0 is in the critical section

iff yield is 1

iff yield was initialized to 1 or 𝑡1 has set yield to 1

iff 𝑡1 is not in the critical section (𝑡0 has not executed line 6 yet).

• guarantees freedom from deadlocks: each thread enables the other thread, so 
that a circular wait is impossible

• does not guarantee freedom from starvation: if one stops executing in its non-
critical section, the other thread will starve (after one last access to its critical 
section)

Later in the course: we will discuss how model checking can help to verify whether 
such correctness properties hold in a concurrent program

The third naive attempt may starve some thread!

30



The third naive attempt may starve some thread!
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If yield=0 and 
thread t1 stops 
executing here 
(before the entry 
protocol)…

… then thread t0

will starve



Peterson’s algorithm
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Combine the ideas behind the second and third attempts:
• thread 𝑡𝑘 first sets enter[k] to true
• but lets the other thread go first – by setting yield

Peterson's algorithm

Works even if two reads
are non-atomic

33

Equivalent to:
wait while

(enter[1]=true
&

yield=0)

Enter only when
(enter[1]=false

OR
yield=1)
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State/transition diagram of Peterson's algorithm
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Another state/transition 
diagram of 

Peterson's algorithm

Critical Section

Values of 
yield

Omitting lines 
7-9 and 16-18



By inspecting the state/transition diagram, we can check that Peterson’s 
algorithm satisfies:

mutual exclusion: there are no states where both threads are at pc0=6 and pc1=15 
(in the critical section)

deadlock freedom: every state has at least one outgoing transition

starvation freedom: if thread 𝑡0 is in its critical section, then thread 𝑡1 can reach its 
critical section without requiring thread 𝑡0’s collaboration after 𝑡0 executes the exit
protocol

Checking the correctness of Peterson's algorithm
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Peterson's algorithm 
satisfies mutual exclusion
and is deadlock free

Both in 
Critical Section



By inspecting the state/transition diagram, we can check that Peterson’s 
algorithm satisfies:

mutual exclusion: there are no states where both threads are at pc0=6 and pc1=15 
(in the critical section)

deadlock freedom: every state has at least one outgoing transition

starvation freedom: if thread 𝑡0 is in its critical section, then thread 𝑡1 can reach its 
critical section without requiring thread 𝑡0’s collaboration after 𝑡0 executes the exit
protocol

Checking the correctness of Peterson's algorithm
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Peterson's algorithm
is starvation free

(No thread keeps waiting to enter the 
critical section)



Peterson's algorithm satisfies mutual exclusion

Instead of building the state/transition diagram, we can also prove mutual exclusion
by contradiction:

• Assume 𝑡0 and 𝑡1 both are in their critical section

• We have enter[0] == true and enter[1] == true
(𝑡0 and 𝑡1 set them before last entering their critical sections)

• Either yield == 0 or yield == 1
Without loss of generality, assume yield == 0

• Before last entering its critical section, 𝑡0 must have set yield to 0; after that it cannot 
have changed yield again

• To enter its critical section, 𝑡0 must have read yield == 1 (since enter[1] == 
true), so 𝑡1 must have set yield to 1 after 𝑡0 last changed yield to 0

• Since neither thread can have changed yield to 0 after that, we must have 
yield == 1
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Contradiction!



Peterson's algorithm is starvation free
Suppose 𝑡0 is waiting to enter its critical section. At the same time, 𝑡1 must be doing 
one of four things:

1. 𝑡1 is in its critical section: then, it will eventually leave it;
2. 𝑡1 is in its non-critical section: then, enter[1] == false, so 𝑡0 can enter its critical 

section;
3. 𝑡1 is waiting to enter its critical section: then, yield is either 0 or 1, so one thread can 

enter the critical section;
4. 𝑡1 keeps on entering and exiting its critical section: this is impossible because after 𝑡1

sets yield to 1 it cannot cycle until 𝑡0 has a chance to enter its critical section (and 
reset yield).

In all possible cases, 𝑡0 eventually gets a chance to enter the critical section, so there is 
no starvation

Since starvation freedom implies deadlock freedom:

Peterson’s algorithm is a correct mutual exclusion protocol
41
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Peterson's algorithm is starvation free

If yield=0 (or 1) 
and thread t1 stops 
executing here 
(before the entry 
protocol)…

… then thread t0

will NOT starve
(it can go in into the 
critical section since 
enter[1]=false)



Peterson’s algorithm easily generalizes to 𝑛 threads

Peterson's algorithm for n threads

wait until all other 
threads are in lower levels

or another thread
is yielding 

43
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Peterson's algorithm for n threads



Every thread goes through 𝑛 − 1 levels to enter the critical 
section:

• when a thread is at level 0 it is outside the entry region;

• when a thread is at level 𝑛 − 1 it is in the critical section;

• Thread x is in level i when it has finished the loop at line 6 
with enter[x]=i;

• yield[ℓ] indicates the last thread that wants to enter 
level ℓ;

• to enter the next level, wait until there are no processes in 
higher levels, or another process (which entered the 
current level last) is yielding;

• mutual exclusion: at most 𝑛 − ℓ processes are in level ℓ, 
thus at most 𝑛 − (𝑛 − 1) = 1 processes in critical section.
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Peterson's algorithm for n threads



Mutual exclusion with bounded 
waiting

47



Peterson’s algorithm guarantees freedom from starvation, but threads may get access 
to their critical section before other ”older” threads

To describe this, we introduce more precise properties of fairness:

Finite waiting (starvation freedom): when a thread 𝑡 is waiting to enter its critical 
section, it will eventually enter it

Bounded waiting: when a thread 𝑡 is waiting to enter its critical section, the maximum 
number of times other arriving threads are allowed to enter their critical section 
before 𝑡 is bounded by a function of the number of contending threads

𝑟-bounded waiting: when a thread 𝑡 is waiting to enter its critical section, the 
maximum number of times other arriving threads are allowed to enter their critical 
section before 𝑡 is less than 𝑟 + 1

First-come-first-served: 0-bounded waiting

Bounded waiting (also called bounded bypass)
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Lamport’s Bakery algorithm achieves mutual exclusion, deadlock freedom, and first-
come-first-served access

It is based on the idea of waiting threads getting a ticket number:
• Because of lack of atomicity, two threads may end up with the same ticket number

• In that case, their thread identifier number is used to force an order

• The tricky part is evaluating multiple variables (the ticket numbers of all other waiting 
processes) consistently

• Idea: a thread raises a flag when computing the number; other threads then wait to 
compute the numbers

Main drawback (compared to Peterson’s algorithm): the original version of the Bakery 
algorithm may use arbitrarily large integers (the ticket numbers) in shared variables

The Bakery algorithm
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Implementing mutual exclusion 
algorithms in Java
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… don’t do it!

Learning how to achieve mutual exclusion using only atomic reads and writes 
has educational value, but you should not use it in realistic programs

• Use the locks and semaphores available in Java’s standard library

• We will still give an overview of the things to know if you were to 
implement Peterson’s algorithm, and similar ones, from the ground up

Now that you know how to do it…
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class PetersonLock implements Lock {

private volatile boolean enter0 = false, enter1 = false;

private volatile int yield;

public void lock()

{   int me = getThreadId();

if (me == 0) enter0 = true;

else enter1 = true;

yield = me;

while ((me == 0) ? (enter1 && yield == 0)

: (enter0 && yield == 1)) {}  }

public void unlock()

{   int me = getThreadId();

if (me == 0) enter0 = false;

else enter1 = false;  }

private volatile long id0 = 0;

Peterson's lock in Java: 2 threads

volatile is required
for correctness
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The loop will exit: 
if me=0 and (enter1 is false or yield is 1) 

or 
if me=1 and (enter0 is false or yield is 0) 



When we designed and analyzed concurrent algorithms, we implicitly assumed that threads 
execute instructions in textual program order

This is not guaranteed by the Java language – or, for that matter, by most programming 
languages – when threads access shared fields

(Read “The silently shifting semicolon” http://drops.dagstuhl.de/opus/volltexte/2015/5025/ for a nice 
description of the problems) 

Instruction execution order

• Compilers may reorder instructions based on static 
analysis, which does not know about threads. 

• Processors may delay the effect of writes when the cache is 
committed to memory

This adds to the complications of writing low-level concurrent 
software correctly
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http://drops.dagstuhl.de/opus/volltexte/2015/5025/


Instruction execution order

54

class PetersonLock implements Lock {
private volatile boolean enter0 = false, enter1 = false;
private volatile int yield;

public void lock()
{   int me = getThreadId();

if (me == 0) enter0 = true;
else enter1 = true;
yield = me;
while ((me == 0) ? (enter1 && yield == 0)

: (enter0 && yield == 1)) {}  }

public void unlock()
{   int me = getThreadId();

if (me == 0) enter0 = false;
else enter1 = false;  }

private volatile long id0 = 0;

• Compilers may reorder instructions based on static 
analysis, which does not know about threads. 

• Processors may delay the effect of writes when the cache is 
committed to memory

This adds to the complications of writing low-level concurrent 
software correctly

The compiler might 
Decide to move this instruction



Accessing a field (attribute) declared as volatile forces synchronization, and 
thus prevents optimizations from reordering instructions in a way that alters the 
“happens before” relationship defined by a program’s textual order

• By using volatile we ensure the variable changes at runtime and that the compiler 
should not cache its value for any reason

When accessing a shared variable that is accessed concurrently:

• declare the variable as volatile

• or guard access to the variable with locks (or other synchronization 
primitives)

Volatile fields
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Arrays and volatile

Java does not support arrays whose elements are volatile

That’s why we used two scalar boolean var when implementating Peterson’s lock

Workarounds:

• Use an object of class AtomicIntegerArray in package java.util.concurrent.atomic

which guarantees atomicity of accesses to its elements (the field itself need not be 

declared volatile)

• Make sure that there is a read to a volatile field before every read to elements of the 

shared array, and that there is a write to a volatile field after every write to elements of 

the shared array; this forces synchronization indirectly (may be tricky to do correctly!)

• Explicitly guard accesses to shared arrays with a lock: this is the high-level solution which 

we will preferably use
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class PetersonAtomicLock implements Lock {

private AtomicIntegerArray enter = new AtomicIntegerArray(2);

private volatile int yield;

public void lock() {

int me = getThreadId();

int other = 1 - me;

enter.set(me, 1);

yield = me;

while (enter.get(other) == 1 && yield == me) {}

}

public void unlock() {

int me = getThreadId();

enter.set(me, 0);

}

Peterson's lock in Java: 2 threads, with atomic arrays
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class PetersonLock implements Lock {

private volatile boolean enter0 = false, 

enter1 = false;

private volatile int yield;

public void lock()

{   int me = getThreadId();

if (me == 0) enter0 = true;

else enter1 = true;

yield = me;

while ((me == 0) ? (enter1 && yield == 0)

: (enter0 && yield == 1)) {}  

}

public void unlock()

{   int me = getThreadId();

if (me == 0) enter0 = false;

else enter1 = false;  

}

Peterson's lock in Java: 2 threads

58

class PetersonAtomicLock implements Lock {

private AtomicIntegerArray

enter = new AtomicIntegerArray(2);

private volatile int yield;

public void lock() 

{   int me = getThreadId();

int other = 1 - me;

enter.set(me, 1);

yield = me;

while (enter.get(other) == 1

&& yield == me) {}

}

public void unlock()

{   int me = getThreadId();

enter.set(me, 0);

}

With atomic arrays:”Classic”:



Peterson’s algorithm for 𝒏 threads uses 𝛩(𝑛) shared memory locations (two 𝑛-
element arrays)

• One can prove that this is the minimum amount of shared memory needed to have 
mutual exclusion if only atomic reads and writes are available

• This is one reason why synchronization using only atomic reads and writes is 
impractical 

• We need more powerful primitive operations:

• atomic test-and-set operations

• support for suspending and resuming threads explicitly

Mutual exclusion needs n memory locations
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The test-and-set operation boolean testAndSet() works on a Boolean variable b as 
follows: b.testAndSet() atomically returns the current value of b and sets b to true

Java class AtomicBoolean implements test-and-set:

package java.util.concurrent.atomic;
public class AtomicBoolean {

AtomicBoolean(boolean initialValue); // initialize to `initialValue'

boolean get();                       // read current value
void set(boolean newValue);          // write `newValue'

// return current value and write `newValue'

boolean getAndSet(boolean newValue);
// testAndSet() is equivalent to getAndSet(true)

}

Test-and-set
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An implementation of 𝑛-process mutual exclusion using a single Boolean 
variable with test-and-set and busy waiting:

A lock using test-and-set

public class TASLock implements Lock {

AtomicBoolean held = 

new AtomicBoolean(false);

public void lock() {

while (held.getAndSet(true)) {

}  // await (!testAndSet());

}

public void unlock() {

held.set(false); // held = false;

}

}

• Variable held is true iff the lock is held by 
some thread

• When locking (executing lock):

– as long as held is true (someone else 
holds the lock), keep resetting it to true 
and wait

– as soon as held is false: leave the loop 
and held is set it to true 
• You hold the lock now

• When unlocking (executing unlock): set 
held to false
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A lock implementation using a single Boolean variable with test-and-test-and-set 
and busy waiting:

A lock using test-and-test-and-set

When locking (executing lock):

• spin until held is false

• then check if held is still false, and if it is 
set it to true (you hold the lock now), 
then return

• otherwise it means another thread 
“stole” the lock from you; then repeat 
the locking procedure from the 
beginning

This variant tends to perform better, since the busy waiting is local to the cached copy as 
long as no other thread changes the lock’s state (Read section 7.2 of Herlihy and Shavit book)

public class TTASLock extends TASLock {

@Override

public void lock() {

while (true) {

while(held.get()) {}

if (!held.getAndSet(true))

return;

}

}

}
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Implementing semaphores
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A (general/counting) semaphore is a data structure with interface:

interface Semaphore {

int count();   // current value of counter

void up();     // increment counter

void down();   // decrement counter

}

Several threads share the same object sem of type Semaphore:

• initially count is set to a nonnegative value C (the initial capacity)

• a call to sem.up() atomically increments count by one

• a call to sem.down(): waits until count is positive, and then atomically
decrements count by one

Semaphores: recap
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Semaphores with locks
An implementation of semaphores using locks and busy waiting:

class SemaphoreBusy implements Semaphore {
private int count;

public synchronized void up() {
count = count + 1;  

}

public void down() {
while (true) { 

synchronized (this) {
if (count > 0) { // await (count > 0);

count = count - 1; return; 

}  

}  

}  

}

public synchronized int count() {
return count; 

}

}

Executed
exclusively

Why not lock the whole method?
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To avoid blocking other threads 
to enter the method
(avoid that the first thread calling 
down is the first to get the lock!)

Does this have to be synchronized?

Yes, if count is not volatile



To avoid busy waiting, we have to rely on more powerful synchronization primitives than only 
reading and writing variables

A standard solution uses Java’s explicit scheduling of threads

Suspending and resuming threads
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Waiting and notifying only affects the threads that are locked on the same shared object
(using synchronized blocks or methods)

• calling wait() suspends the 
currently running thread

• calling notify() moves one 
(nondeterministically chosen) blocked 
thread to the ready state

• calling notifyAll() moves all 
blocked threads to the ready state



An implementation of weak semaphores using wait() and notify()

class SemaphoreWeak implements Semaphore {
private int count;

public synchronized void up() {
count = count + 1;
notify();     // wake up a waiting thread

}

public synchronized void down() throws InterruptedException {
while (count == 0)  wait();  // suspend running thread
count = count - 1;          // now count > 0

}

public synchronized int count() {
return count;    

}

}

Weak semaphores with suspend/resume

Since notify is nondeterministic
this is a weak semaphore

wait releases the object lock 

In general, wait must be called in a loop in case of spurious wakeups; 
this is not busy waiting (and it’s required by Java’s implementation) 
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(so other threads can enter the method even 
if it is marked as “synchronized”)



An implementation of strong semaphores using wait() and notifyAll()

class SemaphoreStrong implements Semaphore {

public synchronized void up() {
if (blocked.isEmpty()) count = count + 1;
else notifyAll();     // wake up all waiting threads

}

public synchronized void down() throws InterruptedException {
Thread me = Thread.currentThread();
blocked.add(me);  // enqueue me
while (count == 0 || blocked.element() != me)

wait();         // I'm enqueued when suspending
// now count > 0 and it's my turn: dequeue me and decrement
blocked.remove();  count = count - 1;   

}

private final Queue<Thread> blocked = new LinkedList<>();

private int count;

Strong semaphores with suspend/resume
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Check there are no 
suspended threads

Keeps suspending the thread 

if the count is 0 or I am not 

the first in the queue



An implementation of strong semaphores using wait() and notifyAll()

class SemaphoreStrong implements Semaphore {

public synchronized void up() {
count = count + 1;
notifyAll();     // wake up all waiting threads

}

public synchronized void down() throws InterruptedException {
Thread me = Thread.currentThread();
blocked.add(me);  // enqueue me
while (count == 0 || blocked.element() != me)

wait();         // I'm enqueued when suspending
// now count > 0 and it's my turn: dequeue me and decrement
blocked.remove();  count = count - 1;   

}

private final Queue<Thread> blocked = new LinkedList<>();

private int count;
}

Strong semaphores with suspend/resume
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Removed if (blocked.isEmpty())
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Debugging concurrent
programs is very

difficult!



General semaphores using binary semaphores
A general semaphore can be implemented using just two binary semaphores

Barz’s solution in pseudocode (with capacity> 0):

BinarySemaphore mutex = 1; // protects access to count

BinarySemaphore delay = 1; // blocks threads in down until count >0

int count = capacity;      // value of general semaphore

void up()

{  mutex.down();               // get exclusive access to count

count = count + 1;          // increment count

if (count == 1) delay.up(); // release threads blocking on down

mutex.up(); }               // release exclusive access to count

void down()

{ delay.down();                // block other threads starting down

mutex.down();                // get exclusive access to count

count = count - 1;           // decrement count

if (count > 0) delay.up();   // release threads blocking on down

mutex.up(); }                // release exclusive access to count
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class StrongSemUser implements Runnable {

private SemaphoreStrong sem = new SemaphoreString(1);

public void run()

{ while (true) {

// Non critical

sem.down(); 

// Critical  

sem.up(); 

}

}
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• Dining philosophers

• Producer-consumer

• Barriers

• Readers-writers
• Identify problems of synchronization

• What issues and problems can arise

• Patterns for introducing synchronization

Lesson's menu
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• Today we go through several classical synchronization problems and solve them using 
threads and semaphores

• If you want to learn about many other synchronization problems and their solutions
• “The little book of semaphores” by A. B. Downey: http://greenteapress.com/semaphores/

• We use pseudo-code to simplify the details of Java syntax and libraries but which can 
be turned into fully functioning code by adding boilerplate
• On the course website: can download fully working implementations of some of the problems

• Recall that we occasionally annotate classes with invariants using the pseudo-code 
keyword invariant
• Not a valid Java keyword – that is why we highlight it in a different color – but we will use it to 

help make more explicit the behavior of classes

• We also use at(i) or at(i,j) to indicate the number of threads that are at location i or 
between locations i,j. (That’s not Java either)

A gallery of synchronization problems

3

http://greenteapress.com/semaphores/


Dining philosophers
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The dining philosophers is a classic synchronization 
problem introduced by Dijkstra 

It illustrates the problem of deadlocks using a colorful 
metaphor (by Hoare)

• Five philosophers are sitting around a dinner table, 
with a fork in between each pair of adjacent 
philosophers

• Each philosopher alternates between thinking (non-
critical section) and eating (critical section)

• In order to eat, a philosopher needs to pick up the 
two forks that lie to the philopher’s left and right

• Since the forks are shared, there is a synchronization
problem between philosophers (threads)

The dining philosophers (reminder)
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Properties of a good solution:

• support an arbitrary number of philosophers

• deadlock freedom

• starvation freedom

• reasonable efficiency: eating in parallel still 
possible

Dining philosophers: the problem
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Dining philosophers’ problem: implement Table such that: 
• forks are held exclusively by one philosopher at a time 
• each philosopher only accesses adjacent forks

interface Table {

// philosopher k picks up forks

void getForks(int k);

// philosopher k releases forks

void putForks(int k);

}



Each philosopher continuously alternate between thinking and eating; the table 
must guarantee proper synchronization when eating

The philosophers
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For convenience, we introduce a consistent numbering scheme for forks and 
philosophers, in a way that it is easy to refer to the left or right fork of each 
philosopher.

Left and right

// in classes implementing Table:

// fork to the left of philosopher k
public int left(int k) {
return k;

}

// fork to the right of philosopher k
public int right(int k) {
// N is the number of philosophers
return (k + 1) % N;

}

2

0

0

1

3

4

2 3

1

4
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Dining philosophers with locks and semaphores

• We use semaphores to enforce mutual exclusion when philosophers access the 
forks

First solution needs only locks:

Lock[] forks = new Lock[N]; // array of locks

• One lock per fork
• forks[i].lock() to pick up fork i:

forks[i] is held if fork i is held

• forks[i].unlock() to put down fork i:
forks[i] is available if fork i is available
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In the first attempt, every philosopher picks up the left fork and then the right
fork:

Dining philosophers with semaphores: first attempt

public class DeadTable implements Table {
Lock[] forks = new Lock[N];

public void getForks(int k) {

// pick up left fork

forks[left(k)].lock();

// pick up right fork

forks[right(k)].lock();

}

public void putForks(int k) {

// put down left fork

forks[left(k)].unlock();

// put down right fork

forks[right(k)].unlock();

}

All forks initially avaliable
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A deadlock may occur because of circular waiting:

Dining philosophers with semaphores: first attempt

public class DeadTable implements Table 

{ Lock[] forks = new Lock[N];

public void getForks(int k) { 

// pick up left fork 

forks[left(k)].lock(); 

// pick up right fork 

forks[right(k)].lock(); 

} 

if all philosophers hold 
left fork: deadlock!
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Having one philosopher pick up forks in a different order than the others is 
sufficient to break the symmetry, and thus to avoid deadlock

Dining philosophers solution 1: breaking the symmetry

public void getForks(int k) { 

if (k == N) { // right before left

forks[right(k)].lock(); 

forks[left(k)].lock();

} else {      // left before right

forks[left(k)].lock(); 

forks[right(k)].lock();

} 

} 

// putForks as in DeadTable

12

public class AsymetricTable implements Table {

Lock[] forks = new Lock[N];
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Breaking the symmetry is a general strategy to avoid deadlock when acquiring 
multiple shared resources:

• assign a total order between the shared resources 𝑅0 < 𝑅1 < ⋯ < 𝑅𝑀
• a thread can try to obtain resource 𝑅𝑖, with 𝑖 > 𝑗, only after it has 

successfully obtained resource 𝑅𝑗

Recall the Coffman conditions from Lecture 2…:

Breaking symmetry to avoid deadlock

13

1. mutual exclusion: exclusive access to the shared resources

2. hold and wait: request one resource while holding another

3. no preemption: resources cannot forcibly be released

4. circular wait: threads form a circular chain, each waiting for a resource the next is holding

Circular wait is a necessary condition for a deadlock to occur



Limiting the number of philosophers active at the table to M < N ensures that 
there are enough resources for everyone at the table, thus avoiding deadlock

Dining philosophers solution 2: bounding resources

public void getForks(int k) {

// get a seat

seats.down();

// pick up left fork

forks[left(k)].lock();

// pick up right fork

forks[right(k)].lock();

}

public void putForks(int k) {

// put down left fork

forks[left(k)].unlock();

// put down right fork

forks[right(k)].unlock();

// leave seat

seats.up();

}

14

public class SeatingTable implements Table {

Lock[] forks = new Lock[N];

Semaphore seats = new Semaphore(M); // # available seats



The two solutions to the dining philosophers problem also guarantee freedom from 
starvation, under the assumption that locks/semaphores (and scheduling) are fair

In the asymmetric solution (AsymmetricTable):
• if a philosopher 𝑃 waits for a fork 𝑘, 𝑃 gets the fork as soon as 𝑃’s neighbor holding fork 
𝑘 releases it,

• 𝑃’s neighbor eventually releases fork 𝑘 because there are no deadlocks.

In the bounded-resource solution (SeatingTable):
• at most M philosophers are active at the table,
• the other N-M philosophers are waiting on seats.down(),
• the first of the M philosophers that finishes eating releases a seat,
• the philosopher 𝑃 that has been waiting on seats.down() proceeds,
• similarly to the asymmetric solution, 𝑃 also eventually gets the forks.

Starvation-free philosophers
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Producer-consumer

16



Producers and consumer exchange items through a shared buffer:

• producers asynchronously produce items and store them in buffer

• consumers asynchronously consume items after removing them from buffer

Producer-consumer: overview

consumer

17

producer

buffer



interface Buffer<T> {

// add item to buffer; block if full

void put(T item);

// remove item from buffer; block if empty

T get();

// number of items in buffer

int count();

}

Producer-consumer: The problem
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Producer-consumer problem: implement Buffer such that: 

• producers and consumers access the buffer in mutual exclusion 

• consumers block when the buffer is empty

• producers block when the buffer is full (bounded buffer variant)



Other properties that a good solution should have:

• support an arbitrary number of producers and consumers

• deadlock freedom

• starvation freedom

Producer-consumer: Desired properties
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Producer-consumer problem: implement Buffer such that: 

• producers and consumers access the buffer in mutual exclusion 

• consumers block when the buffer is empty

• producers block when the buffer is full (bounded buffer variant)



Producers and consumers continuously and asynchronously access the buffer, 
which must guarantee proper synchronization

Producers and consumers

20



public class UnboundedBuffer<T> implements Buffer<T> {

Lock lock = new Lock(); // for exclusive access to buffer

Semaphore nItems = new Semaphore(0); // number of items in buffer

Collection storage = ...; // any collection (list, set, ...)

invariant { storage.count() == nItems.count() + at(5,15-17); }

}

Unbounded shared buffer

public void put(T item) {

lock.lock(); // lock

// store item

storage.add(item);

nItems.up();   // update nItems

lock.unlock(); // release

}

public int count() {

return nItems.count(); // locking here?

}

public T get() {

// wait until nItems > 0

nItems.down();

lock.lock(); // lock

// retrieve item

T item =storage.remove();

lock.unlock(); // release

return item;

}
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Signals to 
consumers waiting 
in get that they 
can proceed

Solution based on 
one lock and one 
semaphore



Buffer: method put

Executing up after unlock:

• No effects on other threads executing put: 
they only wait for lock

• If a thread is waiting for nItems > 0 in 
get: it does not have to wait again for lock
just after it has been signaled to continue

• If a thread is waiting for the lock in get: it 
may return with the buffer in a (temporarily) 
inconsistent state (broken invariant, but 
benign because temporary)

22

public void put(T item) {

lock.lock(); // lock

// store item

storage.add(item);

nItems.up();   // update nItems

lock.unlock(); // release

}

public int count() {

return nItems.count(); // locking here?

}

Can we execute up after unlock? 



public void put(T item) {

lock.lock();

storage.add(item);

lock.unlock();

nItems.up();

}

public T get() {

nItems.down();

lock.lock();

T item =storage.remove();

lock.unlock();

return item;

}

Executing up after unlock
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OLD: invariant { storage.count() 

== nItems.count() + at(5,15-17); }

Different numbers than 
original program

invariant { 

storage.count() == 

nItems.count() + at(4,9-10); 

}

Old invariant needs rewriting

# elements in buffer

Value of nItem
(semaphore counter)

# threads in 
these locations

Temporary  breaking 
of the invariant



public class UnboundedBuffer<T> implements Buffer<T> {

Lock lock = new Lock(); // for exclusive access to buffer

Semaphore nItems = new Semaphore(0); // number of items in buffer

Collection storage = ...; // any collection (list, set, ...)

invariant { storage.count() == nItems.count() + at(5,15-17); }

}

Unbounded shared buffer

public void put(T item) {

lock.lock(); // lock

// store item

storage.add(item);

nItems.up();   // update nItems

lock.unlock(); // release

}

public int count() {

return nItems.count(); // locking here?

}

public T get() {

// wait until nItems > 0

nItems.down();

lock.lock(); // lock

// retrieve item

T item =storage.remove();

lock.unlock(); // release

return item;

}
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public T get() {

// wait until nItems > 0

nItems.down();

lock.lock(); // lock

// retrieve item

T item =storage.remove();

lock.unlock(); // release

return item;

}
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Can we execute down after lock? 
What happens if another thread gets the lock 
just after the current threads has 
decremented the semaphore nItems?

• If the other thread is a producer, it doesn’t 
matter: as soon as get resumes execution, 
there will be one element in storage to 
remove

• If the other thread is a consumer, it must 
have synchronized with the current thread 
on nItems.down(), and the order of 
removal of elements from the buffer 
doesn’t matter

Buffer: method get



public T get() {

// wait until nItems > 0

lock.lock(); // lock

nItems.down();

// retrieve item

T item =storage.remove();

lock.unlock(); // release

return item;

}
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Executing down after lock:

• If the buffer is empty when locking, 
there is a deadlock!
• Will not succeed executing down()

since the buffer is empty: it blocks!

Buffer: method get



Bounded shared buffer

public class BoundedBuffer<T> implements Buffer<T> {

Lock lock = new Lock(); // for exclusive access to buffer

Semaphore nItems = new Semaphore(0); // # items in buffer

Semaphore nFree = new Semaphore(N);  // # free slots in buffer

Collection storage = ...; // any collection (list, set, ...)

invariant { storage.count() == nItems.count() + 

+ at(6,13-15) == N - nFree.count() - at(4-6,16) ; }

public void put(T item) {

// wait until nFree > 0

nFree.down();

lock.lock(); // lock

// store item

storage.add(item);

nItems.up();   // update nItems

lock.unlock(); // release

}

public T get() {

// wait until nItems > 0

nItems.down();

lock.lock(); // lock

// retrieve item

T item = storage.remove();

nFree.up(); // update nFree

lock.unlock(); // release

return item;

}

Size of buffer

May deadlock
if swapped

May deadlock
if swapped

OK to swap 

OK to swap 
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Two semaphores



// wait until there is space in the buffer

while (!(nItems.count() < N)) {};

// the buffer may be full again when locking!

lock.lock(); // lock

// store item

storage.add(item);

nItems.up();   // update nItems

lock.unlock(); // release

}

Waiting on multiple conditions?
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The operations offered by semaphores do not support waiting on multiple 
conditions (not empty and not full in our case) using only one semaphore

• Busy-waiting on the semaphore will not work:



Barriers

30



Barriers (also called rendezvous)

A solution to the barrier synchronization problem for 2 threads with binary semaphores

31

A barrier is a form of synchronization where there is a point (the 
barrier) in a program’s execution that all threads in a group have 

to reach before any of them is allowed to continue

Capacity 0 forces up
before first down

down waits until the other
tread has reaches the barrierup done unconditionally



Barriers: variant 1

The solution still works if t0 performs down before up – or, symmetrically, if t1

does the same

This is, however, a bit less efficient: the last thread to reach the barrier has to stop 
and yield to the other (one more context switch)
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Barriers: variant 2

The solution deadlocks if both t0 and t1 perform down before up

There is a circular waiting, because no thread has a chance to signal to the other that it 
has reached the barrier
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Keeping track of 𝑛 threads reaching the barrier:
• nDone: number of threads that have reached the barrier

• lock: to update nDone atomically

• open: to release the waiting threads (“opening the barrier”)

Barriers with n threads (single use)

Total number of 
expected threads 

34

Can we switch 
these?



Barriers with n threads (single use): variant

Can we open the barrier after unlock?

• In general, reading a shared variable outside a lock may give an inconsistent value
• In this case, however, only after the last thread has arrived can any thread read 
nDone == n, because nDone is only incremented

Such pairs of wait/signal are called turnstiles
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Reusable barriers

interface Barrier {

// block until expect() threads have reached barrier

void wait();

// number of threads expected at the barrier

int expect();

}

Returned from

36

Reusable barrier: implement Barrier such that: 

• a thread blocks on wait() until all threads have reached the barrier 
• after expect() threads have executed wait(), the barrier is closed again 



Threads continuously approach the barrier, and all synchronize their access at 
the barrier

Threads at a reusable barrier
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public class NonBarrier1 implements Barrier {
int nDone = 0; // number of done threads
Semaphore open = new Semaphore(0);
final int n;

// initialize barrier for `n' threads
NonBarrier1(int n) {
this.n = n;

}

// number of threads expected at the barrier
int expect() {
return n;

}

public void wait() {
synchronized(this) {
nDone += 1;       // I'm done

}
if (nDone == n)
open.up();        // I'm the last arrived: All can go!

open.down()         // proceed when possible
open.up()           // let the next one go
synchronized(this) {
nDone -= 1;       // I've gone through

}
if (nDone == 0) 
open.down();      // I'm the last through: Close barrier!

}                             
}

Reusable barriers: first attempt

What if n threads “wait” here until nDone == n?

More than one thread may open the 
barrier (the first open.up()): this was 
not a problem in the non-reusable 
version, but now some threads may be 
executing wait again before the barrier 
is closed again!  

What if n threads “wait” here until nDone == 0?

More than one thread may try to 
close the barrier (last open.down()):

Deadlock! 
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Reusable barriers: second attempt

public class NonBarrier2 implements Barrier {
int nDone = 0; // number of done threads
Semaphore open = new Semaphore(0);
final int n;

// initialize barrier for `n' threads
NonBarrier2(int n) {

this.n = n;
}

// number of threads expected at the barrier
int expect() {

return n;
}

public void wait() {
synchronized(this) {

nDone += 1;                    // I'm done
if (nDone == n) open.up();     // open barrier

}   
open.down()                      // proceed when possible
open.up()                        // let the next one go
synchronized(this) {

nDone -= 1;                    // I've gone through
if (nDone == 0) open.down();   // close barrier

}
}

}

Is multiple signalling possible?

This is not prevented by strong 
semaphores: it occurs because 
the last thread through leaves 
the gate open (calls open.up())
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A fast thread may race through the 
whole method, and re-enter it before 
the barrier has been closed, thus getting 
ahead of the slower threads (still in the 
previous iteration of the barrier)

No!

Anything else going wrong?



(a) All 𝑛 threads are at 8, with open.count() 

== 1

(b) The fastest thread 𝑡𝑓 completes wait and re-

enters it with nDone == n - 1

(c) Thread 𝑡𝑓 reaches 6 with nDone == n, which 

it can execute because open.count() > 0

(d) Thread 𝑡𝑓 reaches 8 again, but it is one 

iteration ahead of all other threads!

public class NonBarrier2 {

public void wait() {

synchronized(this)

{nDone += 1;

if (nDone == n) open.up();}

open.down()

open.up()

synchronized(this)

{nDone -= 1;

if (nDone == 0) open.down();}

}

1
2
3
4
5
6
7
8
9

10
11

Reusable barriers: second attempt
(cont’d)
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Reusable barriers: Correct solution

Photo by Photnart: Heidelberg Lock, Germany
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Reusable barriers: Correct solution

public class SemaphoreBarrier implements Barrier {

int nDone = 0; // number of done threads

Semaphore gate1 = new Semaphore(0);// first gate

Semaphore gate2 = new Semaphore(1);// second gate

final int n;

// initialize barrier for `n' threads

SemaphoreBarrier(int n) {

this.n = n;

}

// number of threads expected at the barrier

int expect() {

return n;

}

public void wait() { approach(); leave(); }

void approach() {

synchronized (this) {

nDone += 1;       // arrived

if (nDone == n) { // if last in:

gate1.up();     // open gate1

gate2.down();   // close gate2

} 

}

gate1.down(); // pass gate1

gate1.up();   // let next pass

}

void leave() {

synchronized (this) {

nDone -= 1;       // going out

if (nDone == 0) { // if last out:

gate2.up();     // open gate2

gate1.down();   // close gate1

} 

}

gate2.down(); // pass gate2

gate2.up();   // let next pass

}
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gate1 closed

gate2 open



Reusable barriers: improved solution

If the semaphores support adding 𝑛 to the counter at once, we can write a 
barrier with fewer semaphore accesses

public class NSemaphoreBarrier extends SemaphoreBarrier {

Semaphore gate1 = new Semaphore(0);  // first gate

Semaphore gate2 = new Semaphore(0);  // second gate

Both gates initially closed

void approach() {
synchronized (this) {
nDone += 1;
if (nDone == n)
gate1.up(n);

}
gate1.down(); // pass gate1
// last thread here closes gate1

}

void leave() {
synchronized (this) {
nDone -= 1;
if (nDone == 0)
gate2.up(n);

}
gate2.down();
// last thread here closes gate2

}

Java semaphores support adding 𝑛 to counter (release(n))

Anyway, up(n) need not be uninterruptible, so we can also implement it with a loop

Open gate1 
for n threads

Open gate2 
for n threads
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Readers-writers
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Readers and writers concurrently access shared data:

• readers may execute concurrently with other readers, but need to exclude 
writers

• writers need to exclude both readers and other writers

Readers-writers: overview

48

The problem captures situations common in 
databases, filesystems, and other situations 
where accesses to shared data may be 
inconsistent



interface Board<T> {

// write message `msg' to board

void write(T msg);

// read current message on board

T read();

}

Readers-writers: The problem

Other properties that a good solution should have:
• support an arbitrary number of readers and writers
• no starvation of readers or writers

50

Readers-writers problem: implement Board data structure such that:

• multiple reader can operate concurrently 

• each writer has exclusive access 

Invariant: #WRITERS = 0 ∨ (#WRITERS = 1 ∧ #READERS = 0)



Readers and writers continuously and asynchronously try to access the board, 
which must guarantee proper synchronization

Readers and writers
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public class SyncBoard<T> implements Board<T> {

int nReaders = 0; // # readers on board

Lock lock = new Lock(); // for exclusive access to nReaders

Semaphore empty = new Semaphore(1); // 1 iff no active threads

T message; // current message

Readers-writers board: write

public void write(T msg) {

// get exclusive access

empty.down();

message = msg; // write (cs)

// release board

empty.up();

}

invariant { nReaders == 0 ⟸ empty.count() == 1 }

public T read() {

lock.lock();       // lock to update nReaders

if (nReaders == 0) // if first reader,

empty.down();   //           set not empty

nReaders += 1;     // update active readers

lock.unlock();     // release lock to nReaders

T msg = message;   // read (critical section)

lock.lock();       // lock to update nReaders

nReaders -= 1;     // update active readers

if (nReaders == 0) // if last reader

empty.up();     //            set empty

lock.unlock();     // release lock to nReaders

return msg;

}
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count() becomes 1 after executing empty.up()
and it happens that nReaders = 0

Solution based on 
one lock and one 
semaphore



We can check the following properties of the solution:
• empty is a binary semaphore

• when a writer is running, no reader can run

• one reader waiting for a writer to finish also locks out other readers

• a reader signals “empty” only when it is the last reader to leave the board

• deadlock is not possible (no circular waiting)

However, writers can starve: as long as readers come and go with at least one 
reader always active, writers are shut out of the board.

Properties of the readers-writers solution
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Readers-writers board without starvation
public class FairBoard<T> extends SyncBoard<T> {

// held by the next thread to go

Semaphore baton = new Semaphore(1, true); // fair binary sem.

public T read() {

// wait for my turn

baton.down();

// release a waiting thread

baton.up();

// read() as in SyncBoard

return super.read();

}

public void write(T msg) {

// wait for my turn

baton.down();

// write() as in SyncBoard

super.write(msg);

// release a waiting thread

baton.up();

}
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invariant { nReaders == 0⟺ empty.count() == 1 }

invariant breaks temporary here when 
nReaders = 0 ; just before calling empty.up()

One additional semaphore

If and only if



Readers-writers board without starvation
public class FairBoard<T> extends SyncBoard<T> {

// held by the next thread to go

Semaphore baton = new Semaphore(1, true); // fair binary sem.

public T read() {

// wait for my turn

baton.down();

// release a waiting thread

baton.up();

// read() as in SyncBoard

return super.read();

}

public void write(T msg) {

// wait for my turn

baton.down();

// write() as in SyncBoard

super.write(msg);

// release a waiting thread

baton.up();

}

Now writers do not starve: 

• Suppose a writer is waiting that all active readers 
leave: it waits on empty.down() while holding the 
baton

• If new readers arrive, they are shut out waiting for 
the baton

• As soon as the active readers terminate and leave, 
the writer is signaled empty, and thus it gets 
exclusive access to the board
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Readers-writers with priorities

The starvation free solution we have presented gives all threads the same 
priority: assuming a fair scheduler, writers and readers take turn as they try to 
access the board

In some applications it might be preferable to enforce difference priorities:

• 𝑅 = 𝑊: readers and writers have the same priority (as in FairBoard)

• 𝑅 > 𝑊: readers have higher priority than writers (as in SyncBoard)

• 𝑊 > 𝑅: writers have higher priority than readers
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Semaphores provide a powerful, concise mechanism for synchronization and 
mutual exclusion 

Unfortunately, they have several shortcomings:

• they are intrinsically global and unstructured: it is difficult to understand 
their behavior by looking at a single piece of code

• they are prone to deadlocks or other incorrect behavior: it is easy to forget 
to add a single, crucial call to up or down

• they do not support well different conditions

• In summary semaphores are a low-level synchronization primitive

• We will raise the level of abstraction

Beyond semaphores
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Monitors
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A monitor is an object instantiating a monitor class that encapsulates
synchronization mechanisms:

• attributes are shared variables, which all threads running on the monitor 
can see and modify

• methods define critical sections, with the built-in guarantee that at most 
one thread is active on a monitor at any time

Monitors

Monitors provide a structured synchronization mechanism built on top of object-
oriented constructs – especially the notions of class, object, and encapsulation

In a monitor class:

• attributes are private

• methods execute in mutual exclusion
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Threads trying to access a monitor queue for entry; as soon as the active thread leaves 
the monitor the next thread in the entry queue gets exclusive access to the monitor

Monitors: entry queue

u

v
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We declare monitor classes by adding the pseudo-code keyword  to monitor

regular Java classes

Note that monitor is not a valid Java keyword – that is why we highlight it in a 
different color – but we will use it to simplify the presentation of monitors

• Turning a pseudo-code monitor class into a proper Java class is straightforward:

• mark all attributes as private

• add locking to all public methods

Details on how to implement monitors in Java are presented later

Reminder: We also annotate monitor classes with invariants using the pseudo-
code keyword invariant: not a valid Java keyword

Monitors in pseudo-code
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A shared counter that is free from race conditions:

The implementation of monitors guarantees that multiple threads executing 
increment and decrement run in mutual exclusion

Counter monitor

monitor class Counter {

int count = 0; // attribute, implicitly private

public void increment() { // method, implicitly atomic

count = count + 1;

}

public void decrement() { // method, implicitly atomic

count = count - 1;

}

}
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Mutual exclusion for n threads accessing their critical sections is straightforward to 

achieve using monitors: every monitor method executes uninterruptibly because at 

most one thread is running on a monitor at any time

• A proper monitor implementation also guarantees starvation freedom

Mutual exclusion for n threads

monitor class CriticalSection {

T1 a1; T2 a2; ... // shared data

public void critical1() {

// t$_1$'s critical section

}

// ...

public void criticaln() {

// t$_n$'s critical section

}

}
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For synchronization patterns more complex than mutual exclusion, monitors provide 
condition variables

A condition variable is an instance of a class with interface:

A monitor class can declare condition variables as attributes (private, thus only callable 
by methods of the monitor)

Every condition variable c includes a FIFO queue blocked:
• c.wait() blocks the running thread, appends it to blocked, and releases the lock on the monitor
• c.signal() removes one thread from blocked (if it’s not empty) and unblocks it
• c.isEmpty() returns true iff blocked is empty

Condition variables

interface Condition {

void wait();       // block until signal

void signal();     // signal to unblock

boolean isEmpty(); // is no thread waiting on this condition?

}
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Every condition variable c includes a FIFO queue blocked:
• c.wait() blocks the running thread, appends it to blocked, and releases the lock on 

the monitor

• c.signal() removes one thread from blocked (if it’s not empty) and unblocks it

Condition variables

u

v

t
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Producer-consumer problem: recap

interface Buffer<T> {

// add item to buffer; block if full

void put(T item);

// remove item from buffer; block if empty

T get();

// number of items in buffer

int count();

}

Producer-consumer problem: implement Buffer such that: 

• producers and consumers access the buffer in mutual exclusion 

• consumers block when the buffer is empty

• producers block when the buffer is full (bounded buffer variant)
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An implementation of producer-consumer with an unbounded buffer using 
monitors. 

monitor class MonitorBuffer<T> implements Buffer<T> {

Collection storage = ...; // any collection (list, set, ...)

Condition notEmpty = new Condition(); // signal when not empty

public void put(T item) {

storage.add(item)        // store item

notEmpty.signal();       // signal buffer not empty

}

public T get() {

if (storage.count() == 0)

notEmpty.wait();       // wait until buffer not empty

return storage.remove(); // retrieve item

}

invariant { #storage.add == #notEmpty.signal }

}

Producer-consumer with monitors: unbounded buffer

No effect if there are no waiting consumers

Get in queue waiting for an item

16

Number of added 
elements to buffer 
equals number of 
signaling



Producer-consumer with a bounded buffer (capacity is the maximum size) 
uses two condition variables

monitor class BoundedMonitorBuffer<T> extends MonitorBuffer<T> {

Condition notFull = new Condition();  // signal when not full

public void put(T item) {

if (storage.count() == capacity)

notFull.wait();       // wait until buffer not full

super.put(item);        // do as in MonitorBuffer.put(item)

}

public T get() {

T item = super.get();   // do as in MonitorBuffer.get()

notFull.signal()        // signal buffer not full

return item;

}

}

Producer-consumer with monitors: bounded buffer
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Signaling disciplines

19



When a thread s calls signal() on a condition variable, it is executing inside the 
monitor 

Since no more than one thread may be active on a monitor at any time, the 
thread u unblocked by s cannot enter the monitor immediately

Signaling disciplines

Two main choices of signaling discipline:

signal and continue: s continues executing; 
u is moved to the entry queue of the monitor

signal and wait: s is moved to the entry queue of the monitor
u resumes executing (it silently gets the monitor’s lock)

The signaling discipline determines what happens to a signaling thread s
after it unblocks another thread u by signaling
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Under the signal and continue discipline:

• the unblocked thread u is moved to the monitor’s entry queue

• the signaling thread s continues executing

Signal and continue

s u

executing

executing

t
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Under the signal and wait discipline:

• the signaling thread s is moved to the monitor’s entry queue

• the unblocked thread u resumes executing

Signal and wait

s

t s

u
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Under the signal and wait discipline, it is guaranteed that the signaled condition holds when 
the unblocked thread  resumes execution – because it immediately follows the signal

In contrast, under the signal and continue discipline, the signaled condition may no longer 
hold when the unblocked thread u resumes execution – because the signaling thread, or 
other threads, may change the state while continuing

• Correspondingly, there are different patterns for waiting on a condition variable signaled as 
if (!buffer.isEmpty()) isNotEmpty.signal():

Condition checking under different signaling disciplines

Signal and wait:

// check once

if (buffer.isEmpty())

isNotEmpty.wait();

// here !buffer.isEmpty()

Signal and continue:

// recheck after waiting

while (buffer.isEmpty())

isNotEmpty.wait();

// here !buffer.isEmpty()
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The signal and continue discipline does not guarantee that a thread resuming 
execution after a wait will find that the condition it has been waiting for is true: the 
signal is only a “hint”

• In spite of this shortcoming, most (if not all) implementations of monitors follow the 
signal and continue discipline – mainly because it is simpler to implement

Monitors following signal and continue typically also offer a condition-variable 
method:

void signalAll(); // unblock all threads blocked on this condition

This tends to be inefficient, because many threads will wake up only to discover the 
condition they have been waiting for is still not true, but works correctly with the 
waiting pattern using a loop (which is still not as inefficient as busy waiting!)

Signal all
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Two variants of signal and continue and signal and wait are also sometimes used:

urgent signal and continue: s continues executing; 

u is moved to the front of the entry queue of the monitor

signal and urgent wait: s is moved to the front of the entry queue of the monitor; 
u resumes executing

To be precise: 

• An urgent thread gets ahead of “regular” threads, but may have to queue behind other 
urgent threads that are waiting for entry

• This is implemented by adding a urgentEntry queue to the monitor, which has priority 
over the “regular” entry queue

More signaling disciplines

The signaling discipline determines what happens to a signaling thread s
after it unblocks another thread u by signaling
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A signaling discipline defines what happens to three sets of threads:

𝑆: signaling threads

𝑈: unblocked threads

𝐸: threads in the entry queue

Signaling disciplines: Summary

Other combinations are also possible, but most of them do not make much sense in practice

Write 𝑋 > 𝑌 to denote that threads in set 𝑋 have priority over threads in set 𝑌

• Then, different signaling policies can be expressed as:
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Implementing monitors
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We give an overview of how to implement monitors using semaphores

• This also rigorously defines the semantics of monitors:
• Every monitor class uses a strong semaphore entry to model the entry queue

• Every monitor method acquires entry upon entry and releases it upon exit

Monitors from semaphores

monitor class Counter {

int x = 0;

public void inc() {

x = x + 1;

}

}

class Counter {

// strong/fair semaphore, initially 1

Semaphore entry = new Semaphore(1, true);

private int x = 0;

public void inc() {

entry.down();

x = x + 1;

entry.up();

}

}
30



abstract class WaitVariable implements Condition {

Queue blocked = new Queue<Thread>(); // queue of blocked threads

// block until signal

public void wait() {

entry.up();              // release monitor lock

blocked.add(running);    // enqueue running thread

running.state = BLOCKED; // set state as blocked

}

// is no thread waiting?

public boolean isEmpty() { return blocked.isEmpty(); }

}

Condition variables: Waiting

Reference to running thread

Every condition variable uses a queue blocked of threads waiting on the condition
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Condition variables: Signal and continue

class SCVariable extends WaitVariable {

// signal to unblock

public void signal() {

if (!blocked.isEmpty()) {

Thread u = blocked.remove();  // u is the unblocked thread

entry.blocked.add(u);         // u gets moved to entry queue

// the running, signaling thread continues executing

}

}

}

32

The thread signaling continues its execution



class SWVariable extends WaitVariable {

// signal to unblock

public void signal() {

if (!blocked.isEmpty()) {

entry.blocked.add(running);  // the running, signaling thread

// gets moved to entry queue

Thread u = blocked.remove(); // u is the unblocked thread

u.state = READY;             // set state as ready to run

running.state = BLOCKED;     // set state as blocked

// the unblocked, signaled thread resumes executing

}

}

}
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monitor class StrongSemaphore implements Semaphore {

int count;

Condition isPositive = new Condition(); // is count > 0?

public void down() {

if (count > 0)

count = count - 1;

else isPositive.wait();

}

public void up() {

if (isPositive.isEmpty())

count = count + 1;

else isPositive.signal();

}

}

Semaphores from monitors

Each signal matches a wait; 
thus no decrement or increment
in the else branches
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Can we 
implement 

semaphores using 
monitors?



The result that monitors can implement semaphores (and vice versa) is 
important theoretically: no expressiveness loss

However, implementing a lower-level mechanism (semaphores) using a higher-
level one (monitors) is impractical because it is likely to be inefficient

• If you have monitors use it (do not implement semaphores)

As usual, if you need monitors or semaphores use the efficient library 
implementations available in your programming language of choice 

• Do not reinvent the wheel!

Semaphores from monitors: A theoretical result
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Monitors in Java
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Java does not include full-fledged monitor classes, but it offers support to 
implement monitor classes following some programming patterns

There are two sets of monitor-like primitives in Java:

• language based: has been included since early versions of the Java language

• library based: has been included since Java 1.5

We have seen bits and pieces of both already, since they feature in simpler 
synchronization primitives as well

Two kinds of Java monitors
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class JM {

private int x, y;

public synchronized void p()

{ /* ... */ }

public synchronized int q()

{ /* ... */ }

}

A class JM can implement a monitor class M as follows:

• every attribute in JM is private

• every method in JM is synchronized – which guarantees it executes atomically

Language-based monitors

monitor class M {

int x, y;

public void p()

{ /* ... */ }

public int q()

{ /* ... */ }

}

This mechanism does not guarantee fairness of the entry queue associated with the monitor: 
entry may behave like a set
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Each language-based monitor implicitly include a single condition variable with signal 
and continue discipline:

• calling wait() blocks the running thread, waiting for a signal

• calling notify() unblocks any one thread waiting in the monitor

• calling notifyAll() unblocks all the threads waiting in the monitor

Language-based condition variables

monitor class M {

int x; Condition isPos;

public void p()

{ while (x < 0)

isPos.wait(); }

public int q()

{ if (x > 0)

isPos.signal(); }

}

class JM {

private int x;

public synchronized void p()

{ while (x < 0)

wait(); }

public synchronized int q()

{ if (x > 0)

notify(); }

}

It does not guarantee fairness of the blocked threads queue: blocked may behave like a set
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Calls to wait() always must be inside a loop checking a condition

• There are multiple reasons to do this:

• Under the signal and continue discipline, the signaled condition may be no 
longer true when an unblocked thread can run

• Since the blocked queue is not fair, the signaled condition may be “stolen” 
by a thread that has been waiting for less time

• Since there is a single implicit condition variable, the signal may represent a 
condition other than the one the unblocked thread is waiting for

• In Java (and other languages), spurious wakeups are possible: a waiting 
thread may be unblocked even if no thread signaled.

How to wait in a language-based monitor
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A class LM can implement a monitor class M using explicit locks:
• add a private monitor attribute – a fair lock

• every method in CM starts by locking monitor and ends by unlocking monitor – which guarantees 
it executes atomically

Library-based monitors

monitor class M 

{

int x, y;

public void p()

{ /* ... */ }

}

class LM {

private final Lock monitor = new ReentrantLock(true); // fair lock

private int x, y;

public void p()

{ 

monitor.lock();

/* ... */

monitor.unlock(); 

}

}

This mechanism guarantees fairness of the entry queue associated with the monitor: blocked
behaves like a queue
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Condition variables with signal and continue discipline can be generated by a 
monitor’s lock:

Library-based condition variables

monitor class M {

Condition isXPos

= new Condition();

Condition isYPos

= new Condition();

int x, y;

// ...

}

class JM {

private final Lock monitor

= new ReentrantLock(true);

private final Condition isXPos

= monitor.newCondition();

private final Condition isYPos

= monitor.newCondition();

private int x, y;

// ...

}
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Each library-based condition variable c has signal and continue discipline:

• calling c.await() blocks the running thread, waiting for a signal

• calling c.signal() unblocks any one thread waiting on c

• calling c.signalAll() unblocks all the threads waiting on c

• When signalAll() is called, the ordering of lock reacquisition is also fair 
(same order as in blocked) – provided the lock itself is fair

• These methods must be called while holding the lock used to generate the 
condition variable; otherwise, an IllegalMonitorStateException is thrown

This mechanism guarantees fairness of the queue of blocked threads associated 
with the condition variable: blocked behaves like a queue

Library-based condition variables (cont'd)
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Calls to await() always must be inside a loop checking a condition 

There are multiple reasons to do this (compare to the case of language-based 
monitors):

• Under the signal and continue discipline, the signaled condition may not be
longer true when an unblocked thread can run

• In Java (and other languages), spurious wakeups are possible: a waiting 
thread may be unblocked even if no thread signaled

How to wait in a library-based monitor
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Waiting operations (in monitors as well as in semaphores) may be interrupted
by some low-level code that calls a thread’s interrupt() method

• This is apparent in the signature of the waiting methods, which typically may 
throw an object of type InterruptedException: interrupting a waiting 
thread wakes up the thread, which has to handle the exception

• We normally ignore the case of interrupted threads, since it belongs to lower-
level programming
• When calling waiting primitives, you typically propagate the exception to the main 

method (or simply catch and ignore it)

Threads, interrupted
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It is important that programs ensure that an interrupted thread still leaves the 
system in a consistent state by releasing all locks it holds

• In language-based monitors, an interrupted thread in a synchronized
method automatically releases the monitor’s lock

• In library-based monitors, use a finally block to release the monitor’s 
lock in case of exception:

class LM {
private final Lock monitor = new ReentrantLock(true);

public void p() {
monitor.lock();
try { /* ... */ }
finally { monitor.unlock(); }

}
}

Threads, interrupted (cont'd)
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Monitors: dos and don’ts
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What happens if a method in monitor M calls a method n in monitor N (with condition 
variable cN)? Different rules are possible:

1. Prohibit nested calls
2. Release lock on M before acquiring lock on N
3. Hold lock on M while also locking N

3.1 When waiting on cN release both locks on N and on M
3.2 When waiting on cN release only lock on N

• Rules 3 are prone to deadlock – especially rule 3.2. – because deadlocks often occur 
when trying to acquire multiple locks

• Java monitors (both language- and library-based) follow the deadlock-prone rule 3.2
• Rule of thumb: avoid nested monitor calls as much as possible
• Note that if N is the same object as M, nested calls are not a problem (the implicit 

locks are reentrant)

Nested monitor calls
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• Monitors provide a structured approach to concurrent programming, which 
builds atop the familiar notions of objects and encapsulation

• This raises the level of abstraction of concurrent programming compared to 
semaphores.

• Monitors introduce separation of concerns when programming concurrently:

• mutual exclusion is implicit in the use of monitors,

• condition variables provide a clear means of synchronization.

Monitors: Pros

50



• Monitors generally have a larger performance overhead than semaphores
• Performance must be traded against error proneness

• The different signaling disciplines are a source of confusion, which tarnishes 
the clarity of the monitor abstraction. In particular, signal and continue is both 
less intuitive (because a condition can change before a waiting thread has a 
chance to run on the monitor) and the most commonly implemented discipline

• For complex synchronization patterns, nested monitor calls are another source 
of complications

Monitors: Cons
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• What is Erlang?

• Types

• Expressions and patterns

• Function definitions

• Recursion

• Impure and higher-order functions

Today's menu
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Don't forget
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(http://learnyousomeerlang.com/)
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What is Erlang?
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Erlang combines a functional language with message-passing features:

• The functional part is sequential, and is used to define the behavior of processes

• The message-passing part is highly concurrent: it implements the actor model, where 
actors are Erlang processes

This lecture covers the functional/sequential part of Erlang

What is Erlang?
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Erlang: A minimal history

6

1973 Hewitt and others develop the actor model – a formal 
model of concurrent computation

1985 Agha further refines the actor model

Mid 1980s Armstrong and others at Ericsson prototype the first 
version of Erlang (based on the actor model)

Late 1980s Erlang’s implementation becomes efficient; Erlang code 
is used in production at Ericsson

1998 Ericsson bans Erlang, which becomes open-source

Late 2000s Erlang and the actor model make a come-back in 
mainstream programming



Erlang has made a significant impact in the practice of concurrent programming by 
making the formal actor model applicable to real-world scenarios

• Initially, Erlang was mainly used for telecommuncation software:

• Ericsson’s AXD301 switch – includes over one million lines of Erlang code; 
achieves “nine 9s” availability (99.9999999%)

• Cellular communication infrastructure (services such as SMSs)

• Recently, it has been rediscovered for Internet communication apps:

• WhatsApp’s communication services are written in Erlang

• Facebook Chat (in the past)

Erlang in the real world
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Why Erlang?

8

We’ve faced many challenges in meeting the ever-growing demand for [the 
WhatsApp] messaging services, but [...] Erlang continues to prove its capability as a 
versatile, reliable, high-performance platform.

Rick Reed, 2014 - That’s ‘Billion’ with a ‘B’: Scaling to the next level at WhatsApp

The language itself has many pros and cons, but we chose Erlang to power 
[Facebook] Chat because its model lends itself well to concurrent, distributed, and 
robust programming.

Chris Piro, 2010 – Chat Stability and Scalability

%25%20%20%20%20%20%25http:/lanyrd.com/2014/erlangfactory/scwqrt/%20%20%20%20%20https:/www.infoq.com/presentations/whatsapp-scalability
%25%20%20%20%20%20https:/www.facebook.com/notes/facebook-engineering/chat-stability-and-scalability/51412338919


Functional languages are based on elements quite different from those imperative
languages are based on

What is a functional language?

9

• state – variables 

• state modifications - assignments 

• iteration – loops

• data – values 

• functions on data – without side effects 

• functional forms – function composition, 
higher-order functions

Imperative languages (such as Java) 
are based on:

Functional languages (such as Erlang)
are based on:



Functional languages are based on elements quite different from those imperative
languages are based on

10

An imperative program is a sequence of state 
modifications on variables

// compute xn

int power(int x, int n) { 

int result = 1; 

for (int i = n; i < n; i++) 

result *= x; 

return result;

}

A functional program is the side-effect-free 
application of functions on values

% compute XN

power(X, 0) -> 1; 

power(X, N) -> X * power(X, N-1)

In functional programs, variables store 
immutable values, which can be copied but 
not modified

Imperative languages (such as Java) 
are based on:

Functional languages (such as Erlang)
are based on:

What is a functional language?



You can experiment with Erlang using its shell, which can evaluate expressions on the 
fly without need to define complete programs

$ erl
Erlang R16B03 (erts-5.10.4) [source] [64-bit] [smp:2:2]

Eshell V5.10.4 (abort with ^G)

1> 1 + 2. % evaluate expression `1 + 2'
3
2> c(power). % compile file `power.erl'
{ok,power}
3> power:power(2, 3). % evaluate power(2, 3)
8

• Notice you have to terminate all expressions with a period

• Functions are normally defined in external files, and then used in the shell

• Compilation targets bytecode by default

The Erlang shell

11



Types

12



A type constrains:

1.The (kinds) of values that an expression can take

2.The functions that can be applied to expressions of that type

For example, the integer type:

1. includes integer values (1, -100, 234), but not, say, decimal numbers (10.3, -4.3311) or 
strings ("hello!", "why not")

2. supports functions such as sum +, but not, say, logical and

• Erlang is dynamically typed:

• programs do not use type declarations

• the type of an expression is only determined at runtime
• when the expression is evaluated

• if there is a type mismatch (for example 3+false) expression evaluation fails

• Erlang types include primitive and compound data types

Types, dynamically

13



An overview of Erlang types

14

And three + two compound types
(a.k.a. type constructors):

• Tuples: fixed-size containers

• Lists: dynamically-sized containers

• Maps: key-value associative tables 
(a.k.a. dictionaries) –recent feature, 
experimental in Erlang/OTP R17

• Strings: syntactic sugar for sequences of 
characters

• Records: syntactic sugar to access tuple 
elements by name

Erlang offers eight primitive types:

• Integers: arbitrary-size integers with 
the usual operations

• Atoms: roughly corresponding to 
identifiers

• Floats: 64-bit floating point numbers

• References: globally unique symbols

• Binaries: sequences of bytes

• Pids: process identifiers

• Ports: for communication

• Funs: function closures



Numeric types include integers and floats

• We will mainly use integers, which are arbitrary-size, and thus do not overflow

Numbers

15



Atoms are used to denote distinguished values

(they are similar to symbolic uninterpreted constants)

An atom can be:

• A sequence of alphanumeric characters and underscores, starting with a 
lowercase letter

• An arbitrary sequence of characters (including spaces and escape sequences) 
between single quotes
• An atom is to be enclosed in single quotes (') if it does not begin with a lower-case letter or if it 

contains other characters than alphanumeric characters, underscore (_), or @

Atoms

16

Examples of valid atoms:
x

a_Longer_Atom

'Uppercase_Ok_in_quotes'

'This is crazy!'

true



In Erlang there is no Boolean type

Instead, the atoms true and false are conventionally used to represent Boolean values

Booleans

17

Examples:

true or (10 + false) % error: type mismatch in second argument

true orelse (10 + false) % true: only evaluates first argument



Erlang’s relational operators have a few syntactic differences with those of most other 
programming languages

Relational operators

18

Examples:

3 =:= 3 % true: same value, same type
3 =:= 3.0 % false: same value, different type
3 == 3.0 % true: same value, type not checked



Erlang defines an order relationship between values of any type 

When different types are compared, the following order applies:

𝑛𝑢𝑚𝑏𝑒𝑟 < 𝑎𝑡𝑜𝑚 < 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 < 𝑓𝑢𝑛 < 𝑝𝑜𝑟𝑡 < 𝑝𝑖𝑑 < 𝑡𝑢𝑝𝑙𝑒 < 𝑚𝑎𝑝 < 𝑙𝑖𝑠𝑡

Thus, the following inequalities hold:

3 < true % number < atom
3 < false % number < atom
999999999 < infinity % number < atom
100000000000000 < epsilon % number < atom

When comparing tuples to tuples:

• comparison is by size first
• two tuples with the same size or two lists are compared element by element, and satisfy the 

comparison only if all (existing) pairs satisfy it

Order between different types
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Tuples denote ordered sequences with a fixed (but arbitrary for each tuple instance) number 
of elements (They are written as comma-separated sequences enclosed in curly braces)

Examples of valid tuples:
{ } % empty tuple

{ 10, 12, 98 }

{ 8.88, false, aToM } % elements may have different types

{ 10, { -1, true } } % tuples can be nested

Tuples

20

Examples:

element(2, {a, b, c}) % b: tuples are numbered from 1

setelement(1, {a, b}, z) % {z, b}

tuple_size({ }) % 0

Functions on a tuple T:



Lists denote ordered sequences with a variable (but immutable for any list instance) number 
of elements (They are written as comma-separated sequences enclosed in square brackets)

Examples of valid lists:

[ ] % empty list

[ 10, 12, 98 ]

[ 8.88, false, {1, 2} ] % elements may have different type

[ 10, [ -1, true ] ] % lists can be nested

Lists

21



Some useful functions on lists L:

List operators

22

Operator | is also called cons; using it, we can define any list:

[1, 2, 3, 4] =:= [1 | [2 | [3 | [4 | []]]]]

hd([H | T]) =:= H

tl([H | T]) =:= T

% this is an example of --

[1, 2, 3, 4, 2] -- [1, 5, 2] =:= [3, 4, 2]



Strings are sequences of characters enclosed between double quotation marks 
• Strings are just syntactic sugar for lists of character codes

String concatenation is implicit whenever multiple strings are juxtaposed without any 
operators in the middle

Using strings ($c denotes the integer code of character c):

"" % empty string =:= empty list

"hello!"

"hello" "world" % =:= "helloworld"

"xyz" =:= [$x, $y, $z] =:= [120, 121, 122] % true

[97, 98, 99] % evaluates to "abc"!

Strings

23



Records are ordered sequences with a fixed number of elements, where each element has an 
atom as name

• Records are just syntactic sugar for tuples where positions are named

% define `person' record type

% with two fields:  `name' with default value "add name"

%                   `age' without default value (undefined)

-record(person, { name="add name", age })

% `person' record value with given name and age

#person{name="Joe", age=55}

#person{age=35, name="Jane"} % fields can be given in any order

% when a field is not initialized, the default applies

#person{age=22} =:= #person{name="add name", age=22}

% evaluates to `age' of `Student' (of record type `person')

Student#person.age

• Erlang’s shell does not know about records, which can only be used in modules
• In the shell: #person{age=7,name="x"} is {person, "x", 7}.

Records

24



Expressions and patterns
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Variables are identifiers that can be bound to values

(they are similar to constants in an imperative programming language)

A variable name is a sequence of alphanumeric characters, underscores, and @, starting with 
an uppercase letter or an underscore

In the shell, you can directly bind values to variable:
• Evaluating Var = expr binds the value of expression expr to variable Var, and returns such value as value 

of the whole binding expression

• Each variable can only be bound once

• To clear the binding of variable Var evaluate f(Var)

• Evaluating f() clears all variable bindings

• The anonymous variable _ (“any”) is used like a variable whose value can be ignored

In modules, variables are used with pattern matching (which we present later)

Variables

26



• Expressions are evaluated exhaustively to a value – sometimes called (ground) term: a 
number, an atom, a list, …

The order of evaluation is given by the usual precedence rules

(using parentheses forces the evaluation order to be inside-out of the nesting structure)

Some precedence rules to be aware of:
• and has higher precedence than or
• andalso has higher precedence than orelse
• when lazy (andalso, orelse) and eager (and, or) Boolean operators are mixed, they all 

have the same precedence and are left-associative
• ++ and -- are right-associative (concatenation and substraction in lists)

• relational operators have lower precedence than Boolean operators; thus you have to
use parentheses in expressions such as (3 > 0) and (2 == 2.0)

Expressions and evaluation

27



Precedence rules: Examples

28

3 + 2 * 4 % is 11

3 + (2 * 4) % is 11

(3 + 2) * 4 % is 20

true or false and false % is true

true orelse false andalso false % is true

true or false andalso false % is false

true orelse false and false % is true (why?)

After evaluating the first “true” 
there is no need to evaluate the rest



Patterns

29

• Note that a pattern may contain bound variables
• in this case, evaluating the pattern implicitly evaluates its bound variables

Pattern matching is a flexible and concise mechanism to bind values to variables

It is widely used in functional programming languages to define functions on data (especially 
lists); Erlang is no exception

A pattern has the same structure as a term, but in a pattern some parts of the term may be 
replaced by free variables

3
A
{X, Y}
{X, 3}
[H | T]
[H | [2]]

Examples of patterns:



Pattern matching is the process that, given a pattern P and a term T, binds the variables in P to 
match the values in T according to P and T’s structure 

If P’s structure (or type) cannot match T’s, pattern matching fails

Pattern matching
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Pattern matching: Notation
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Examples:

• (X + Y)⟨{X, Y}≜{3, 2}⟩ is 5

• (T ++ [2])⟨[H|T]≜[8]⟩ is [2]

• H⟨[H|T]≜[ ]⟩ is undefined

Given a pattern P and a term T, we write ⟨P≜T⟩ to denote the pattern match of T to P 

• If the match is successful, it determines bindings of the variables in P to terms 

• Given an expression E, we write E⟨P≜T⟩ to denote the term obtained by applying the bindings of 
the pattern match ⟨P≜T⟩ to the variables in E with the same names

• If the pattern match fails, E⟨P≜T⟩ is undefined

NOTE: The notation E⟨P≜T⟩ is not valid Erlang, but 
we use it to illustrate Erlang’s semantics



Multiple expressions E1, …, En can be combined in a compound expression obtained by 
separating them using commas 

• Evaluating the compound expression entails evaluating all component expressions in the 
order they appear, and returning the value of the last component expression as the value of 
the whole compound expression

• A single failing evaluation makes the whole compound expression evaluation fail

Multiple expressions

32

3 < 0, 2. % evaluates 3 < 0
% returns 2

3 + true, 2. % evaluates 3 + true
% fails

R=10, Pi=3.14, 2*Pi*R. % binds 10 to R,
% binds 3.14 to Pi
% returns 62.8…

Examples:



Using blocks delimited by begin... end, we can introduce multiple expressions where 
commas would normally be interpreted in a different way

This may be useful in function calls:

power(2, begin X=3, 4*X end) % returns power(2, 12)

Without begin...end, the expression would be interpreted as calling a function power with 
three arguments

Multiple expression blocks

33
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[X*X || X <- [1, 2, 3, 4]] % is [1, 4, 9, 16]

[X || X <- [1, -3, 10], X > 0] % is [1, 10]

[{A, B} || A <- [carl, sven], B <- [carlsson, svensson]]

% is [{carl, carlsson}, {carl, svensson},

%     {sven, carlsson}, {sven, svensson}]

List comprehensions
List comprehensions provide a convenient syntax to define lists using pattern matching

It  is an expression of the form:  [ Expression || P1 <- L1, ..., Pm <- Ln, C1, ..., Cn ] where: 
– each Pk is a pattern
– each Lk is a list expression
– each Ck is a condition (a Boolean expression)

• Intuitively, each pattern Pk is matched to every element of Lk, thus determining a binding B
– if substituting all bound values makes all conditions evaluate to true, the value obtained by substituting all 

bound values in Expression is accumulated in the list result;
– otherwise the binding is ignored

Examples:



The main elements of a module are as follows:

-module(foo). % module with name `foo' in file `foo.erl'

-export([double/1,up_to_5/0]). % exported functions

% each f/n refers to the function with name `f' and arity `n'

-import(lists, [seq/2]). % functions imported from module `lists'

% function definitions:

double(X) -> 2*X.

up_to_5() -> seq(1, 5). % uses imported lists:seq

Compiling and using a module in the shell:

1> c(foo). % compile module `foo' in current directory

{ok,foo}. % compilation successful

2> foo:up_to_5(). % call `up_to_5' in module `foo'

[1,2,3,4,5]

Modules

35

A module is a collection of function definitions grouped in a file 

Modules are the only places where functions can be defined – they cannot directly be defined in the 
shell



Function definitions
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Function definitions: basics

37

f(P1,…, Pn) -> E.

In Erlang (and all functional prog. lang.) functions are the fundamental units of computation

• A function defines how to map values to other values 
– Unlike in imperative programming languages, most functions in Erlang have no side effects: they do not change 

the state of the program executing them (especially their arguments)

The basic definition of an n-argument function f (arity n), denoted by f/n, has the form:

– The function name f is an atom

– The function’s formal arguments P1,…, Pn are patterns

– The body E is an expression – normally including variables that appear in the arguments

Head Body

identity(X) -> X. % the identity function

sum(X, Y) -> X + Y. % the sum function
Examples:



The basic definition of an n-argument function f (arity n), denoted by f/n, has the form:

f(P1,…, Pn) -> E.

More examples:

zero() -> 0. % integer zero

identity(X) -> X. % identity

sum(X, Y) -> X + Y. % sum

head([H|_]) -> H. % head

tail([_|T]) -> T. % tail

second({_, Y}) -> Y. % 2nd of pair

positives(L) -> [X || X <- L, X > 0]. % filter positive

Examples of function definitions

38



Given the definition of a function f/n:

f(P1,…,Pn) -> E.

a call expression to f/n has the form:

f(A1,…,An)

and is evaluated as follows:

1. For each 1 ≤ K ≤ n,  evaluate Ak, which gives a term Tk

2. For each 1 ≤ K ≤ n, pattern match Tk to Pk

3. If all pattern matches are successful, the call expression evaluates to 
E(P1,...,Pn ≜ T1,...,Tn)

4. Otherwise, the evaluation of the call expression fails

Function call/evaluation
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Examples of function calls
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Function definitions can include multiple clauses, separated by semicolons:

f(P11,…,P1n) -> E1;

f(P21,…,P2n) -> E2;

.

.

.

f(Pm1,…,Pmn) -> Em. 

A call expression is evaluated against each clause in textual order; the first successful match is 
returned as the result of the call

Therefore, we should enumerate clauses from more to less specific

lazy_or(true, _) -> true;
lazy_or(_, true) -> true;
lazy_or(_, _) -> false.

Function definition: clauses

41

This function does not work as expected 
unless this clause is listed last



Pattern matching an expression R of record type rec

#rec{f1=P1, ..., fn=Pn} = R

succeeds if, for all 1 ≤ k ≤ n, field fk in R’s evaluation (i.e., R#name.fk) matches to pattern 
Pk

If record type rec has fields other than f1, …, fn, they are ignored in the match

Thanks to this behavior, using arguments of record type provides a simple way to extend data
definitions without having to change the signature of all functions that use that datatype

Pattern matching with records
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-record(error, {code}).

error_message(#error{code=100}) -> io.format("Wrong address");

error_message(#error{code=101}) -> io.format("Invalid username");

...

error_message(_) -> io.format("Unknown error").

If we want to add more information to the type error, we only have to change the record 
definition, and the clauses using the new information:

-record(error, {code, line_number}).

error_message(#error{code=100}) -> io.format("Wrong address");

error_message(#error{code=101}) -> io.format("Invalid username");

...

error_message(#error{code=C, line_number=L}) -> io.format("Unknown error p", [C, L]).

Compare this to the case where we would have had to change error_message from a unary to 
a binary function!

Flexible arguments with records: Example
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Clauses in function definitions can include any number of guards (also called conditions):

f(Pk1, . . . , Pkn) when Ck1, Ck2, . . . -> Ek;

A guarded clause is selected only if all guards Ck1, Ck2,… evaluate to true under the match, that 
is if Cki⟨Pk1,...,Pkn ≜ Tk1,...,Tkn⟩ evaluates to true for all guards Cki in the clause

More generally, two guards can be separated by either a comma or a semicolon: commas
behave like lazy and (both guards have to hold); semicolon behave like lazy or (at least one 
guard has to hold)

can_drive(Name, Age) when Age >= 18 -> Name ++ " can drive";
can_drive(Name, _) -> Name ++ " cannot drive".

same_sign(X, Y) when X > 0, Y > 0; X < 0, Y < 0 -> true;
same_sign(_, _) -> false.

Function definition: guards
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Since Erlang is dynamically typed, there are cases where we have to test the actual 
type of an expression

• For example, because a certain operation is only applicable to values of a certain type

To this end, Erlang provides several test functions whose names are self-explanatory:

is_atom/1
is_boolean/1
is_float/1
is_integer/1
is_list/1
is_number/1
is_pid/1
is_port/1
is_tuple/1

Use these only when necessary: in most cases defining implicitly partial functions is 
enough

Type checking -- at runtime

45



The expression body in a function definition can include compound expressions with 
bindings:

f(Pk1,…, Pkn) -> V1=E1,…, Vw=Ew, Ek;

Such bindings are only visible within the function definition

They are useful to define shorthands in the definition of complex expressions

volume({cylinder, Radius, Height}) ->

Pi=3.1415,

BaseArea=Pi*Radius*Radius,

Volume=BaseArea*Height,

Volume.

Function definition: local binding
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Ifs provide a way to express conditions alternative to guards (in fact, ifs are called – somewhat 
confusingly – guard patterns in Erlang)

An if expression:

if

C1 -> E1;

Cm -> Em

end

evaluates to the expression Ek of the first guard Ck in textual order that evaluates to true; if 
no guard evaluates to true, evaluating the if expression fails

If expressions (guard patterns)
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age(Age) ->
if Age > 21 -> adult;

Age > 11 -> adolescent;
Age > 2 -> child;
true -> baby end.



Case expressions
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years(X) ->
case X of {human, Age} -> Age;

{dog, Age} -> 7*Age;
_ -> cant_say

end.

Cases provide an additional way to use pattern matching to define expressions. A case
expression:

case E of

P1 -> E1;

Pm -> Em

end

evaluates to Ek⟨Pk≜T⟩, where E evaluates to T, and Pk is the first pattern in textual order that T
matches to; if T matches no pattern, evaluating the case expression fails

Patterns may include when clauses, with the same meaning as in function definitions



Having several different ways of defining a function can be confusing. There are no absolute 
rules, but here are some guidelines that help you write idiomatic code:

• the first option to try is using pattern matching directly in a function’s arguments, using 
different clauses for different cases

• if parts of a pattern expression depend on others, you may consider using case
expressions to have nested patterns

• you do not need if expressions very often (but it’s good to know what they mean, and 
sometimes they may be appropriate)

Which one should I use?
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Recursion
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• Recursion is a style of programming where functions are defined in terms of 
themselves

Recursion in programming

51

Recursive call

% compute Xn

power(X, 0) -> 1;

power(X, N) -> X * power(X, N-1).

The definition of a function f is recursive if it includes a call to f (directly or indirectly)



Recursion in mathematics
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Definition of natural numbers:

• 0 is a natural number;

• if 𝑛 is a natural number then 𝑛 + 1 is a natural number.

Recursion is a style of programming where functions are defined in terms of themselves

The definition of a function f is recursive if it includes a call to f (directly or indirectly)

Recursive/inductive definition



Recursion: from math to programming
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Recursion in programming provides a natural way of implementing recursive definitions in 
mathematics

Factorial of a nonnegative integer 𝑛:

n terms

=  n . (n - 1) … 1

n-1 terms

1 if 0 ≤  n ≤ 1
n!  = 

n. (n-1)!  if n  > 1

Base case

Recursive/inductive case

n! = n . (n - 1) … 1



Recursion: from math to programming
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factorial(N) when N =< 1 -> 1; % base case

factorial(N) -> N *factorial(N-1). % recursive case

Recursion in programming provides a natural way of implementing recursive definitions in 
mathematics

Factorial of a nonnegative integer 𝑛:

Recursive call

1 if 0 ≤  n ≤ 1
n!  = 

n. (n-1)!  if n  > 1

Base case

Recursive/inductive case



Each recursive call triggers an independent evaluation of the recursive function 
(Independent means that it works on its own private copy of actual argument 

expressions)

When a recursive instance terminates evaluation, its value is used in the calling instance 
for its own evaluation

How does recursion work?
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call

call

call

useuseuse

entry factorial(3)

eval

3 * factorial(2) factorial(2)

eval

2 * factorial(1) factorial(1)

eval

12 * 13 * 26



Recursion as a programming technique is useful to design programs using the divide and 
conquer approach:

To solve a problem instance 𝑃, split 𝑃 into problem instances 𝑃1, … , 𝑃𝑛 chosen such that:

1.Solving 𝑃1, … , 𝑃𝑛 is simpler than solving 𝑃 directly

2.The solution to 𝑃 is a simple combination of the solutions to 𝑃1, … , 𝑃𝑛

In functional programming, recursion goes hand in hand with pattern matching:

• Pattern matching splits a function argument’s into smaller bits according to the input’s 
structure

• Recursive function definitions define the base cases directly, and combine simpler cases 
into more complex ones

Recursion as a design technique
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Define a function sum(L) that returns the sum of all numbers in L

1. The base case (the simplest possible) is when L is empty: sum([]) -> 0

2. Let now L be non-empty: a non empty list matches the pattern [H|T]
• H is a single number, which we must add to the result

• T is a list, which we can sum by calling sum recursively

Recursive functions: Sum of list
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sum([]) -> 0; % base case

sum([H|T]) -> H + sum(T). % recursive case

To make the function more robust, we can skip over all non-numeric elements:

sum([]) -> 0; % base case

sum([H|T]) when is_number(H) -> H + sum(T); % recursive case 1

sum([_|T]) -> sum(T). % recursive case 2

Can we switch the 
order of clauses?

In this case, YES



Define a function last(L) that returns the last element of L

1. When L is empty, last is undefined, so we can ignore this case

2. The simplest case is then when L is one element: last([E]) -> E

3. Let now L be non-empty: a non empty list matches the pattern [H|T]
• E is the first element, which we throw away

• T is a list, whose last element we get by calling last recursively

Recursive functions: Last list element
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last([E]) -> E; % base case

last([_|T]) -> last(T). % recursive case

To make this explicit, we could write:

last([E|[]])-> E; % base case

last([_|T]) -> last(T). % recursive case

Can T match the empty list?

No, because neither of the 
clauses match the empty list



A recursive function f is tail recursive if the evaluation of f’s body evaluates the recursive call last

Tail recursion
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% general recursive:

power(_, 0) ->

1;

power(X, N) ->

X * power(X, N-1).

% tail recursive:

power(X, N) ->

power(X, N, 1).

power(_, 0, Accumulator) ->

Accumulator;

power(X, N, Accumulator) ->

power(X, N-1, X*Accumulator).

• Tail-recursive functions are generally more efficient than general-recursive functions

• When efficiency is not an issue, there is no need to use a tail-recursive style; but we will 
use tail-recursive functions extensively (and naturally) when implementing servers

Overloading: 
two functions power/2 and power/3



General Recursion vs Tail Recursion
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General recursion:

% general recursive:

power(_, 0) -> 1;

power(X, N) -> X * power(X, N-1).

power(2,3) = ??

Stack

2 * power(2,2)

2 * power(2,1)

2 * power(2,0)

base case

1248
power(2,3)

power(2,2)

power(2,1)

power(2,0) 1

2

4

8



General Recursion vs Tail Recursion
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power(2,3) = ?? 

% tail recursive:

power(X, N) -> power(X, N, 1).

power(_, 0, Accumulator) -> Accumulator;

power(X, N, Accumulator) -> power(X, N-1, X*Accumulator).
Stack

power(2,3,1)

power(2,2,2)

power(2,1,4)

power(2,0,8)

power(2,2,2*1)

power(2,1,2*2)

power(2,0,2*4)

base case

8

power(2,3,1)
8

Tail recursion:



Impure and higher-order 
functions

62



Statements, assignments, and loops are not available as such in Erlang

Everything is an expression that gets evaluated:

• (Side-effect free) expressions are used instead of statements

• (Pure) functions return modified copies of their arguments instead of modifying the 
arguments themselves

• One-time bindings are used instead of assignments that change values to variables

• Recursion is used instead of loops

The sparse presence of side effects helps make functional programs higher level than 
imperative ones

Where are all the statements, assignments, loops?
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The expressions we have used so far have no side effects, that is they do not 
change the state but simply evaluate to a value

• Not all expressions are side-effect free in Erlang
• Input/output is an obvious exception: to print something to screen, we evaluate an expression 

call, whose side effect is printing

io:format(Format, Data) % print the string Format, interpreting control sequences on Data

Printing to screen
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1> io:format("~s ~B. ~p~n~s ~B~n", ["line", 1, true, "line", 2]). 

line 1. true 

line 2 

You can use fwrite
instead of format



try Expr of

Success1 -> Expr1;

…

catch

Error1:Fail1 -> Recov1;

…

after After end

Exception handling
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Erlang has an exception handling mechanism that is similar to a functional version of Java’s 
try/catch/finally blocks:

• The try blocks behaves like a case block

• If evaluating Expr raises an exception, it gets pattern matched against the clauses in 
catch (Errork’s are error types, Failk’s are patterns, and Recovk’s are expressions)

• Expression After in the after clause always gets evaluated in the end (but does not 
return any value: used to close resources)



Function safe_plus tries to evaluate the sum of its arguments:
• if evaluation succeeds, it returns the result
• if evaluation raises a badarith exception, it returns false

safe_plus(X, Y) ->
try X + Y of

N -> N
catch

error:badarith -> false
end.

Example of using it:

1> safe_plus(2, 3).
5

2> safe_plus(2, []).
false

Exception handling: Example
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Functions are first-class objects in Erlang: they can be passed around like any other values, 
and they can be arguments of functions 

• A function f/k defined in module m is passed as argument fun m:f/k

This makes it easy to define functions that apply other functions to values following a pattern

% apply function F to all elements in list L
map(F, []) -> [];
map(F, [H|T]) -> [F(H)|map(F,T)].

1> map(fun m:age/1, [12, 1, 30, 56]).
[adolescent,baby,adult,adult]

A function that takes another function as argument is called higher-order

Functions are values too
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age(Age) ->
if Age > 21 -> adult;

Age > 11 -> adolescent;
Age > 2 -> child;
true -> baby end.



High-Order Functions
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Let’s define a function:% apply function F to all elements in list L

map(F, []) -> [];

map(F, [H|T]) -> [F(H)|map(F,T)]. doub(X)-> 2*X;

What is the result of calling map (doub/1, [12,1,30,56]) ?

map (doub/1, [12,1,30,56]) = ??

[doub(12)|map(doub,[1,30,56])]

[doub(12)|[doub(1)|map(doub,[30,56])]]

[doub(12)|[doub(1)|[doub(30)|map(doub,[56])]]]

[doub(12)|[doub(1)|[doub(30)|[doub(56)|map(doub,[])]]]]

[]

[112]

[60,112]

[2,60,112]

[24,2,60,112]



Sometimes it is necessary to define a function directly in an expression where it is used

For this we can use anonymous functions – also called lambdas, closures, or funs (the last is 
Erlang jargon):

fun

(A1) -> E1;

(An) -> En

end

where each Ak is a sequence of patterns, and each Ek is a body

% double every number in the list
1> map(fun (X)->2*X end, [12, 1, 30, 56]).
[24,2,50,112]

Inline functions
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Module lists includes many useful predefined functions to work on lists

These are some you should know about – but check out the full module documentation at 
http://erlang.org/doc/man/lists.html:

all(Pred, List) % do all elements E of List satisfy Pred(E)?

any(Pred, List) % does any element E of List satisfy Pred(E)?

filter(Pred, List) % all elements E of List that satisfy Pred(E)

last(List) % last element of List

map(Fun, List) % apply Fun to all elements of List

member(Elem, List) % is Elem an element of List?

reverse(List) % List in reverse order

seq(From, To) % list [From, From+1, ..., To]

seq(From, To, I) % list [From, From+I, ..., 

Working on lists
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http://erlang.org/doc/man/lists.html


Several functions compute their result by recursively accumulating values from a list:

Folds
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sum([]) -> 0;

sum([H|T]) -> H + sum(T).

len([]) -> 0;

len([H|T]) -> 1 + len(T).

We can generalize this pattern into a single higher-order function fold(F, R, L): starting from 
an initial value R, combine all elements of list L using function F and accumulate the result:

fold(_, Result, []) -> Result;

fold(F, Result, [H|T]) -> F(H, fold(F, Result, T)).

Using fold, we can define sum and len:

sum(L) ->

fold(fun (X,Y)->X+Y end, 0, L).

len(L) ->
fold(fun (X,Y)->1+Y end, 0, L).

Erlang module lists offers functions foldr/3 (which behaves like our fold) and foldl/3 (a 
tail-recursive version of fold, with the same arguments)



Folds: Example
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fold(_, Result, []) -> Result;

fold(F, Result, [H|T]) -> F(H, fold(F, Result, T)).

Let’s define a sum of a list using fold

sum(L) -> fold( fun(X,Y)-> X+Y end, 0, L )

Let’s call this function plus

Let’s try it!

sum([4,2,3])

fold(plus,0,[4,2,3])

plus(4,fold(plus,0,[2,3]))

plus(2,fold(plus,0,[3]))

plus(3,fold(plus,0,[]))

base case

03+02+34+59
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• Actors and message passing

• Sending and receiving messages

• Stateful processes

• Clients and servers

• Generic servers

• Location transparency & distribution

Lesson's menu
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Erlang combines a functional language with message-passing features:

• The functional part is sequential, and is used to define the behavior of processes

• The message-passing part is highly concurrent: it implements the actor model, where 
actors are Erlang processes

This lecture covers the message-passing/concurrent part of Erlang

What is Erlang?
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ACTORS AND MESSAGE PASSING
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Concurrency is fundamental in Erlang, and it follows models that are quite different 

from those offered by most imperative languages 

In Erlang (from Armstrong’s PhD thesis):

• Processes are strongly isolated

• Process creation and destruction is a lightweight operation

• Message passing is the only way for processes to interact

• Processes have unique names

• If you know the name of a process, you can send it a message

• Processes share no resources

• Error handling is non-local

• Processes do what they are supposed to do or fail

Compare these principles to programming using Java threads!

Erlang’s Principles
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Shared Memory  vs.  Message Passing

6

Shared memory:

• synchronize by writing to and

reading from shared memory

• natural choice in shared  

memory systems such as  

threads

Message passing:

• synchronize by exchanging

messages

• natural choice in  distributed

memory  systems such as  

processes
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Erlang’s message-passing concurrency mechanisms implement the actor model:

• Actors are abstractions of processes

• No shared state between actors

• Actors communicate by exchanging messages – asynchronous message 
passing

The Actor Model

7

A metaphorical actor is an “active agent which plays a role on cue according to a 
script” (Garner & Lukose, 1989)
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Each actor is identified by an address

An actor can:

• send (finitely many) messages to other actors via their addresses

• change its behavior – what it computes, how it reacts to messages

• create (finitely many) new actors

A message includes:

• a recipient – identified by its address

• content – arbitrary information

Actor and Messages
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The entities in the actor model correspond to features of Erlang (possibly with 
some terminological change)

The Actor Model in Erlang

9

ACTOR MODEL Erlang LANGUAGE

actor sequential process

address PID (process identifier) pid type

message an Erlang term {From, Content}

behavior (defined by) functions

create actor spawning spawn

dispose actor termination

send message send expression To ! Message

receive message receive expression receive...end

Principles of Concurrent Programming



SENDING AND RECEIVING MESSAGES
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A process:

• is created by calling spawn

• is identified by a pid (process identifier)

• executes a function (passed as argument to spawn)

• when the function terminates, the process ends

A Process’s Life
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Function spawn(M, F, Args) creates a new process:

• the process runs function F in module M with arguments Args

• evaluating spawn returns the pid of the created process

Within a process’s code, function self() returns the process’s pid

Within a module’s code, macro ?MODULE gives the module’s name

Calling spawn(fun () -> f(a1, ..., an) end) is equivalent to

spawn(?MODULE, f, [a1, ..., an]) but does not require exporting f

The spawn function
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Processes: Examples

13

3> spawn(fun ()-> true end).

<0.82.0> % pid of spawned process

4> self().

<0.47.0> % pid of process running shell

A process code: Creating processes in the shell:

3> spawn(procs, print_sum, [3, 4]).

7        % printed sum

<0.78.0> % pid of spawned process

2> spawn(procs, compute_sum, [1, 7]).

<0.80.0> % pid of spawned process

% result not visible!

-module(procs).

print_sum(X,Y) ->

io:format("~p~n", [X+Y]).

compute_sum(X,Y) -> X + Y.
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A message is any term in Erlang 

Typically, a message is the result of evaluating an expression

Sending Messages

14

The expression

sends the evaluation T of Message to the process with pid Pid; and returns T as result

Pid ! Message

Bang is right-associative 

To send a message to multiple recipients, we can combine multiple bangs:

Pidn1 ! Pidn2 ! … ! Pidn ! Message

”Bang” operator
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Every process is equipped with a mailbox, which behaves like a FIFO queue and is filled with 
the messages sent to the process in the order they arrive.

Mailboxes make message-passing asynchronous: the sender does not wait for the recipient to 
receive the message; messages queue in the mailbox until they are processed

To check the content of process Pid’s mailbox, use functions:

• process_info(Pid, message_queue_len): how many elements are in the mailbox

• process_info(Pid, messages): list of messages in the mailbox (oldest to newest)

• flush(): empty the current process’s mailbox

Mailboxes
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1> self() ! self() ! hello. % send ‘hello’ twice to self
2> self() ! world. % send ‘world’ to self
3> erlang:process_info(self(), messages)

{messages, [hello, hello, world]} % queue in mailbox



To receive messages, use the receive expression:

receive

P1 when C1 -> E1;

Pn when Cn -> En

end

Evaluating the receive expression selects the oldest term T in the receiving process’s mailbox 
that matches a pattern Pk and satisfies condition Ck

If a term T that matches exists, the receive expression evaluates to Ek⟨Pk≜T⟩; otherwise, 
evaluation blocks until a suitable message arrives

Receiving messages
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How evaluating receive works, in pseudo-code: 

The receiving algorithm
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Term receive(Queue<Term> mailbox, List<Clause> receive) {

while (true) {

await(!mailbox.isEmpty()); // block if no messages

for (Term message: mailbox) // oldest to newest

for (Clause clause: receive) // in textual order

if (message.matches(clause.pattern))

// apply bindings of pattern match

// to evaluate clause expression

return clause.expression〈clause.pattern≜message〉;

}

}



A simple echo function, which prints any message it receives:

Sending messages to echo in the shell:

To make the receiving process permanent, it calls itself after receiving:

Receiving messages: examples
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echo() ->

receive Msg -> io:format("Received: ~p~n", [Msg]) end.

1> Echo=spawn(echo, echo, []).

% now Echo is bound to echo’s pid

2> Echo ! hello. % send ‘hello’ to Echo

Received: hello % printed by Echo

repeat_echo() ->

receive Msg -> io:format("Received: ~p~n", [Msg]) end,

repeat_echo(). % after receiving, go back to listening

tail recursive, thus no memory consumption problem!



Erlang’s runtime only provides weak guarantees of message delivery order:

• If a process S sends some messages to another process R, then R will receive the messages 
in the same order S sent them

• If a process S sends some messages to two (or more) other processes R and Q, there is no
guarantee about the order in which the messages sent by S are received by R relative to
when they are received by Q

In practice, pretty much all the Erlang code we will write does not rely on any assumptions
about message delivery order

Even defining – let alone enforcing – an absolute time across multiple independent processes 
(which could even be geographically distributed) would be tricky: in order to synchronize, 
processes can only exchange messages!

Message delivery order
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If process S sends messages a,b,c – in this order – to process R, then R will 
receive them in its mailbox in the same order

Message delivery order: single process
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sender process S:
R ! a,

R ! b,

R ! c.

receiver process R:

R’s mailbox: a b c

R is process R’s pid



If process S sends messages a,b,c – in this order – to process R and to process Q, 
then R and Q may receive them in any order relative to each other.

Possible scenarios:

Message delivery order: multiple processes
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sender process S:
R ! a,

Q ! b,

Q ! c.

receiver process R:

R’s mailbox: a

receiver process Q:

Q’s mailbox: b c

Q is process Q’s pid



Stateful processes
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A ping server is constantly listening for requests; to every message ping, it 
replies with a message ack sent back to the sender.

In order to identify the sender, it is customary to encode messages as tuples of 
the form:

Combining  the echo and ping servers:

A ping server
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{SenderPid, Message}

ping() -> receive

{From, ping} -> From ! {self(), ack}; % send ack to pinger

_ -> ignore               % ignore any other message

end, ping().                           % next message

1> Ping = spawn(echo, ping, []), Echo = spawn(echo, repeat_echo, []).

2> Ping ! {Echo, ping}. % send ping on Echo’s behalf

Received: {<0.64.0>, ack} % ack printed by Echo

3> Ping ! {Echo, other}. % send other message to Ping

% no response



Processes can only operate on the arguments of the function they run, and on whatever is 
sent to them via message passing

• Thus, we store state information using arguments, whose value gets updated by the 
recursive calls used to make a process permanently running

A stateful process can implement the message-passing analogue of the concurrent counter
that used Java threads

The Erlang counter function recognizes two commands, sent as messages:
• increment: add one to the stored value

• count: send back the currently stored value

Stateful processes
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base_counter(N) ->

receive {From, Command} -> case Command of

increment -> base_counter(N+1); % increment counter

count -> From ! {self(), N}, % send current value

base_counter(N); % do not change value

U -> io:format("? ~p~n", [U]) % unrecognized command

end end.



Concurrent counter: first attempt
base_counter(N) ->

receive {From, Command} -> case Command of

increment -> base_counter(N+1); % increment counter

count -> From ! {self(), N}, % send current value

base_counter(N); % do not change value

U -> io:format("? ~p~n", [U]) % unrecognized command

end end.

increment_twice() ->

Counter = spawn(counter, base_counter, [0]), % counter initially 0                        

% function sending message ‘increment’ to Counter:

FCount = fun () -> Counter ! {self(), increment} end,  
spawn(FCount), spawn(FCount), % two procs running FCount

Counter ! {self(), count}, % send message ‘count’

% wait for response from Counter and print it

receive {Counter, N} -> io:format("Counter is: ~p~n", [N])

end.

Evaluated only when spawning a process running FCount

Principles of Concurrent Programming 25



Running increment_twice does not seem to behave as expected:

1> increment_twice().

Counter is: 0

The problem is that there is no guarantee that the message delivery  order is the same as the sending 

order: the request for count may be  delivered before the two requests for increment (or even before 

the two processes have sent their increment requests).

A temporary workaround is waiting some time before asking for the  count, hoping that the two 

increment messages have been delivered:

wait_and_hope() ->

Counter = spawn(counter, base_counter, [0]), % counter initially 0  

FCount = fun () -> Counter ! {self(), increment} end,  

spawn(FCount), spawn(FCount), % two processes running FCount

timer:sleep(100), % wait for ‘increment’ 2b delivered

Counter ! {self(), count}, % send message ‘count’

receive {Counter, N} -> io:format("Counter is: ~p~n", [N])

end.

Concurrent counter: first attempt (cont’d)
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Since there is no guarantee that the message delivery order is the same as the sending order when 

multiple processes are involved, the only robust mechanism for synchronization is exchanging 

messages following a suitable protocol

For example, the counter sends notifications of every update to a monitoring process:

counter(N, Log) ->

receive

{_, increment} -> 

Log ! {self(), N+1}, % send notification

counter(N+1, Log); % update count

{From, count} -> % send count, next message

From ! {self(), N}, counter(N, Log)

end.

Synchronization in an asynchronous world
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counter(N, Log) ->

receive

{_, increment} -> Log ! {self(), N+1}, % send notification

counter(N+1, Log); % update count

{From, count}  -> From ! {self(), N}, counter(N, Log) % send count, next message

end.

% set up counter and incrementers; then start monitor:

Increment_and_monitor() ->

Counter = spawn(?MODULE, counter, [0, self()]), 

FCount = fun () -> Counter ! {self(), increment} end,  

spawn(FCount), spawn(FCount),  

monitor_counter(Counter). % start monitor

monitor_counter(Counter) -> 

receive 

{Counter, N} -> io:format("Counter is: ~p~n", [N]) 

end,  

monitor_counter(Counter).

Concurrent counter with monitoring process
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What happens to messages not in this format?

They stay in the mailbox!

Spawns a process from this module and executes function 

counter with parameters N=0 and Log=self() 
(PiD of the spawned process)

FCount sends a message to the recently created process 

(Counter) with self as parameter and a call to increment 

In the shell:   counter:increment_and_monitor().

You will get: Counter is: 1

Counter is: 2



Clients and servers
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Many Internet services (the web, email, . . . ) use the client/server  architecture

Client/server communication
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Server

Client C1

· ··

Client Cn

request request

response response

The client/server architecture is a widely used communication model  between 

processes using message passing:

1. A server is available to serve requests from any clients

2. An arbitrary number of clients send commands to the server and wait for the 

server’s response



A server is a process that:

• responds to a fixed number of commands – its interface

• runs indefinitely, serving an arbitrary number of requests, until it receives a shutdown

command

• can serve an arbitrary number of clients – which issue commands as messages

Each command is a message of the form:

{Command, From, Ref, Arg1, ..., Argn}

• Command is the command’s name

• From is the pid of the client issuing the command

• Ref is a unique identifier of the request (so that clients can match  responses to requests)

• Arg1, ..., Argn are arguments to the command

Each command is encapsulated in a function, so that clients need not know the 

structure of messages to issue commands

Servers
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The interface of a math server consists of the following commands:

factorial(M): compute the factorial of M

status(): return the number of requests served so far (without incrementing it)

stop(): shutdown the server

We build an Erlang module with interface:

start():  start a math server, and return the server’s pid

factorial(S,M): compute factorial of M on server with pid S

status(S): return number of requests served by server with pid S

stop(S): shutdown server with pid S

-module(math_server).
-export([start/0,factorial/2,status/1,stop/1]).

A math server
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loop(N) ->

receive

% ‘factorial’ command:

{factorial, From, Ref, M} ->

From ! {response, Ref, compute_factorial(M)},  

loop(N+1); % increment request number

% ‘status’ command:

{status, From, Ref} ->

From ! {response, Ref, N},

loop(N); % don’t increment request number

% ‘stop’ command:

{stop, _From, _Ref} ->  ok

end.

This function needs not be exported, unless it is spawned by another function of the 

module using spawn(?MODULE, loop, [0])

(In that case, it’s called via its module, so it must be exported)

Math server: event loop
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Ordinary Erlang function computing factorial



We start the server by spawning a process running loop(0):

% start a server, return server’s pid

start() ->

spawn(fun () -> loop(0) end).

We shutdown the server by sending a command stop:

% shutdown ‘Server’

stop(Server) ->

Server ! {stop, self(), 0}, % Ref is not needed

ok.

Math server: starting and stopping
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We compute a factorial by sending a command factorial:

% compute factorial(M) on ‘Server’:

factorial(Server, M) ->

Ref = make_ref(), % unique reference number

% send request to server:

Server ! {factorial, self(), Ref, M},

% wait for response, and return it:

receive {response, Ref, Result} -> Result end.

We get the server’s status by sending a command status:

% return number of requests served so far by ‘Server’:

status(Server) ->

Ref = make_ref(), % unique reference number

% send request to server:

Server ! {status, self(), Ref},

% wait for response, and return it:

receive {response, Ref, Result} -> Result end.

Math server: factorial and status
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Returns a number that is unique among connected nodes 

in the system

pid of process calling factorial



After creating a server instance, clients simply interact with the server  by calling 

functions of module math_server:

1> Server = math_server:start().

<0.27.0>

2> math_server:factorial(Server, 12).

479001600

3> math_server:factorial(Server, 4).

24

4> math_server:status(Server).

2

5> math_server:status(Server).

2

5> math_server:stop(Server).  ok

6> math_server:status(Server).

% blocks waiting for response

Math server: clients
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Generic servers
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A generic server takes care of the communication patterns behind  every server 

Users instantiate a generic server by providing a suitable handling function, which 
implements a specific server functionality

A generic server’s start and stop functions are almost identical to the math server’s –

the only difference is that the event loop also includes a handling function:

start(InitialState, Handler) ->

spawn(fun () -> loop(InitialState, Handler) end).

stop(Server) ->

Server ! {stop, self(), 0}, % Ref is not needed

ok.

Generic servers
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Used to receive the “concrete” server 

implementation we want this generic server 

to instantiate 

Handler is a function that implements, 

e.g.,  all the different operations a Math 

server might do



The generic server’s event loop

has its current state and the 

handling function as arguments:

Generic servers: event loop
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loop(State, Handler) ->

receive

% a request from ‘From’ with data ‘Request’

{request, From, Ref, Request} ->

% run handler on request

case Handler(State, Request) of

% get handler’s output

{reply, NewState, Result} ->

% the requester gets the result

From ! {response, Ref, Result},

% the server continues with the new state

loop(NewState, Handler)

end;

{stop, _From, _Ref} -> ok

end.



A generic server’s function request takes care of sending generic requests to the 

server, and of receiving back the results:

% issue a request to ‘Server’; return answer

request(Server, Request) ->

Ref = make_ref(), % unique reference number

% send request to server

Server ! {request, self(), Ref, Request},

% wait for response, and return it

receive {response, Ref, Result} -> Result end.

Generic servers: issuing a request
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Here is how we can define the math server using the generic server  

(starting and stopping use the handling function math_handler):

start() -> gserver:start(0, fun math_handler/2).  

stop(Server) -> gserver:stop(Server).

The handling function has two cases, one per request kind:
math_handler(N, {factorial, M}) -> {reply, N+1, compute_factorial(M)};
math_handler(N, status) -> {reply, N, N}.

The exported functions factorial and status (called by clients) call the generic 

server’s request function:

factorial(Server, M) -> gserver:request(Server, {factorial, M}).
status(Server) -> gserver:request(Server, status).

Math server: using the generic server
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We extend the implementation of the generic server to improve:

robustness: add support for error handling and crashes

flexibility: add support for updating the server’s functionality while the server is

running

performance: discard spurious messages sent to the server, getting rid of “junk” in 

the mailbox

All these extensions to the generic server do not change its interface

• Thus instance servers relying on it will still work, with the added benefits provided by 

the new functionality!

Servers: improving robustness and flexibility

43Principles of Concurrent Programming



If computing the handling function on the input fails, we catch the resulting exception and 

notify the client that an error has occurred

To handle any possible exception, use the catch(E) built-in function:

if evaluating E succeeds, the result is propagated;

if evaluating E fails, the resulting exception Reason is propagated as {'EXIT', Reason}

This is how we perform exception handling in the event loop:

case catch(Handler(State, Request)) of

% in case of error

{’EXIT’, Reason} ->

% the requester gets the exception

From ! {error, Ref, Reason},

% the server continues in the same state

loop(State, Handler);

% otherwise (no error): get handler’s output

{reply, NewState, Result} ->

Robust servers
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Changing the server’s functionality requires a new kind of request, which does not change the server’s 

state but it changes the handling function

The event loop now receives also this new request kind:

% a request to swap ‘NewHandler’ for ‘Handler’

{update, From, Ref, NewHandler} ->  

From ! {ok, Ref}, % ack

% the server continues with the new handler

loop(State, NewHandler);

Function update takes care of sending requests for changing handling function (similarly to what 

request does for basic requests):

% change ‘Server’s handler to ‘NewHandler’

update(Server, NewHandler) ->
Ref = make_ref(), % send update request to server

Server ! {update, self(), Ref, NewHandler},

receive {ok, Ref} -> ok end. % wait for ack

Flexible servers
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Allows for “hot upgrading”



If unrecognized messages are sent to a server, they remain in the mailbox indefinitely (they never 

pattern match in receive) 

If too many  such “junk” messages pile up in the mailbox, they may slow down the  server

To avoid this, it is sufficient to match any unknown messages and discard them as last clause in the 

event loop’s receive:

% discard unrecognized messages

_ -> loop(State, Handler)

To avoid clients waiting forever for responses to discarded requests, we add a timeout to request:

receive

{response, Ref, Result} -> Result

% after 10 seconds, give up

after 10000 -> timeout end.

Discarding junk messages
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Location transparency and 
distribution
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One needs another process’s pid to exchange messages with it. To  increase the flexibility of 
exchanging pids in open systems, it is possible to register processes with a symbolic name:

• register(Name, Pid): register the process Pid under Name; from now on, Name can be used wherever 
a pid is required

• unregister(Name): unregister the process under Name; when a registered process terminates, it 
implicitly unregisters as well

• registered(): list all names of registered processes
• whereis(Name): return pid registered under Name

In the generic server, we can add a registration function with name:

% start a server and register with ‘Name’

start(InitialState, Handler, Name) ->  

register(Name, start(InitialState, Handler)).

All other server functions can be used by passing Name for Server

Registered processes
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Message passing concurrency works in the same way independent of whether the 

processes run on the same computer or in a distributed setting

In Erlang, we can turn any application into a distributed one by running processes 

on different nodes:

• start an Erlang runtime environment on each node

• connect the nodes by issuing a ping

• load the modules to be execute on all nodes in the cluster

• for convenience, register the server processes

• to identify registered process Name running on a node node@net_address use the 

tuple {Name, 'node@net_address'} wherever you would normally use a 

registered name or pid

From concurrent to distributed
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In our simple experiments, the nodes are processes on the same physical local 
machine (IP address 127.0.0.1, a.k.a. local host), but the very same commands work 
on different machines connected by a  network

Distribution: setting up nodes
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Node server@127.0.0.1:

> erl -name ’server@127.0.0.1’

-setcookie math_cluster

s1>

Node client@127.0.0.1:

> erl -name ’client@127.0.0.1’

-setcookie math_cluster

c1>

(A cookie is an identifier that all nodes in the same connected group  share)

By using the flag setcookie we give a symbolic name that all the nodes in a group share

(only those nodes having the same cookie can interact - to avoid unwanted connections 

from processes in other nodes) 

mailto:Nodeserver@127.0.0.1
mailto:server@127.0.0.1
mailto:Nodeclient@127.0.0.1
mailto:client@127.0.0.1


Nodes are invisible to each other until a message is exchanged between them; after 

that, they are connected

Node client@127.0.0.1:

% send a ping message to connect client to server node

c1> net_adm:ping(’server@127.0.0.1’).   
pong % the nodes are now connected

% list connected nodes  

c2> nodes().  
[’server@127.0.0.1’]

% load module ‘ms’ in all connected nodes

c3> nl(ms).

abcast % the module is now loaded

Distribution: connect nodes and load modules
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We start the math server on the node server and register it under the  name mserver.

Then, we can issue request from the client node using

{mserver, 'server@127.0.0.1'} instead of pids.

The very same protocol works for an arbitrary number of client nodes

Distribution: server setup
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Node server@127.0.0.1:

s1> register(mserver,ms:start()).

true

% server started

% and registered

Node client@127.0.0.1:

c4> ms:factorial({mserver, ’server@127.0.0.1’}, 10).

3628800

c5> ms:status({mserver, ’server@127.0.0.1’}).

1

c6> ms:status({mserver, ’server@127.0.0.1’}).

1

mailto:Nodeserver@127.0.0.1
mailto:Nodeclient@127.0.0.1
mailto:server@127.0.0.1
mailto:server@127.0.0.1
mailto:server@127.0.0.1
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Synchronization problems with  
message-passing



• Barriers

• Resource allocator  

• Producer-consumer  

• Readers-writers  

• Dining philosophers

Today’s menu
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A gallery of synchronization problems

In today’s class, we go through several classical synchronization problems and 
solve them using processes and message passing

On the course website you can download fully working  
implementations of some of the problems

Solving these problems with message passing has a different style than using 
semaphores or monitors:

• Mutual exclusion is not an issue, since there are no shared variables

• Coordination is the main problem, which is achieved by  exchanging 
messages asynchronously

The solutions are in the style of servers, which run event-loop  functions that 
handle requests from clients thus coordinating them

A gallery of synchronization problems
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Barriers
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-module(barrier).

% initialize barrier for ‘Expected’ processes

init(Expected) -> todo.

% block at ‘Barrier’ until all processes have reached it

wait(Barrier) -> todo.

Reusable barrier: implement module barrier such that:

• A process blocks on wait until all processes have reached the Barrier

• After Expected threads have executed wait, the barrier is closed again

Reusable barriers – recap
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Processes continuously approach the barrier, which must guarantee  that 

they synchronize each access.

Processes at a reusable barrier

6

processk

process(Barrier) ->
% code before barrier

barrier:wait(Barrier) % synchronize at barrier

% code after barrier

process(Barrier).



The barrier process keeps track of the processes that have arrived at  the barrier:

• when a new process arrives, it sends an arrived message to the barrier; the barrier 
updates its list of arrived processes

• when the list of arrived processes is complete, the barrier sends a continue
message to all processes

• after notifying all processes, the barrier goes back to the initial state, ready for a 
new iteration

We implement the barrier’s event loop as a server function:

barrier(Arrived, Expected, PidRefs)

where Arrived processes have arrived so far, out of a total of Expected; PidRefs is 
a list of the pids and unique references of  arrived messages sent to the barrier 
(thus it has Arrivedelements)

Barrier process
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% event loop of barrier for ‘Expected’ processes

% Arrived: number of processes arrived so far

% PidRefs: list of {Pid, Ref} of processes arrived so far

barrier(Arrived, Expected, PidRefs) when Arrived =:= Expected ->  % all processes arrived

% notify all waiting processes:

[To ! {continue, Ref} || {To, Ref} <- PidRefs],

% reset barrier:

barrier(0, Expected, []);  

barrier(Arrived, Expected, PidRefs) ->

receive % still waiting for some processes

{arrived, From, Ref} ->

% one more arrived: add {From, Ref} to PidRefs list:

barrier(Arrived+1, Expected, [{From, Ref}|PidRefs])

end.

Arrived is redundant because it is equal to length(PidRefs); we keep it for clarity

The server function barrier
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List comprehension: Go through the list of all pairs of 

PidRefs, extract each component of the pair into To (process 

PId) and Ref (instance of the process arriving to barrier) and 

send a message to that particular instance with the message
continue



The function wait exchanges messages with the Barrier process running

barrier; it is used so that synchronizing processes do not need to know about

the format of exchanged messages

% block at ‘Barrier’ until all processes have reached it

wait(Barrier) ->

Ref = make_ref(),

% notify barrier of arrival

Barrier ! {arrived, self(), Ref},

% wait for signal to continue

receive {continue, Ref} -> through end.

The function wait

pid of process executing wait

dummy value
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Initializing a barrier consists of spawning a process running barrier

% initialize barrier for ‘Expected’ processes

init(Expected) ->

spawn(fun () -> barrier(0, Expected, []) end).

The caller gets the barrier’s pid, which should be distributed to all processes that 

want to use the barrier

Barrier initialization

initially, no processes have arrived yet
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Resource allocator
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An allocator grants users exclusive access to a number of resources:

• users asynchronously request resources and release them back

• the allocator ensures resources are given exclusively to one user at a time, and 
keeps tracks of how many resources are available

-module(allocator).

% register ‘allocator’ with list of Resources

init(Resources) -> todo.

% get ‘N’ resources from ‘allocator’

request(N) -> todo.

% release ‘Resources’ to ‘allocator’

release(Resources) -> todo.

Resource allocator problem: implement allocator such that:

• an arbitrary number of users can access the allocator

• users are granted exclusive access to resources

Resource allocator: the problem – recap

12



userk

user() ->

% how many resources are needed?

N = howMany(),

% get resources from allocator

Resources = allocator:request(N),

% do something with resources

use(Resources),

% release resources  

allocator:release(Resources),  

user().

Users
Users continuously and asynchronously access the allocator, which  must guarantee 

proper synchronization
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The allocator process keeps track of the list of available resources:

• when a process requests some resources that are available, the allocator sends a

granted message to the process, and removes those just granted from the list of

available resources

• when a process releases some resources, the allocator sends a released message

to the process, and adds those just released to the list of available resources

• requests that exceed the availability implicitly queue in the allocator’s mailbox;

they will be served as soon as enough resources are available

We implement the allocator’s event loop as a server function:

allocator(Resources)

where Resources is the list of available resources

Allocator process
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allocator(Resources) ->

% count how many resources are available

Available = length(Resources),

receive

% serve requests if enough resources are available

{request, From, Ref, N} when N =< Available ->

% Granted ++ Remaining =:= Resources

% length(Granted) =:= N

{Granted, Remaining} = lists:split(N, Resources),

% send resources to requesting process

From ! {granted, Ref, Granted},

% continue with Remaining resources

allocator(Remaining);

The server function allocator: handling requests

does not match if N > Available

15

[Continue in next slide…]



allocator(Resources) ->

% count how many resources are available

Available = length(Resources),

receive

% serve requests: previous slide...

% serve releases

{release, From, Ref, Released} ->

% notify releasing process

From ! {released, Ref},

% continue with previous and released resources

allocator(Resources ++ Released)

end.

The server function allocator: handling releases

16



The functions request and release exchange messages with the process registered 

as allocator; they are used so that synchronizing processes do not need to know 

about the format of exchanged messages

% get ‘N’ resources from ‘allocator’; block if not available

request(N) ->

Ref = make_ref(),

allocator ! {request, self(), Ref, N},

receive {granted, Ref, Granted} -> Granted end.

% release ‘Resources’ to ‘allocator’

release(Resources) ->  

Ref = make_ref(),

allocator ! {release, self(), Ref, Resources},

receive {released, Ref} -> released end.

The functions requestand release
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Producer-consumer
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-module(buffer).

% initialize buffer with size ‘Bound’

init_buffer(Bound) -> todo.

% put ‘Item’ in ‘Buffer’; block if full

put(Buffer, Item) -> todo.

% get item from ‘Buffer’; block if empty

get(Buffer) -> todo.

Producer-consumer problem: implement buffer such that:

• producers and consumer access the buffer atomically

• consumers block when the buffer is empty

• producers block when the buffer is full (bounded buffer variant)

Producer-consumer: the problem – recap
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Producers and consumers continuously and asynchronously access the buffer, which 

must guarantee proper synchronization

Note that atomic access is not an issue with processes: a single sequential process 

will actively modify the content of the buffer in response to messages sent by other

processes

Producers and consumers

producern

producer(Buffer) ->

% create a new item

Item = produce(),  

buffer:put(Buffer, Item),  

producer(Buffer).

consumerm

consumer(Buffer) ->

Item = buffer:get(Buffer),

% do something with ‘item’  

consume(Item),  

consumer(Buffer).

20



The buffer process keeps track of the items stored in the buffer:

• when a process asks to get one item and the buffer is not empty, the buffer sends 
an item message to the process, and removes the item just taken from the buffer list

• when a process asks to put one item and the buffer is not full, the buffer sends a 
done message to the process, and adds the item just sent to the buffer list

• as in the allocator example, requests that cannot be satisfied (get with empty buffer, 
and put with full buffer) implicitly queue in the allocator’s mailbox; they will be served 
as soon as it is possible

We implement the buffer’s event loop as a server function:

buffer(Content, Count, Bound)

where Content is the list of Count available resources and Bound is the buffer’s size

Buffer process: bounded buffer
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buffer(Content, Count, Bound) ->

receive

% serve gets when buffer not empty

{get, From, Ref} when Count > 0 ->

[First|Rest] = Content,  % match first item

From ! {item, Ref, First}, % send it out

buffer(Rest, Count-1, Bound); % remove it from buffer

% serve puts when buffer not full

{put, From, Ref, Item} when Count < Bound ->

From ! {done, Ref},            % send ack

buffer(Content ++ [Item], Count+1, Bound) % add item to end

end.

The server function buffer: handling requests

Starvation not possible: when buffer is neither full nor empty, requests are served in the order they arrive 

If buffer fills up, put is disabled; after finitely many gets are served, buffer no longer full, which disables 

get, thus allowing put to be served

Similarly, put activates getwhen the buffer is empty

22
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In an unbounded buffer, the condition Count < Bound alwaysholds:

% serve puts

{put, From, Ref, Item} when Count < Bound ->

% ...

Instead of removing the condition (as well as all the occurrences of Bound), we can 

take advantage of Erlang’s order between numbers and atoms (every number is less 

than any atom): setting Bound to infinity ensures that Count < Bound will always 

evaluate to true

This way, we can use the very same implementation both in the bounded and in the 

unbounded case

Buffer process: unbounded buffer
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The functions get and put exchange messages with the process with pid Buffer; 

they are used so that synchronizing processes do not need to know about the format 

of exchanged messages

% get item from ‘Buffer’; block if empty

get(Buffer) ->

Ref = make_ref(),

Buffer ! {get, self(), Ref},

receive {item, Ref, Item} -> Item end.

% put ‘Item’ in ‘Buffer’; block if full

put(Buffer, Item) ->  

Ref = make_ref(),

Buffer ! {put, self(), Ref, Item},

receive {done, Ref} -> done end.

The functions getand put
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Readers-writers
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-module(board). 

init(Name) -> todo.  % register board with ‘Name’

begin_read(Board) -> todo.  % get read access to ‘Board’

end_read(Board) -> todo. % release read access to ‘Board’

begin_write(Board) -> todo. % get write access to ‘Board’

end_write(Board) -> todo. % release write access to ‘Board’

Readers-writers problem: implement board such that:
• multiple reader can operate concurrently

• each writer has exclusive access

Invariant: #WRITERS = 0 ∨ (#WRITERS = 1 ∧ #READERS = 0)

Other properties that a good solution should have:

• support an arbitrary number of readers and writers

• no starvation of readers or writers

Readers-writers: the problem – recap
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Readers and writers continuously and asynchronously try to access the board, which 
must guarantee proper synchronization

Readers and writers

readern

reader(Board) ->

board:begin_read(Board),

% read messages  

board:end_read(Board),  

reader(Board).

writerm

writer(Board) ->

board:begin_write(Board),

% write messages  

board:end_write(Board),  

writer(Board).
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A first solution to the readers-writers problem can extend the idea behind the allocator: serve 

requests when possible and let other requests queue in the mailbox

The board process keeps track of number of readers and writers active on the board:

• when a new request to begin reading arrives and no writer is active, the board sends an OK 

to read message to the requester,  and increases the count of readers;

• when a new request to begin writing arrives and no readers or writers are active, the board

sends an OK to write message to the requester, and increases the count of writers;

• conversely, when notifications to end read or end write arrive, the board decreases the count 

of readers or writers;

• requests that cannot be served implicitly queue in the board’s mailbox; they will be served 

as soon as the board is freed

Board process – first version
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% ‘Readers’ active readers and ‘Writers’ active writers

board_RoW(Readers, Writers) ->

receive

{begin_read, From, Ref} when Writers =:= 0 ->  

From ! {ok_to_read, Ref},  

board_RoW(Readers+1, Writers);

{begin_write, From, Ref} when (Writers =:= 0) and (Readers =:= 0) ->  

From ! {ok_to_write, Ref},

board_RoW(Readers, Writers+1);

{end_read, From, Ref} ->  From ! {ok, Ref},

board_RoW(Readers-1, Writers);

{end_write, From, Ref} ->  From ! {ok, Ref},

board_RoW(Readers, Writers-1)

end.

The server function board_RoW – first version
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In board_RoW, the “waiting conditions” follow directly from the invariant; thus, the solution 

is correct in that it ensures mutual exclusion according to the readers-writers invariant

However, it gives priority to readers over writers:

• new reading requests get served without waiting as long as a reader is active

• writing requests waiting in the mailbox have to wait until the last reader sends an 

end_read message

• as long as reading requests keep arriving and queuing in the mailbox, the waiting 

writing requests will never execute

Exchanging the order of clauses in the receive does not solve the problem (nor does it 

give priority to writers over readers): readers can still starve writers because the 

condition for writing is stronger than the condition for reading, and writers cannot 

maintain their condition without the cooperation of readers

Readers-writers: the first version prioritizes readers
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We could achieve fairness by replicating the pattern behind the solution with monitors

• the board keeps track of the lists of pending read and write requests

• read requests are served as long as there are no active writers and no pending write

requests

• notifications to end_write let in one pending read request, or one waiting write request 

if there are no reading requests

This approach works, but it is quite cumbersome to implement with message passing 

Main issue: it requires a duplication of the information that is already implicit in the 

mailbox queue, which complicates ensuring that messages are processed exactly once

Readers-writers: towards a fair solution
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We implement a fair solution where the board can be in one of two macro states:

empty: there are neither active readers nor active writers

readers: there are some active readers and no active writers

When the board is in macro state empty:

• read requests are served immediately, then the board switches to macro state readers

• write requests are served immediately and synchronously: the board waits until writing ends, 

then the board is empty again

When the board is in macro state readers:

• read requests are served immediately, and the macro state remains readers

• write requests are served as soon as possible: the board waits until all reading ends, then 

the writing request is served  synchronously, and then the board is empty again

Readers-writers: fair solution
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This state/transition diagram formalizes the solution illustrated informally above 

The partitioning of states in the diagram according to their color corresponds to the macro 

states empty and readers

Readers-writers: fair solution (cont’d)

R = 0

empty

writing

readers(R)

readers(R)writing

begin_read,

R := R + 1

end_read,

R := R − 1

begin_write

R := 1

begin_write end_write

end_write
R = 0

begin_read,

end_read,

R := R − 1
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By inspecting the diagram: it guarantees fairness provided outgoing transitions from the same 
state have the same priority (they are served in arrival order)

The solution in Erlang implements the behavior of this diagram, using two server functions 
empty_board and readers_board, which call each other

Readers-writers: fair solution
(cont’d)
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R = 0

empty

writing

readers(R)

readers(R)writing

begin_read,

R := R + 1

end_read,

R := R − 1

begin_write

R := 1

begin_write end_write

end_write
R = 0

begin_read,

end_read,

R := R − 1



% board with no readers and no writers

empty_board() ->

receive

% serve read request

{begin_read, From, Ref} ->

From ! {ok_to_read, Ref},  % notify reader

readers_board(1);   % board has one reader

% serve write request synchronously

{begin_write, From, Ref} ->

From ! {ok_to_write, Ref}, % notify writer

Receive        % wait for writer to finish

{end_write, _From, _Ref} ->

empty_board() % board is empty again

end

end.

The server function empty_board
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R = 0

empty

writing

readers(R)

readers(R)writing

begin_read,

R := R + 1

end_read,

R := R − 1

begin_write

begin_read,

R :=1

begin_write end_write

end_write

end_read,

R := R − 1

R = 0



% board with no readers (and no writers)

readers_board(0) -> empty_board();

% board with ‘Readers’ active readers

% (and no writers)

readers_board(Readers) ->

receive

% serve write request

{begin_write, From, Ref} ->

% wait until all ‘Readers’ have finished

[receive {end_read, _From, _Ref} -> end_read end || _ <- lists:seq(1, Readers)],

From ! {ok_to_write, Ref},  % notify writer

receive % wait for writer to finish

{end_write, _From, _Ref} -> empty_board()

end; % board is empty again

The server function readers_board: serving write requests
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R = 0

empty

writing

readers(R)

readers(R)writing

begin_read,

R := R + 1

end_read,

R := R − 1

begin_write

begin_read,

R :=1

begin_write end_write

end_write

end_read,

R := R − 1

R = 0

Take all active readers and wait

till all finiish and send end_read

to all (one by one)

[Continue in next slide…]



Now the order of clauses in the receive does not matter: requests are processed in the 
mailbox order because none of the three clauses (begin_read, end_read, and begin_write) has 
a condition stronger than the others

readers_board(Readers) ->

receive

% serve write requests: previous slide...

% serve read request

{begin_read, From, Ref} ->  

From ! {ok_to_read, Ref},  % notify reader

readers_board(Readers+1); % board has one more reader

% serve end read

{end_read, _From, _Ref} ->  

readers_board(Readers-1) % board has one less reader

end.

The server function readers_board: serving read requests
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Now the order of clauses in the receive does not matter: requests are processed in the 
mailbox order because none of the three clauses (begin_read, end_read, and begin_write) has 
a condition stronger than the others

readers_board(Readers) ->

receive

% serve write requests: previous slide...

% serve read request

{begin_read, From, Ref} ->  

From ! {ok_to_read, Ref},  % notify reader

readers_board(Readers+1); % board has one more reader

% serve end read

{end_read, _From, _Ref} ->  

readers_board(Readers-1) % board has one less reader

end.

The server function readers_board: serving read requests
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R = 0

empty

writing

readers(R)

readers(R)writing

begin_read,

R := R + 1

end_read,

R := R − 1

begin_write

begin_read,

R :=1

begin_write end_write

end_write

end_read,

R := R − 1

R = 0



The functions begin_read, end_read, begin_write, and end_write exchange messages

with the board server process with pid Board; they are used so synchronizing 

processes don’t need to know about the format of exchanged messages

For example:

% get read access to ‘Board’

begin_read(Board) ->  

Ref = make_ref(),

Board ! {begin_read, self(), Ref},

receive

{ok_to_read, Ref} -> ok_to_read

end.

The behavior of the board process changes over time, but  the pid Board stays the same

The functions begin_read, end_read, begin_write, and end_write
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Initializing a board consists of spawning a process running empty_board.

% initialize empty board and register with ‘Name’

init(Name) ->

register(Name, spawn(fun empty_board/0)).

After initialization, Name can be used to access theboard

Board initialization
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Dining philosophers
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-module(philosophers).

% set up table of ‘N’ philosophers

init(N) -> todo.

% philosopher picks up ‘Fork’

get_fork(Fork) -> todo.

% philosopher releases ‘Fork’

put_fork(Fork) -> todo.

Dining philosophers: the problem – recap

Dining philosophers problem: implement philosophers such that:

• forks are held exclusively by one philosopher at a time

• each philosopher only accesses adjacent forks

• no philosopher starves
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We could replicate solutions based on locking; e.g. setting up a server for each pair of forks, 

which grants access to both forks atomically to the first philosopher that sends a request

Instead, let’s explore an approach that is more congenial to message passing

A waiter process supervises access to the table

Each philosopher asks the waiter for permission to sit before picking up both forks and notifies 

the waiter after putting down both forks

As long as the waiter allows strictly fewer philosophers than the total number of forks to sit 

around the table at the same time, deadlock and starvation are avoided

The waiter’s interface consists of two functions:

% ask ‘Waiter’ to be seated; may wait

sit(Waiter) -> todo.

% ask ‘Waiter’ to leave

leave(Waiter) -> todo.

Philosophers with waiter
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Philosophers continuously alternate between thinking and eating, while coordinating 

with the waiter

Philosophers

philosopherk

% Forks: fork#{left, right} of fork pids

% Waiter: waiter process

philosopher(Forks, Waiter) ->  think(),

sit(Waiter), % ask to be seated  

get_fork(Forks#forks.left), % pick up left fork  

get_fork(Forks#forks.right), % pick up right fork  

eat(),

put_fork(Forks#forks.left), % put down left fork  

put_fork(Forks#forks.right), % put down right fork  

leave(Waiter), % notify leaving  

philosopher(Forks, Waiter).
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The waiter process keeps track of how many philosophers are eating at the table:

• when a philosopher asks to be seated and table is not full, waiter sends an 

ok_to_sit message to the philosopher and increases the count of eating 

philosophers

• when a philosopher notifies leaving, waiter sends an ok_to_leave message to the 

philosopher and decreases the  count of eating philosophers

• requests to sit that arrive when the table is full queue in the waiter’s mailbox; they 

will be served as soon as a seat frees up

We implement the waiter’s event loop as a server function:

waiter(Eating,Seats)

where Eating philosophers are sitting and eating, out of a total of Seats available 

seats (Seats is the number of seats that can be  occupied at the same time)

Waiter process
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waiter(Eating, Seats) ->

receive

% serve as long as seats are available

{sit, From, Ref} when Eating < Seats ->

io:format("~p eating (~p at table)~n", [From, Eating+1]),

From ! {ok_to_sit, Ref},

waiter(Eating+1, Seats); % one more eating

% can leave at any time

{leave, From, Ref} ->

io:format("~p leaving (~p at table)~n", [From, Eating-1]),  

From ! {ok_to_leave, Ref},

waiter(Eating-1, Seats) % one less eating

end.

(Printing the table’s state at every change is for debugging purposes)

The server function waiter
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Two handler functions: sit and leave (they hide the format of messages exchanged between waiter 

and philosophers)

% ask ‘Waiter’ to be seated; may wait

sit(Waiter) ->

Ref = make_ref(),

Waiter ! {sit, self(), Ref},

receive {ok_to_sit, Ref} -> ok end.

% ask ‘Waiter’ to leave

leave(Waiter) -> 

Ref = make_ref(),

Waiter ! {leave, self(), Ref},

receive {ok_to_leave, Ref} -> ok end.

The functions sitand leave
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Each fork has a fork process which keeps track of whether the fork is free (on the table) 

or held by a philosopher

The server function for a fork can be in two states (whether the fork is held or not)

For simplicity, put requests don’t get an acknowledgment; they take effect immediately

The fork processes and functions

% a fork not held by anyone

fork() ->

receive

{get, From, Ref} ->
From ! {ack, Ref},  
fork(From) % fork held

end.

% a fork held by Owner

fork(Owner) ->

receive

{put, Owner, _Ref} ->  
fork() % fork not held

end.
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The structure of get_fork and put_fork are similar to things we’ve seen:

% pick up ‘Fork’; block until available

get_fork(Fork) -> 
Ref = make_ref(),
Fork ! {get, self(), Ref},
receive {ack, Ref} -> ack end.

% put down ‘Fork’

put_fork(Fork) -> 
Ref = make_ref(),
Fork ! {put, self(), Ref}.

The functions get_fork andput_fork
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Initializing a table consists of spawning the processes running waiter, fork and 
philosopher, as well as connecting each philosopher to their pair of forks

% set up table of ‘N’ philosophers

init(N) ->

% spawn waiter process

Waiter = spawn(fun () -> waiter(0, N-1) end),  

Ids = lists:seq(1,N), % [1, 2, ..., N]

% spawn fork processes

Forks = [spawn(fun fork/0) || _ <- Ids],

% spawn philosopher processes

[spawn(fun () ->

Left = lists:nth(I, Forks),

Right = lists:nth(1+(I rem N), Forks), % 1-based indexes

philosopher(#forks{left=Left, right=Right}, Waiter)

end) || I <- Ids].

Table initialization
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at most N-1 eating philosophers at once

Different from how we numbered philosophers and 

forks in previous lecture: we start from 1 instead of 

0, so the forks are also numbered 1..N 

First get each one of the Ids from the list Ids, and 

spawn a corresponding fork for that ID
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A number of factors challenge designing correct and efficient parallelizations:

• sequential dependencies

• synchronization costs

• spawning costs

• error proneness and composability

In this lecture, we focus on reducing the synchronization costs associated with locking

Synchronization costs
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The burden of locking

Linked set implementations

Nodes, lists, and sets

Sequential access

Parallel linked sets

Coarse-grained locking

Fine-grained locking

Optimistic locking

Lazy node removal

Lock-free access

Today’s menu
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The burden of locking
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Standard techniques for concurrent programming are ultimately based on locks

Programming with locks has several drawbacks:

• Performance overhead

• Lock granularity is hard to choose:

• not enough locking: race conditions

• too much locking: not enough parallelism

• Risk of deadlock and starvation

• Lock-based implementations do not compose

• Lock-based programs are hard to maintain and modify

Message-passing programming is higher-level, but it also inevitably incurs on 

synchronization costs – of magnitude comparable to those associated with locks

The trouble with locks
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Lock-free programming takes a fresh look at the problems of concurrency and 

tries to dispense with using locks altogether

• Lock-based programming is pessimistic: be prepared for the worst possible
conditions:

if things can go wrong, they will

• Lock-free programming is optimistic: do what you have to do without worrying 

about race conditions:

if things go wrong, just try again

Breaking free of locks

6



Lock-free programming relies on:

• using stronger primitives for atomic access
• building optimistic algorithms using those primitives

Compare-and-set operations are an example of stronger primitives:

public class AtomicInteger {

// atomically set to ‘update’ if current value is ‘expect’

// otherwise do not change value and return false

boolean compareAndSet(int expect, int update)

}

To update an AtomicInteger variable k:

do { // keep trying until no one changes k in between

int oldValue = k.get();

int newValue = compute(oldValue);

} while (!k.compareAndSet(oldValue, newValue));

Lock-free programming

7

• Test-and-set: modifies the contents of a memory

location and returns its old value as a single

atomic operation

• Compare-and-set: atomically compares the 

contents of a memory location to a given value

and, only if they are the same, modifies the 

contents of that memory location to a given new 

value



Diagram by Avadlam3, Wikipedia (2016).

CAS operations are not free: they involve memory barrier operations to synchronize caches
(∼100-1000 cycles)

Compare-and-set is not free

8

You need to add synchronization caches to 

ensure memory consistency (which takes

between 100 and 1000 cycles) 

https://en.wikipedia.org/wiki/Cache_hierarchy
http://sigops.org/s/conferences/sosp/2013/papers/p33-david.pdf


Compare-and-set is not free

Chart by ayshen, based on Peter Norvig’s “Teach Yourself Programming in Ten Years”.

CAS operations are not free: they involve memory barrier operations to synchronize caches
(∼100-1000 cycles)
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Doing a compare-and-set

operation could be as 

expensive as sending 1 KB 

data over a 1Gbps network

https://gist.github.com/ayshen
http://norvig.com/21-days.html#answers
http://sigops.org/s/conferences/sosp/2013/papers/p33-david.pdf


Two classes of lock-free algorithms, collectively called non-blocking:

• lock-free: guarantee system-wide progress: infinitely often, some process makes 

progress

• wait-free: guarantee per-process progress: every process eventually makes

progress

Which one is stronger?

Wait-free is stronger than lock-free:

• Lock-free algorithms are free from deadlock

• Wait-free algorithms are free from deadlock and starvation

Lock-free vs. wait-free
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Programming correctly without using locks is challenging

Instead of trying to develop general techniques, we focus on implementing reusable 

data structures that make minimal usage of locking 

The effort involved in developing correct implementations pays off since very many 

applications can then use such thread-safe data structure implementations to 

synchronize safely and implicitly by accessing the structures through their APIs

A data structure is thread safe if its operations are free from 

race conditions when executed by multi-threaded clients

Our lock-free and wait-free algorithms are some of those used in the implementations 

of thread-safe structures in java.util.concurrent (non-blocking data structures

atomically accessible in parallel)

Thread-safe data structures
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Race condition: the correctness of the program depends on the execution



Linked set implementations
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In the rest of this lecture, we go through several implementations of linked lists that 

support parallel access; the implementations differ in how much locking they use to 

guarantee correctness and, correspondingly, in how much parallelism they allow

We will use pseudo-code that is very close to regular Java syntax but occasionally 

takes some liberties to simplify the notation 

On the course website you can download fully working implementations of some of the

classes

Parallel linked lists
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Linked set implementations
Nodes, Lists, and Sets
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We use linked lists to implement a set data structure with interface:

public interface Set<T>

{

// add ‘item’ to set; return false if ‘item’ is already in the set

boolean add(T item);

// remove ‘item’ from set; return false if ‘item’ not in the set

boolean remove(T item);

// is ‘item’ in set?

boolean has(T item);

}

The interface of a set
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The underlying implementations of sets use singly-linked lists, which are made of chains of 

nodes - Every node:

• stores an item – its value
• has a unique key – the value’s hash code
• points to the next node in the chain

In the graphical representations of nodes, we do not distinguish between items and their 

keys – and represent both by characters:

interface Node<T>
{

// value of node

T item();
// hash code of value

int key();
// next node in chain

Node<T> next();
}

Nodes
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A list with special head and tail nodes implements a set:

• the elements of the set are items in different nodes

• to facilitate searching, the nodes are maintained sorted in ascending key order

• to facilitate searching, the head has the smallest possible key, the tail has the largest

possible key, and all elements have finitely many keys that are in between

For example, the set {b, e, a, f, g} is implemented by:

Relaxing these assumptions is possible at the cost of complicating the implementations 

Lists as chains of nodes
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Linked set implementations
Sequential access
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We start with a standard linked-list-based implementation of sets, which only works for 

sequential access

class SequentialSet<T> implements Set<T>

{
// nodes at beginning and end

protected Node<T> head, tail;

// empty set

public SequentialSet() {
head = new SequentialNode<>(Integer.MIN_VALUE);   // smallest key

tail = new SequentialNode<>(Integer.MAX_VALUE);   // largest key

head.setNext(tail);
}

}

Sequential set: basic linked implementation

Empty set: head tail

19

Only visible within the class, 

not from any other class 

(including subclasses)

In Java: -231

In Java: 231 - 1



A node’s implementation uses private attributes with getters and setters

A bit tedious (we could just let the set implementations access the attributes directly)… 

… but it leads to nicer designs in the variants of set implementations we describe later

Nodes in a sequential set

20

class SequentialNode<T> implements Node<T> {
private T item;  // value stored in node

private int key; // hash code of item

private Node<T> next; // next node in chain

// getters:

T item() { return item; }

int key() { return key; }

Node<T> next() { return next; }

// setters:

void setItem(T item) { this.item = item; }

void setKey(int key) { this.key = key; }

void setNext(Node<T> next) { this.next = next; }

}



Thanks to the boundary keys chosen for head and tail, searching for any value key returns a valid 

position in the list

Finding a position inside a list

a b e f ghead tail

pred curr

21

Since we maintain nodes in order of key, and every item has a unique key, we can 
search for the position of any given key by going through the list from head to tail

The method find implements this frequently used operation of finding the position of a 
key inside a list

The position of key is a pair (pred,curr) of adjacent nodes, such that 

pred.key() < key <= curr.key()

For example, the position of c

in the following list is:



// first position from ‘start’ whose key is no smaller than ‘key’

protected Node<T>, Node<T> find(Node<T> start, int key) {

Node<T> pred, curr; // predecessor and current node in iteration

curr = start; // from start node

do {
pred = curr; curr = curr.next(); // move to next node

} while (curr.key() < key); // until curr.key >= key

return (pred,curr); // return position

Finding a position inside a list

pseudo-code for: new Position<T>(pred,curr)

ea bhead f g tail

pred curr

e
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A set has item if and only if item is (equal to) the first element in the set whose key is greater 
than or equal to item’s

// is ‘item’ in set?

public boolean has(T item) {
int key = item.key(); // item’s key

// find position of key from head:

Node<T> pred, curr = find(head, key);

// curr.key() >= key

return curr.key() == key; // item can only appear here!

}

Sequential set: method has

ea bhead f g tail

pred curr

24

has(e) = true

has(c) = false



A new item must be added between pred and curr, where (pred,curr) is item’s 
position in the list

public boolean add(T item) {
Node<T> node = new Node<>(item); // new node

Node<T> pred, curr = find(head, item.key()); // curr.key >= item.key()  

if (curr.key() == item.key()) // item already in set 

return false; 
else // item not in set: add node between pred and curr

{ 
node.setNext(curr); 
pred.setNext(node); 
return true;

}
}

Sequential set: method add

c

a bhead e f g tail

c

pred curr
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node:



An element item is removed from a set by redirecting pred.next to skip over curr, 
where (pred,curr) is item’s position in the list

public boolean remove(T item) {
Node<T> pred, curr = find(head, item.key());

// curr.key() >= item.key()

if (curr.key() > item.key()) return false; // item not in set

else // item in set: remove node curr

{ 
pred.setNext(curr.next()); 
return true;

}

}

Sequential set: method remove

a bhead f g taile

pred curr
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If multiple threads are active on the same instance of SequentialSet, they can easily 

interfere with each other’s operations (and possibly leave the set in an inconsistent state)

For example, if thread t runs remove(e) while thread u runs add(c): in some 

interleavings, remove is reverted:

Sequential set does not work under concurrency

currpred c

a bhead e f g tail

pred curr
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If multiple threads are active on the same instance of SequentialSet, they can easily 

interfere with each other’s operations (and possibly leave the set in an inconsistent state)

For example, if thread t runs remove(e) while thread u runs add(c): in some 

interleavings, remove is reverted:

Sequential set does not work under concurrency

currpred c

a bhead e f g tail

pred curr
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Parallel linked sets
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Parallel linked sets
Coarse grained locking
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A straightforward way to make SequentialSet work correctly under concurrency is

using a lock to ensure that at most one thread at a time is operating on the structure

class CoarseSet<T> extends SequentialSet<T>

{
// lock controlling access to the whole set

private Lock lock = new ReentrantLock();

// overriding of add, remove, and has

Every method add, remove, and has simply works as follows:

1. acquires the lock on the set

2. performs the operation as in SequentialSet

3. releases the lock on the set

Concurrent set with coarse-grained locking
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public boolean add(T item) {

lock.lock(); // lock whole set

try {

return super.add(item); // execute ‘add’ while locking

} finally {

lock.unlock(); // done: release lock

}

}

Coarse-locking set: method add

node:

a bhead e f g tail

c

pred curr

c
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Coarse-locking set: method remove

a bhead

pred curr

f g taile

public boolean remove(T item) {

lock.lock(); // lock whole set

try {

return super.remove(item); // execute ‘remove’ while locking

} finally {

lock.unlock(); // done: release lock

}

}
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Coarse-locking set: method has

a bhead e f g tail

pred currpred curr

public boolean has(T item) {

lock.lock(); // lock whole set

try {

return super.has(item); // execute ‘has’ while locking

} finally {

lock.unlock(); // done: release lock

}

}
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Pros:

• obviously correct – it avoids race conditions and deadlocks

• if the lock is fair, so is access to the set

• if contention is low (not many threads accessing the set concurrently), CoarseSet

is quite efficient

Cons:

• access to the set is essentially sequential – missing opportunities for parallelization

• if contention is high (many threads accessing the set concurrently), CoarseSet

is quite slow

Coarse-locking set: pros and cons
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Can we reduce the size of the critical sections by executing find without locking, and 

then acquiring the lock only before modifying the list? 

No, because the list may be modified between when a thread performs find and when 

it acquires the lock

For example, suppose thread t runs remove(e) while thread u runs add(c), and t 
acquires the lock first:

Locking after finding?

currpred c

a bhead e f g tail

pred curr
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Parallel linked sets
Fine grained locking
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Rather than locking the whole linked list at once, we add a lock to each node

Then, threads only lock the individual nodes on which they are operating

public class FineSet<T> extends SequentialSet<T>

{

// empty set

public FineSet() {

head = new LockableNode<>(Integer.MIN_VALUE); // smallest key

tail = new LockableNode<>(Integer.MAX_VALUE); // largest key

head.setNext(tail);

}

// overriding of find, add, remove, and has

Concurrent set with fine-grained locking
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Each node includes a lock object, and lock and unlock methods that access the lock

class LockableNode<T> extends SequentialNode<T>

{

private Lock lock = new ReentrantLock();

void lock() { lock.lock(); } // lock node

void unlock() { lock.unlock(); } // unlock node

}

Nodes in a fine-locking set
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We have seen (in CoarseSet) that we have to lock as soon as we start executing find

Thus, we start locking the head node and pass the lock along the chain of nodes

How many nodes do we have to hold locked at once? Even though pred’s node is 

the only node that is actually modified, only locking pred is not enough

For example, if thread t runs remove(e) while thread u runs remove(b), it may happen 
that only b’s removal takes place:

How many nodes do we have to lock?

a bhead

pred curr

f g taile

currpred
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Problem: we may lock both pred and curr (pred) at once



// find while locking pred and curr, return locked position

protected Node<T>, Node<T> find(Node<T> start, int key) {
Node<T> pred, curr; // predecessor and current node in iteration

pred = start; //  from start node

curr = start.next(); 
pred.lock(); // lock pred node

curr.lock(); // lock curr node

while (curr.key < key) {
pred.unlock(); // unlock pred node

pred = curr; 
curr = curr.next(); // move to next node

curr.lock(); // lock next node

} // until curr.key >= key

return (pred, curr); // return position

}

Fine-locking set: method find

pseudo-code for: new Position<T>(pred, curr)

a b e f ghead tail

pred curr
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NO!

A thread may interleave here 

and remove the current node 

before the lock is performed 

Does it work in 

all cases?

(First Attempt!)



// find while locking pred and curr, return locked position

protected Node<T>, Node<T> find(Node<T> start, int key) {
Node<T> pred, curr; // predecessor and current node in iteration

pred = start; //  from start node

pred.lock(); // lock pred node

curr = start.next(); 
curr.lock(); // lock curr node

while (curr.key < key) {
pred.unlock(); // unlock pred node

pred = curr;
curr = curr.next(); // move to next node

curr.lock(); // lock next node

} // until curr.key >= key

return (pred, curr); // return position

}

Fine-locking set: method find
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Now the removal cannot take 

place since the only way to 

remove the current node is by 

having a lock on both pred and 

curr (but the current node 

holds the lock on pred so no 

other node can have it)



The lock acquisition protocol used by find in FineSet is called hand-over-hand

locking or lock coupling

• Always keep at least one node locked to prevent interference between threads; otherwise:

• Locking two nodes at once is sufficient to prevent problems with conflicting operations: threads 

proceed along the linked list in order, without one thread “overtaking” another thread that is 

further out

• The protocol ensures locks are acquired by all threads in the same order, avoiding deadlocks

Hand-over-hand locking

a bhead f g taile

pred currThis node has been removed!
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The lock acquisition protocol used by find in FineSet is called hand-over-hand

locking or lock coupling

• Always keep at least one node locked to prevent interference between threads; otherwise:

• Locking two nodes at once is sufficient to prevent problems with conflicting operations: threads 

proceed along the linked list in order, without one thread “overtaking” another thread that is 

further out

• The protocol ensures locks are acquired by all threads in the same order, avoiding deadlocks

Hand-over-hand locking

a bhead f g taile

pred currThis node has been removed!
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public boolean add(T item) {

Node<T> node = new LockableNode<>(item); // new node

try { // find with hand-over-hand locking

// the first position such that curr.key() >= item.key()

Node<T> pred, curr = find(head, item.key()); // locking

... // add node as in SequentialSet, while locking

} finally { pred.unlock(); curr.unlock(); } // done: unlocking

}

Fine-locking set: method add

node:

a bhead e f g tail

c

pred curr

c
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public boolean remove(T item) {

try { // find with hand-over-hand locking

// the first position such that curr.key() >= item.key()

Node<T> pred, curr = find(head, item.key()); // locking

... // remove node as in SequentialSet, while locking

} finally { pred.unlock(); curr.unlock(); } // done: unlocking

}

Fine-locking set: method remove

a bhead

pred curr

f g taile
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public boolean has(T item) {

try { // find with hand-over-hand locking

// the first position such that curr.key() >= item.key()

Node<T> pred, curr = find(head, item.key()); // locking

... // check node as in SequentialSet, while locking

} finally { pred.unlock(); curr.unlock(); } // done: unlocking

}

Fine-locking set: method has

a bhead e f g tail

pred currpred curr
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Pros:

• if locks are fair, so is access to the set, because threads proceed along the list one 

after the other without changing order

• threads operating on disjoint portions of the list may be able to operate in parallel

Cons:

• it is still possible that one thread prevents another thread from operating in parallel on 

a disjoint portion of the list – for example, if one thread wants to access the end of the 

list but another thread blocks it while locking the beginning of the list

• the hand-over-hand locking protocol may be quite slow, as it involves a significant 

number of lock operations

Fine-locking set: pros and cons
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Parallel linked sets
Optimistic locking
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Let us revisit the idea of performing find without locking

We have  seen that problems may occur if the list is modified between when a threads 
finds a position and when it acquires locks on that position  

Thus, we validate a position after finding it and while the nodes are locked, to verify 
that no interference took place

Concurrent set with optimistic locking

public class OptimisticSet<T> extends SequentialSet<T>

{

public FineSet()

// smallest key

// largest key

{ head = new ReadWriteNode<>(Integer.MIN_VALUE);  

tail = new ReadWriteNode<>(Integer.MAX_VALUE);  

head.setNext(tail); }

// is (pred, curr) a valid position?

protected boolean valid(Node<T> pred, Node<T> curr) // ...

// overriding of find, add, remove, and has
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Since we need to be able to follow the chain of next references without locking, 
attribute next must be declared volatile in Java – so that modifications to it (which 
occur while the node is locked) are propagated to all threads (even if they have not 
locked a node)

• Other than for this detail, a ReadWriteNode is the same as a LockableNode

• With a little abuse of notation, we can pretend that ReadWriteNode inherits from 
LockableNode and overrides its nextattribute

Overriding of attributes is however not possible in Java (shadowing takes place  
instead); the actual implementation that we make available does not reuse 
LockableNode’s code through inheritance

class ReadWriteNode<T> extends LockableNode<T>

{

private volatile Node<T> next; // next node in chain

}

Nodes in an optimistic-locking set
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In OptimisticSet, operations work as follows:

1. find the item’s position inside the list without locking – as in SequentialSet

2. lock the position’s nodes pred and curr
3. validate the position while the nodes are locked:

3.1 if the position is valid, perform the operation while the nodes are locked, then 
release locks

3.2 if the position is invalid, release locks and repeat the operation from scratch
This approach is optimistic because it works well when validation is often successful 
(so we don’t have to repeat operations)

Delayed locking as optimistic locking
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public boolean add(T item) {

Node<T> node = new ReadWriteNode<>(item); // new node

do { Node<T> pred, curr = find(head, item.key()); // no locking

pred.lock(); curr.lock(); // now lock position

try { // if position still valid, while locked:

if (valid(pred, curr)) { ... } // physically add node

} finally { pred.unlock(); curr.unlock(); } // done: unlock

} while (true); // if not valid: try again!

}

Optimistic set: method add

node:

a bhead e f g tail

c

pred curr

c
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public boolean remove(T item) {

do { Node<T> pred, curr = find(head, item.key()); // no locking

pred.lock(); curr.lock(); // now lock position

try { // if position still valid, while locked:

if (valid(pred, curr)) { ... } // physically remove node

} finally { pred.unlock(); curr.unlock(); } // done: unlock

} while (true); // if not valid: try again!

}

Optimistic set: method remove

a bhead

pred curr

f g taile
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Optimistic set: method has

public boolean has(T item) {

do { Node<T> pred, curr = find(head, item.key()); // no locking

pred.lock(); curr.lock(); // now lock position

try { // if position still valid, check key while locked

if (valid(pred, curr)) return curr.key() == item.key();

} finally { pred.unlock(); curr.unlock(); } // done: unlock

} while (true); // if not valid: try again!

}

a bhead e f g tail

pred currpred curr
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Validation goes through the nodes until it reaches the given position

Optimistic set: validating a position

// Is pred reachable from head, and does it point to curr?

protected boolean valid(Node<T> pred, Node<T> curr) {

Node<T> node = head; // start from head

while (node.key() <= pred.key()) { // does pred point to curr?

if (node == pred) return pred.next() == curr;  

node = node.next(); // continue to the next node

} // until node.pred > pred.key

return false; // pred could not be reached

} // or does not point to curr

bahead e f g tail

pred curr

node node node

b e
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What can happen between the time when a thread finds a position (pred,curr) and
when it locks nodes pred and curr?

• Node pred is removed: validation fails because pred is not reachable

• Node curr is removed: validation fails because pred does not point to curr

• A node is added between pred and curr: validation fails because pred does not 
point to curr

• Any other modification of the set: validation succeeds because operations leave 

the set in a consistent state

How validation works
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What happens if the set is being modified while a thread is validating a locked position 

(pred,curr)?

• If a node following curr is modified: validation is not affected because it only goes 

up until curr

• If a node n before pred is removed: validation succeeds even if it goes through n, 

since n still leads back to pred

• If a node n is added before pred: validation succeeds even if it skips over n

Is validation safe?
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Pros:

• threads operating on disjoint portions of the list can operate in parallel

• when validation often succeeds, there is much less locking involved than in

FineSet

Cons:

• OptimisticSet is not starvation free: a thread t may fail validation forever if other 

threads keep removing and adding pred/curr between when t performs find and 

when it locks pred and curr

• if traversing the list twice without locking is not significantly faster than traversing it

once with locking, OptimisticSet does not have a clear advantage over FineSet

Optimistic-locking set: pros and cons
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Parallel linked sets
Lazy node removal
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In many applications, has is executed many more times than add and remove

Can has work correctly without locking?

Problems may occur if another thread removes curr between find and has’s check: 

since remove is not atomic without locking, if has does not acquire locks it may not 

notice that curr is being removed

For example, if thread t runs remove(e) while thread u runs has(e) without locking, u 

may incorrectly think that e is in the list even if t is about to remove it – that is thread t 

is in its critical section:

Testing membership without locking

a bhead

pred curr

f g taile

currpred
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We need a way to atomically share the information that a node is being removed, but 
without locking

To this end, each node includes a flag valid with setters and getters:

• valid() == true: the node is part of the set
• valid() == false: the node is being (or has been) removed

class ValidatedNode<T> extends ReadWriteNode<T>

{
private volatile boolean valid;

boolean valid() { return valid; } // is node valid?

void setValid() { valid = true; } // mark valid

void setInvalid() { valid = false; } // mark invalid

}

Nodes in a lazy-removal set
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In a lazy set:

• Validation only needs to check the mark valid

• Operation remove marks a node invalid before removing it

• Operation has is lock-free

• Operation add works as in OptimisticSet

Concurrent set with lazy node removal

// smallest key

// largest key

public class LazySet<T> extends OptimisticSet<T>

{

public LazySet() {

head = new ValidatedNode<>(Integer.MIN_VALUE);

tail = new ValidatedNode<>(Integer.MAX_VALUE);

head.setNext(tail);

}

// overriding of valid, remove, and has
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Validation becomes a constant-time operation:

• Node pred is reachable from the head iff it has not been removed iff it is marked

valid

• Node curr follows pred in the list iff pred.next() == curr and curr is marked valid

Lazy set: validating a position

Scenario: t ’s validation of curr succeeds:

// is pred reachable from head, and does it point to curr?

protected boolean valid(Node<T> pred, Node<T> curr) {

return pred.valid() && curr.valid() && pred.next() == curr;

}

a bhead

pred curr

f g taile

currpred
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Validation becomes a constant-time operation:

• Node pred is reachable from the head iff it has not been removed iff it is marked

valid

• Node curr follows pred in the list iff pred.next() == curr and curr is marked valid

Lazy set: validating a position

// is pred reachable from head, and does it point to curr?

protected boolean valid(Node<T> pred, Node<T> curr) {

return pred.valid() && curr.valid() && pred.next() == curr;

}

a bhead

pred curr

f g taile

currpred

e

Scenario: t ’s validation of curr fails:
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Method has runs without locking: it finds the position (pred,curr), validates curr, and 

checks whether curr’s key is equal to item’s

public boolean has(T item) {

// find position without locking

Node<T> pred, curr = find(head, item.key());

// check validity and item without locking

return curr.valid() && curr.key() == item.key();

}

Method find may traverse invalid nodes; this does not prevent it from eventually reaching all valid nodes 

in the list

Lazy set: method has

a bhead e f g tail

pred curr

e
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Method add works as in OptimisticSet, but using theoverridden version of valid –
which works in constant time

Lazy set: method add

node:

a bhead e f g tail

c

pred curr

c
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After finding the position of a node to be removed, the actual removal consists of two 

steps

1. logical removal: mark the node to be removed as invalid

2. physical removal: skip over the node by redirecting its predecessor’s next

This removal is lazy because logical and physical removal may be done at different 
times: after a node has been logically removed, every thread is aware that it should not 
be considered part of the list

Lazy set: method remove

a bhead

pred curr

f g taile

85



Lazy set: method remove

public boolean remove(T item) {

do { Node<T> pred, curr = find(head, item.key()); // no locking

pred.lock(); curr.lock(); // now lock position

try { // if position still valid, while locking:

if (valid(pred, curr)) {

if (curr.key() != item.key())

return false; // item not in the set

else { // item in the set at curr: remove it  

curr.setInvalid(); // logical removal  

pred.setNext(curr.next()); // physical removal  

return true;

}

}

} finally { pred.unlock(); curr.unlock(); }// done: unlock

} while (true); // if not valid: try again!

}
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Pros:

• validation is constant time

• membership checking does not require any locking – it’s even wait-free (it traverses 

the list once without locking)

• physical removal of logically removed nodes could be batched and performed when 

convenient – thus reducing the number of times the physical chain of nodes is 

changed, in turn reducing the expensive propagation of information between threads

Cons:

• operations add and remove still require locking (as in OptimisticSet), which may 
reduce the amount of parallelism

Lazy-removal set: pros and cons
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Parallel linked sets
Lock free access
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To implement a set that is correct under concurrent access without using any locks we

need to rely on synchronization primitives more powerful than just reading and writing

shared variables

We are going to use a variant of the compare-and-set operation

Atomic references

class AtomicReference<V> {

V get();

void set(V newRef);

// current reference

// set reference to newRef

// if reference == expectRef, set to newRef and return true

// otherwise, do not change reference and return false

boolean compareAndSet(V expectRef, V newRef);

}
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As a first attempt, we make attribute next of type AtomicReference<Node<T>> and 

use compareAndSet to update it: if one thread changes next when another thread 

is also trying to change it, we repeat the operation

An implementation of remove() following this idea:

public boolean remove(T item) {

boolean done;

do {

Node<T> pred, curr = find(head, item.key());

if (curr.key() >= item.key()) return false; // item not in set

else

// try to remove curr by setting pred.next using compareAndSet

done = pred.next().compareAndSet(pred.next(), curr.next());

} while (!done); return true;

}

Atomic lock-free access: first naive attempt

pred.next may have changed  

when compareAndSet() executes
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Unfortunately, the first attempt does not work: for example, if thread t runs remove(e)
while thread u runs remove(b), it may happen that only b’s removal takes place

Atomic lock-free access: first naive attempt

a bhead

pred curr

f g taile

currpred

We have seen a similar problem before: modifications of the list need to have control of 
both pred and curr – even if it is only the former node that is actually modified
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class AtomicMarkableReference<V> {

V, boolean get(); // current reference and mark

// if reference == expectRef set mark to newMark and return true

// otherwise do not change anything and return false

boolean attemptMark(V expectRef, boolean newMark);

// if reference == expectRef and mark == expectMark,

// set reference to newRef, mark to newMark and return true;

// otherwise, do not change anything and return false

boolean compareAndSet(V expectRef, V newRef, boolean expectMark, boolean newMark)

}

Atomic markable references
As in LazySet, nodes can be marked valid or invalid; an invalid node is logically removed 

In addition, we need to access the information of both attributes valid and next atomically:

every node includes an attribute nextValid of type AtomicMarkableReference<Node<T>>, which 

provides methods to both update a reference and mark it, atomically
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Every node has an attribute nextValid typed AtomicMarkableReference<Node<T>>

The node interface provides methods to retrieve and conditionally update the current 

value of  nextValid, which includes a reference (corr. to next) and a mark (corr. to valid)

Nodes in a lock-free set

class LockFreeNode<T> extends SequentialNode<T> {

// reference to next node and validity mark of current node

private AtomicMarkableReference<Node<T>> nextValid;

// return next and valid as a pair

Node<T>, boolean nextValid() { return nextValid.get(); }

Node<T> next()

{ Node<T> next, boolean valid = nextValid(); return next; }

boolean valid()

{ Node<T> next, boolean valid = nextValid(); return valid; }
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Nodes in a lock-free set

update next only if the node is valid

class LockFreeNode<T> extends SequentialNode<T> {

// try to set invalid; return true if successful

boolean setInvalid()

{ Node<T> next = next();

return nextValid.compareAndSet(next, next, true, false); }

// try to update to newNext if valid; return true if successful

boolean setNextIfValid(Node<T> expectNext, Node<T> newNext)

{ return nextValid.compareAndSet(expectNext, newNext, true, true); }

Every node has an attribute nextValid typed AtomicMarkableReference<Node<T>>

The node interface provides methods to retrieve and conditionally update the current 

value of  nextValid, which includes a reference (corr. to next) and a mark (corr. to valid)
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In a lock-free set:

• Operation remove marks a node invalid before removing it

• Operations that modify nodes complete successfully only if the nodes are valid and not
concurrently modified by another thread

• Failed operations are repeated until success (no interference)

public class LockFreeSet<T> extends SequentialSet<T>

{

public LockFreeSet() {

head = new LockFreeNode<>(Integer.MIN_VALUE); // smallest key  

tail = new LockFreeNode<>(Integer.MAX_VALUE); // largest key  

head.setNext(tail); // unconditionally set next only in new nodes

}

// overriding of all methods

Concurrent set with lock-free access
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public boolean remove(T item) {

do { Node<T> pred, curr = find(head, item.key()); 

if (curr.key() != item.key() || !curr.valid()) return false; // not in set or invalid

// try to invalidate; try again if node is being modified:

if (!curr.setInvalid()) continue;

// try once to physically remove curr:

pred.setNextIfValid(curr, curr.next());

return true;

} while (true); // changed during logical removal: try again!

}

Lock-free set: method remove

ahead

pred curr

f g tail

currpred

physical removal of e 
fails: never mind!

physical removal of e fails
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public boolean remove(T item) {

do { Node<T> pred, curr = find(head, item.key()); // not in set

if (curr.key() != item.key() || !curr.valid()) return false;

// try to invalidate; try again if node is being modified

if (!curr.setInvalid()) continue;

// try once to physically remove curr

pred.setNextIfValid(curr, curr.next());

return true;

} while (true); // changed during logical removal: try again!

}

Lock-free set: method remove

a bhead

pred curr

f g tail

currpred

logical removal of e fails

logical removal

of e fails: retry!

now remove(e) returns false
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If two threads both try to mark a node invalid, only one can succeed – so it is 

guaranteed that no other thread is touching the node

If this property were not enforced:

Logical removal: only one thread succeeds

a bhead

pred curr

f g taile

currpred

t ’s remove(e) returns true

u’s remove(e) returns true

but e has already been removed!
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public boolean add(T item) {
do { Node<T> pred, curr = find(head, item.key()); 

if (curr.key() == item.key() && curr.valid()) return false; // already in set and valid

// new node, pointing to curr:

Node<T> node = new LockFreeNode<>(item).setNext(curr);

// if pred valid and points to curr, make it point to node:

if (pred.setNextIfValid(curr, node)) return true;

} while (true); // pred changed during add: try again!

}

Lock-free set: method add

bahead e f g tail

pred curr

c

currpred

b

connecting c fails initially
pred curr
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Method has works as in LazySet: it finds the position (pred,curr), validates curr, 

and checks whether curr’s key is equal to item’s

Unlike add and remove (which use a new version of find), has traverses both valid 

and invalid nodes, and makes no attempt at removing the latter

Lock-free set: method has

a bhead e f g tail

pred curr

e

public boolean has(T item) {

// find position (use plain search in SequentialSet)

Node<T> pred, curr = super.find(head, item.key());

// check validity and item

return curr.valid() && curr.key() == item.key();

}
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Method has does not modify the set, so it can safely traverse valid and invalid nodes 

without changing the node structure

In contrast, methods add and remove physically remove all logically removed nodes 

encountered by find

This is a convenient time to perform physical removal, because it avoids the buildup 

of long chains of invalid nodes

For example, the logical removal of nodes f and g requires thread t to physically 

remove f before it can physically remove g:

When to physically remove nodes?

f ga b ehead tailf g

pred curr

currpred
t cannot redirect pred because invalid!
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Example: A run of find(k) that also physically removes three invalid nodes

Lock-free set: how find works

a b e f ghead tail

Threads may interfere with find, requiring to restart it 

In the worst case, starvation may occur with a thread continuously restarting find while 

others make progress modifying the list
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protected Node<T>, Node<T> find(Node<T> start, int key) {

boolean valid; // is curr valid?

Node<T> pred, curr, succ;  // consecutive nodes in iteration

retry: do {

pred = start; curr = start.next(); // from start node

do { // succ is curr’s successor; valid is curr’s validity

succ, valid = curr.nextValid();

while (!valid) { // while curr is not valid, try to remove it

// if pred is modified while trying to redirect it, retry

if (!pred.setNextIfValid(curr, succ)) continue retry;

// curr has been physically removed: move to next node

curr = succ; succ, valid = curr.nextValid();

} // now curr is valid (and so is pred)

if (curr.key() >= key) return (pred, curr);

pred = curr; curr = succ; // continue search

} while (true);

} while (true);

}

Lock-free set: method find
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Pros:

• no operations require locking: maximum potential for parallelism

• membership checking does not require any locking – it’s even wait-free (it traverses 

the list once without locking)

Cons:

• the implementation needs test-and-set-like synchronization primitives, which have to 

be supported and come with their own performance costs

• operations add and remove are lock-free but not wait-free: they may have to repeat 

operations, and they may be delayed while they physically remove invalid nodes, with 

the risk of introducing contention on nodes that have been already previously 

logically deleted

Lock-free set: pros and cons
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Each of the different implementations of concurrent set is the best choice for certain 

applications and not for others:

• CoarseSet works well with low contention

• FineSet works well when threads tend to access the list orderly

• OptimisticSet works well to let threads operate on disjoint portions of the list

• LazySet works well when batching invalid node removal is convenient

• LockFreeSet works well when locking is quite expensive

To lock or not to lock?
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Today’s menu

Parallel linked queues

Software transactional memory
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Synchronization costs

3

A number of factors challenge designing correct and efficient 

parallelizations:

• sequential dependencies

• synchronization costs

• spawning costs

• error proneness and composability

In this lecture, we present:

• a lock-free queue data structure, which involves minimal 

synchronization costs (in particular, it uses no locking)

• software transactional memory, which supports composability in 

lock-free programming



Parallel linked queues
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Parallel linked queue

We present another example of lock-free data structure: an 

implementation of a linked queue that supports parallel access

A queue data structure offers obvious opportunities for parallelization –

because insertion and removal of nodes occurs at two opposite ends of

a linked structure

At the same time, it requires to carefully consider the interleaving of

operations, and to take measures to prevent modifications that lead to

inconsistent states

We will use regular Java syntax, without emphasizing opportunities for

object-oriented abstraction and encapsulation, so as to have a 

different presentation style, complementary to the one adopted for 

linked sets
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The interface of a queue

We use linked lists to implement a lock-free queue data structures with

interface:

i n te r fa c e Queue<T>

{

/ / add ‘ i t e m ’ t o back o f queue

void enqueue(T item);

/ / remove and r e t u r n i tem i n f r o n t o f t he queue

/ / r a i s e EmptyException i f queue i s empty

T dequeue() throws EmptyException;

}
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Atomic references

To implement data structures that are correct under concurrent access

without using any locks we need to rely on synchronization primitives

more powerful than just reading and writing shared variables

We are going to use a variant of the compare-and-set operation:

V get();

void set(V newRef);

/ / c u r r e n t re fe rence

/ / s e t re fe renc e t o newRef

/ / i f re fe rence == expec tRe f , s e t t o newRef and r e t u r n t r u e

/ / o t h e r w i s e , do no t change re fe rence and r e t u r n f a l s e

boolean compareAndSet(V expectRef, V newRef);

}

class AtomicReference<V> {
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Nodes

The underlying implementations of queues use singly-linked lists, 

which are made of chains of nodes - Every node:

• stores an item– its value

• points to the nextnode in the chain

To build a lock-free implementation, nextis a reference that supports 

compare-and-set operations (thus, need not be volatile)

class QNode<T>

{ / / va lue o f node

T value;

/ / nex t node i n chain  

AtomicReference<QNode<T>> next; QNode(T

value)

{ this.value = value;

next = new AtomicReference<>(null); }

}

x

value/item

next

node
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Queues as chains of nodes

A list with a pair of head and tail references implements a queue:

• a sentinel node points to the first element to be dequeued

• the queue is empty iff the sentinel points to null

• headpoints to the sentinel (front of queue)

• tailpoints to the latest enqueued element (back of queue), or the

sentinel if the queue is empty

The sentinel (also called “dummy node”) ensures that headand tail are never
null

sentinel

b x g

A non-empty queue:

head tail

sentinel

An empty queue:

head tail
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Head, tail, and empty queue

class LockFreeQueue<T> implements Queue<T>

{

/ / access t o f r o n t and back o f queue

protected AtomicReference<QNode<T>> head, tail;

/ / empty queue

publ ic LockFreeQueue() {

/ / va lue o f s e n t i n e l does no t mat te r

QNode<T> sentinel = new QNode<>();

head = new AtomicReference<>(sentinel); tail = new

AtomicReference<>(sentinel);

}

sentinel

head tail
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Enqueue operation

The method enqueueadds a new node to the back of a queue – where

tailpoints. It requires two updates that modify the linked structure:

1. update last: make the last node in the queue point to the new 

node

2. update tail: make tailpoint to the new node

Each update is individually atomic (it uses compare-and-set), but 

another thread may interfere between the two updates:

• repeat update last until success

• try update tail once

• the implementation should be able to deal with a “half finished” 

enqueue operation (tail not updated yet), and finish the job – this 

technique is called helping
11



Method enqueue

publ ic void enqueue(T value) {

/ / new node t o be enqueued

QNode<T> node = new QNode<>(value);

while (true ) / / nodes a t back o f queue

{ QNode<T> last = tail.get();

QNode<T> nextToLast = last.next.get();

/ / i f t a i l p o i n t s t o l a s t

i f (last == tail.get())

{ / / and i f l a s t r e a l l y has no successor

i f (nextToLast == nul l ) {

/ /  make l a s t p o i n t t o new node

i f (last.next.compareAndSet(nextToLast, node))

/ / i f l a s t . n e x t updated, t r y once t o update t a i l

{ tail.compareAndSet(last, node); return ; }

} else / / l a s t has v a l i d successo r : t r y t o update t a i l and repeat

{ tail.compareAndSet(last, nextToLast); } } }}

fails only if another thread moves tail helps another thread move tail
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publ ic void enqueue(T value) {

/ / new node t o be enqueued

QNode<T> node = new QNode<>(value);

while (true ) / / nodes a t back o f queue

{ QNode<T> last = tail.get();

QNode<T> nextToLast = last.next.get();

/ / i f t a i l p o i n t s t o l a s t

i f (last == tail.get())

{ / / and i f l a s t r e a l l y has no successor

i f (nextToLast == nul l ) {

/ /  make l a s t p o i n t t o new node

i f (last.next.compareAndSet(nextToLast, node))

/ / i f l a s t . n e x t updated, t r y once t o update t a i l

{ tail.compareAndSet(last, node); return ; }

} else / / l a s t has v a l i d successo r : t r y t o update t a i l and repeat

{ tail.compareAndSet(last, nextToLast); } } }}

Method enqueue

sentinel

b x

If tailpoints to actual last:

head tail

g
node:

last
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Scenario 1



publ ic void enqueue(T value) {

/ / new node t o be enqueued

QNode<T> node = new QNode<>(value);

while (true ) / / nodes a t back o f queue

{ QNode<T> last = tail.get();

QNode<T> nextToLast = last.next.get();

/ / i f t a i l p o i n t s t o l a s t

i f (last == tail.get())

{ / / and i f l a s t r e a l l y has no successor

i f (nextToLast == nul l ) {

/ /  make l a s t p o i n t t o new node

i f (last.next.compareAndSet(nextToLast, node))

/ / i f l a s t . n e x t updated, t r y once t o update t a i l

{ tail.compareAndSet(last, node); return ; }

} else / / l a s t has v a l i d successo r : t r y t o update t a i l and repeat

{ tail.compareAndSet(last, nextToLast); } } }}

Method enqueue

sentinel

b x

If tailpoints to old last:

head tail

g

last last
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Dequeue operation

The method dequeueremoves the node at the head of a queue (where

the sentinel points)

Unlike enqueue, dequeueing only requires one update to the linked

structure:

• update head: make headpoint the node previously pointed to by the

sentinel; the same node becomes the new sentinel and is also

returned

The update is atomic (it uses compare-and-set), but other threads 

may be updating the head concurrently:

• repeat update head until success

• if you detect a “half finished” enqueue operation – with the tail

pointing to the sentinel about to be removed – help by moving the

tail forward 17



Method dequeue

publ ic T dequeue() throws EmptyException {

while (true ) / / nodes a t f r o n t , back o f queue

{ QNode<T> sentinel = head.get(), last = tail.get(), first = sentinel.next.get();
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}
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Garbage collection saves the day

If we were using a language without garbage collection – where 

objects can be recycled – the following problem could occur:

b x

head tail

a

sentinel
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Garbage collection saves the day

If we were using a language without garbage collection – where 

objects can be recycled – the following problem could occur:

1. t is about to CAS headfrom sentinel node ato node b: 

head.compareAndSet(sentinel,first)

2. u dequeues band x

3. u enqueues aagain (the very same node), enqueues y, enqueues

p, and then dequeues aagain, so that the same node abecomes

the sentinel again

4. t completes CAS successfully (headstill points to t ’s local 

reference sentinel), but node bis now disconnected!

head tail

b a y p
sentinel

sentinelfirst
17



The ABA problem

The problem we have just seen is known as the ABA problem

It cannot occur in languages that, like Java, feature automatic memory 

management (garbage collection)

Our LockFreeQueueimplementation relies on garbage collection for correctness: a

thread creates a fresh node (using new) whenever it enqueues a value, which is

guaranteed to have a reference that was not in use before
18



Software Transactional

Memory

19



Transactions

The notion of transaction, which comes from database research, 

supports a general approach to lock-free programming:

A transaction is a sequence of steps executed by a single thread, 

which are executed atomically

A transaction may:

• succeed: all changes made by the transaction are committed to 

shared memory; they appear as if they happened instantaneously

• fail: the partial changes are rolled back, and the shared memory 

is in the same state it would be if the transaction had never 

executed

Therefore, a transaction either executes completely and successfully, 

or it does not have any effect at all

20



Programming with transactions

The notion of transaction supports a general approach to lock-free

programming:

• define a transaction for every access to shared memory

• if the transaction succeeds, there was no interference

• if the transaction failed, retry until it succeeds

Imagine we have a syntactic means of defining transaction code:

atomic {

/ / t r a n s a c t i o n code

}

/ / r e t r y u n t i l success

% execute Funct ion(Arguments)

% as a t r a n s a c t i o n ( r e t r y u n t i l success)

atomic(Function, Arguments)

Transactions may also support invoking retry and rollback explicitly

(Note that atomic is not a valid keyword in Java or Erlang: we use it for

illustration purposes, and later we sketch how it could be implemented as a

function in Erlang)
21



Transactions are better than locks

Transactional atomic blocks look superficially similar to monitor’s methods

with implicit locking, but they are in fact much more flexible:

• since transactions do not lock, there is no locking overhead

• parallelism is achieved without risks of race conditions

• since no locks are acquired, there is no problem of deadlocks

(although starvation may still occur if there is a lot of contention)

• transactions compose easily

class Account {

void deposit(int amount)

{ atomic {

balance += amount; }}

void withdraw(int amount)

{ atomic {

balance -= amount; }}

}

class TransferAccount extends Account {

/ / t r a n s f e r from ‘ t h i s ’ t o ‘ o t h e r ’

void transfer(int amount,

Account other)

{ atomic {

this.withdraw(amount);

other.deposit(amount); }}

}

no locking, so no deadlock is possible! 22



Transactional memory

A transactional memory is a shared memory storage that supports 

atomic updates of multiple memory locations

Implementations of transactional memory can be based on hardware or

software:

• hardware transactional memory relies on support at the level of 

instruction sets (Herlihy & Moss, 1993)

• software transactional memory is implemented as a library or 

language extension (Shavit & Touitou, 1995)

Software transactional memory implementations are available for 

several mainstream languages (including Java, Haskell, and Erlang)

This is still an active research topic – quality varies!

23



Implementing software transactional memory

We outline an implementation of software transactional memory 

(STM) in Erlang

Each variable in an STM is identified by a name, value, and version:

-record(var, {name, version = 0, value = undefined}).

Clients use an STM as follows:

• at the beginning of a transaction, check out a copy of all 

variables involved in the transaction

• execute the transaction, which modifies the values of the local

copies of the variables

• at the end of a transaction, try to commit all local copies of the 

variables

24



Implementing software transactional memory

We outline an implementation of software transactional memory 

(STM) in Erlang

Each variable in an STM is identified by a name, value, and version:

-record(var, {name, version = 0, value = undefined}).

The STM’s commit operation ensures atomicity:

• if all committed variables have the same version number as the 

corresponding variables in the STM, there were no changes to 

the memory during the transaction: the transaction succeeds

• if some committed variable has a different version number from

the corresponding variable in the STM, there was some change

to the memory during the transaction: the transaction fails

25



The counter example – with software transactional memory

i n t cnt;

thread t thread u

i n t c;

atomic { c

= cnt;

cnt = c + 1;

}

i n t c;

atomic { c

= cnt;

cnt = c + 1;

}

The atomic translates into a loop that repeats until the transaction 

succeeds:

1. check out (pull) the current value of cnt

2. increment the local variable c

3. try to commit (push) the new value of cnt

4. if cnthas changed version when trying to commit, repeat the loop
26



The counter example: a successful run

(name: cnt, version:x, value:y )

thread t thread u

i n t c;

do {

/ / check ou t cn t

• c = pull(cnt); c = c +

1;

} while (!push(cnt, c));

/ /  commit cn t

i n t c;

do {

/ / check o u t cn t

c = pull(cnt);• c = c + 1;

} while (!push(cnt, c));

/ / commit cn t

The subscript in a variable’s value indicates its version:

t’S LOCAL u’S LOCAL STM

ct: ⊥ cu: ⊥ cnt: 03

27
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The counter example: a successful run
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The counter example: a retry run

(name: cnt, version:x, value:y )
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The counter example: a retry run

(name: cnt, version:x, value:y )
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27

The subscript in a variable’s value indicates its version:

Scenario 2



The counter example: a retry run

(name: cnt, version:x, value:y )

thread t thread u

i n t c;

do {

/ / check ou t cn t

c = pull(cnt); c = c +

1;

} while (!push(cnt, c));

/ /  commit cn t

i n t c;

do {

/ / check o u t cn t

c = pull(cnt);• c = c + 1;

} while (!push(cnt, c));

/ / commit cn t

t’S LOCAL

done

u’S LOCAL

retry

STM

cnt: 14

27

The subscript in a variable’s value indicates its version:

Scenario 2



The counter example: a retry run

(name: cnt, version:x, value:y )

thread t thread u

i n t c;

do {

/ / check ou t cn t

c = pull(cnt); c = c +

1;

} while (!push(cnt, c));

/ /  commit cn t

i n t c;

do {

/ / check o u t cn t

c = pull(cnt);• c = c + 1;

} while (!push(cnt, c));

/ / commit cn t

t’S LOCAL

done

u’S LOCAL

cu: ⊥

STM

cnt: 14

27

The subscript in a variable’s value indicates its version:

Scenario 2



The counter example: a retry run

(name: cnt, version:x, value:y )

thread t thread u

i n t c;

do {

/ / check ou t cn t

c = pull(cnt); c = c +

1;

} while (!push(cnt, c));

/ /  commit cn t

i n t c;

do {

/ / check ou t cn t

c = pull(cnt);

c = c + 1;

} while (!push(cnt, c));

/ /  commit cn t

•

t’S LOCAL

done

u’S LOCAL

cu: 14

STM

cnt: 14

27

The subscript in a variable’s value indicates its version:

Scenario 2



The counter example: a retry run

(name: cnt, version:x, value:y )

thread t thread u

i n t c;

do {

/ / check ou t cn t

c = pull(cnt); c = c +

1;

} while (!push(cnt, c));

/ /  commit cn t

i n t c;

do {

/ / check ou t cn t

c = pull(cnt); c = c +

1;

} while (!push(cnt, c));•

/ /  commit cn t

t’S LOCAL

done

u’S LOCAL

cu: 24

STM

cnt: 14

27

The subscript in a variable’s value indicates its version:

Scenario 2



The counter example: a retry run

(name: cnt, version:x, value:y )

thread t thread u

i n t c;

do {

/ / check ou t cn t

c = pull(cnt); c = c +

1;

} while (!push(cnt, c));

/ /  commit cn t

i n t c;

do {

/ / check ou t cn t

c = pull(cnt); c = c +

1;

} while (!push(cnt, c));

/ /  commit cn t

t’S LOCAL u’S LOCAL STM

done success cnt: 25

27

The subscript in a variable’s value indicates its version:

Scenario 2



The counter example: a retry run

(name: cnt, version:x, value:y )

thread t thread u

i n t c;

do {

/ / check ou t cn t

c = pull(cnt); c = c +

1;

} while (!push(cnt, c));

/ /  commit cn t

i n t c;

do {

/ / check ou t cn t

c = pull(cnt); c = c +

1;

} while (!push(cnt, c));

/ /  commit cn t

t’S LOCAL u’S LOCAL STM

done done cnt: 25

27

The subscript in a variable’s value indicates its version:

Scenario 2



STM in Erlang

An STM is a server that provides the following main operations:

• pull(Name): check out a copy of variable with name Name

• push(Vars): commit all variables in Vars; return failif unsuccessful

Clients read and write local copies of variables using:

• read(Var): get value of variable Var

• write(Var,Value): set value of variable Varto Value

We base the STM implementation on the gservergeneric server 

implementation we presented in a previous lectures

28



STM: operations

create(Tm, Name, Value) ->gserver:request(Tm,{create,Name,Value}).

drop(Tm, Name) ->gserver:request(Tm,{drop,Name}).

pull(Tm, Name) ->gserver:request(Tm,{pull,Name}).

push(Tm, Vars) when is_list(Vars) -> gserver:request(Tm,{push,Vars});

read(#var{value = Value}) ->  Value.

write(Var = #var{}, Value) -> Var#var{value = Value}.

29



STM: server handlers

The storage is a dictionary associating variable names to variables; it 

is the essential part of the server state

stm(Storage, {pull, Name}) ->

case dict:is_key(Name, Storage) of

true ->

{reply, Storage,

dict:fetch(Name, Storage)}; false ->

{reply, Storage, not_found}

end;

stm(Storage, {push, Vars}) ->

case try_push(Vars, Storage) of

{success, NewStorage} ->

{reply, NewStorage, success}; fail ->

{reply, Storage, fail}

end.
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STM: try to push

The helper function try_pushdetermines if any variable to be committed has

a different version from the corresponding one in the STM

try_push([], Storage) ->{success, Storage};

try_push([Var = #var{name=Name, version=Version} | Vars], Storage) ->

case dict:find(Name,Storage) of

{ok, #var{version=Version}} -> try_push(Vars,

dict:store(Name,Var#var{version=Version+1},Storage));

_ -> fail

end.
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Using the Erlang STM

Using the STM to create atomic functions is quite straightforward

% pop head element from ‘Name’

qpop(Tm, Name) ->

Queue = pull(Tm, Name), [H|T] =

read(Queue), NewQueue =

write(Queue, T), case push(Tm,

NewQueue) of

% push f a i l e d : r e t r y !

fail -> qpop(Tm, Name);

% push s u c c e s s f u l : r e t u r n head

_ -> H

end.

% push ‘ V a l u e ’ t o back o f ‘Name’

qpush(Tm, Name, Value) -> Queue =

pull(Tm, Name), Vals =

read(Queue), NewQueue =

write(Queue,

Vals ++ [Value]),

case push(Tm, NewQueue) of

% push f a i l e d : r e t r y !

fail -> qpush(Tm, Name, Value);

% push s u c c e s s f u l : r e t u r n ok

_ -> ok

end.
32

An atomic pop operation for a list: An atomic push operation for a list:



Composable transactions?

The simple implementation of STM we have outlined does not 

support easily composing transactions:

% pop from Queue1 and push t o Queue2

qtransfer(Tm, Queue1, Queue2) ->

Value = qpop(Tm, Queue1), % another process may i n t e r f e r e !

qpush(Tm, Queue2, Value).

To implement composability, we need to keep track of pending

transactions and defer commits until all nested transactions are done

See the course’s website for an example implementation:

% a t o m i c a l l y execute Func t ion on arguments Args

atomic(Tm, Function, Args) -> todo.
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Today’s menu

• Finite-state models of concurrency: Recap

• Specification 

• Verification

• Testing

• Model checking
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Finite-state models of 

concurrency: Recap



State/transition diagrams
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We capture the essential elements of concurrent programs using 

State/Transition Diagrams

Also called (finite) state automata, (finite) state machines, or

transition systems)

• States in a diagram capture possible program states

• Transitions connect states according to execution order

Structural properties of a diagram capture semantic properties of the 

corresponding program



States

counter: 0

▷ 2 ▷4

cnt: 0 cnt: 0

A state captures the shared and local states of a concurrent

program:

Local state 

of thread t, 

including pc ▷

Local state 

of thread u, 

including pc ▷

i n t counter = 0;

thread t thread u

i n t cnt;

1 cnt = counter;

2 counter = cnt + 1;

3 / /  t e rmina tes

3 / 43

4

5

i n t cnt;

cnt = counter; counter =

cnt + 1;

/ /  t e rmina tes 6

shared state



States

A state captures the shared and local states of a concurrent program:

counter: 0

▷2 ▷4

cnt: 0 cnt: 0

When unambiguous, we simplify a state with only the essential 

information:

0

▷2 ▷4

0 0
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Initial states

The initial state of a computation is marked with an incoming arrow:

counter: 0

▷1 ▷4

cnt:⊥ cnt:⊥

i n t counter = 0;

thread t thread u

i n t cnt;

1 cnt = counter;

2 counter = cnt + 1;

3 / /  t e rmina tes

5 / 43

4

5

i n t cnt;

cnt = counter; counter =

cnt + 1;

/ /  t e rmina tes 6



Final states

The final states of a computation – where the program terminates – are

marked with double-line edges:

counter: 2

▷3 ▷6

done done

i n t counter = 0;

thread t thread u

i n t cnt;

1 cnt = counter;

2 counter = cnt + 1;

3 / /  t e rmina tes
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4

5

i n t cnt;

cnt = counter; counter =

cnt + 1;

/ /  t e rmina tes 6



Transitions

A transition corresponds to the execution of one atomic instruction, 

and it is an arrow connecting two states (or a state to itself):

counter: 1

u

counter: 1

▷3 ▷4

done cnt:⊥

▷3 ▷5

done cnt: 1

i n t counter = 0;

thread t thread u

i n t cnt;

1 cnt = counter;

2 counter = cnt + 1;

3 / /  t e rmina tes
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4

5

i n t cnt;

cnt = counter; counter =

cnt + 1;

/ /  t e rmina tes 6



A complete state/transition diagram

The complete state/transition diagram for the concurrent counter 

example explicitly shows all possible interleavings:

0

▷1

⊥

▷4

⊥

0

▷2

0

▷4

⊥

0

▷1

⊥

▷5

0

1

▷3 ▷4

⊥

1

▷1

⊥

▷6

0

▷2

0

▷5

0

1

▷3 ▷5

0

1

▷6▷2

0

1

▷3 ▷6

1

▷3 ▷5

1

1

▷2

1

▷6

2

▷3 ▷6

t

u

t

u

t

u

u

t

t

u

u

t

u

t
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State/transition diagram with locks?

The state/transition diagram of the concurrent counter example using 

locks should contain no (states representing) race conditions:
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0

▷1

⊥

▷4

⊥

0

▷2

0

▷4

⊥

0

▷1

⊥

▷5

0

1

▷3 ▷4

⊥

1

▷1

⊥

▷6

0

▷2

0

▷5

0

1

▷3 ▷5

0

1

▷6▷2

0

1

▷3 ▷6

1

▷3 ▷5

1

1

▷2

1

▷6

2

▷3 ▷6

t

u

t

u

t

u

u

t

t

u

u

t

u

t



Locking

Locking and unlocking are considered atomic operations

counter: 0, lock:−
t

counter: 0, lock: @t

▷1 ▷6

cnt:⊥ cnt:⊥

▷2 ▷6

cnt:⊥ cnt:⊥

i n t counter = 0; Lock lock = new ReentrantLock();

thread t thread u

i n t cnt;

1 lock.lock();

2 cnt = counter;

3 counter = cnt + 1;

4 lock.unlock();

5 / /  t e rmina tes
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6

7

8

9

i n t cnt; lock.lock(); 

cnt = counter;

counter = cnt + 1; 

lock.unlock();

/ /  t e rmina tes

10

This transition is only allowed if the lock is not held by another thread



Semaphores

Acquiring and releasing a semaphore are atomic operations

counter: 0, sem: 1

t

counter: 0, sem: 0

▷1 ▷6

cnt:⊥ cnt:⊥

▷2 ▷6

cnt:⊥ cnt:⊥

i n t counter = 0; Lock sem = new Semaphore(1);

thread t thread u

i n t cnt;

1 sem.down();

2 cnt = counter;

3 counter = cnt + 1;

4 sem.up();

5 / /  t e rmina tes
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6

7

8

9

i n t cnt; 

sem.down(); cnt =

counter;

counter = cnt + 1; 

sem.up();

/ /  t e rmina tes 10

This transition is only allowed if the semaphore’s value is positive



Counter with locks: state/transition diagram

The state/transition diagram of the concurrent counter example using 

locks contains no (states representing) race conditions:

0, −

▷1

⊥

▷6

⊥

0, @t

▷2

⊥

▷6

⊥

0, @t

▷3

0

▷6

⊥

1, @t

▷4

0

▷6

⊥

1, −

▷5 ▷6

⊥

▷5 ▷7

⊥

1, @u

▷5 ▷8

1

2, @u

▷5 ▷9

1

0, @u

▷1

⊥

▷7

⊥

0, @u

▷1

⊥

▷8

0

1, @u

▷1

⊥

▷9

0

1, −

▷10▷1

⊥

1, @t

▷10▷2

⊥

1, @t

▷10▷3

1

2, @t

▷4

1

▷10

2, −

▷5 ▷10

t

u

t

u

t

u

t

u

u

1, @u

t

u

t

u

t

u

t
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Simplifying state/transition diagrams
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0, −

▷1

⊥

▷6

⊥

0, @t

▷2

⊥

▷6

⊥

0, @t

▷3

0

▷6

⊥

1, @t

▷4

0

▷6

⊥

1, −

▷5 ▷6

⊥

▷5 ▷7

⊥

1, @u

▷5 ▷8

1

2, @u

▷5 ▷9

1

0, @u

▷1

⊥

▷7

⊥

0, @u

▷1

⊥

▷8

0

1, @u

▷1

⊥

▷9

0

1, −

▷10▷1

⊥

1, @t

▷10▷2

⊥

1, @t

▷10▷3

1

2, @t

▷4

1

▷10

2, −

▷5 ▷10

t

u

t

u

t

u

t

u

u

1, @u

t

u

t

u

t

u

t

Tracking every statement can lead to large state diagrams

We can simplify a diagram by skipping lines irrelevant to concurrent behavior



Simplifying state/transition diagrams
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Tracking every statement can lead to large state diagrams

We can simplify a diagram by skipping lines irrelevant to concurrent behavior

0, −

▷1

⊥

▷6

⊥

0, @t

▷2

⊥

▷6

⊥

0, @t

▷3

0

▷6

⊥

1, @t

▷4

0

▷6

⊥

1, −

▷5 ▷6

⊥

▷5 ▷7

⊥

1, @u

▷5 ▷8

1

2, @u

▷5 ▷9

1

0, @u

▷1

⊥

▷7

⊥

0, @u

▷1

⊥

▷8

0

1, @u

▷1

⊥

▷9

0

1, −

▷10▷1

⊥

1, @t

▷10▷2

⊥

1, @t

▷10▷3

1

2, @t

▷4

1

▷10

2, −

▷5 ▷10

t

u

t

u

t

u

t

u

u

1, @u

t

u

t

u

t

u

t



Simplifying state/transition diagrams

1, −

t>5 t>6

⊥

t>5 t>7

⊥

1, −

t>1 t>10

1, @t

t>2

⊥

t>10

u

1, @u

t

t

u

u

t

⊥
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0, −

▷1

⊥

▷6

⊥

0, @t

▷2

⊥

▷6

⊥

0, @u

▷1

⊥

▷7

⊥

2, −

▷5 ▷10

t

u

Tracking every statement can lead to large state diagrams

We can simplify a diagram by skipping lines irrelevant to concurrent behavior



Simplifying state/transition diagrams

0, −

▷1

⊥

▷6

⊥

0, @t

▷2

⊥

▷6

⊥

1, −

▷5 ▷6

⊥

1, @u

▷5 ▷7

⊥

0, @u

▷1 ▷7

1, −

▷1 ▷10

1, @t

▷2

⊥

▷10

2, −

▷5 ▷10

t

u

u

t

t

u

u

t

⊥ ⊥ ⊥
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But we have to be 

very careful not to 

skip relevant lines!

Tracking every statement can lead to large state diagrams

We can simplify a diagram by skipping lines irrelevant to concurrent behavior



Reasoning about program properties
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The structural properties of a diagram capture semantic properties of 

the corresponding program:

mutual exclusion: there are no states where two threads are in their 

critical section;

deadlock freedom: for every (non-final) state, there is an outgoing 

transition;

starvation freedom: there is no (looping) path such that a thread 

never enters its critical section while trying to do so;

no race conditions: all the final states have the same result.

Building and analyzing state/transition diagrams by hand quickly 

becomes tedious

That’s where formal verification techniques such as model checking

can help



Transition tables

Transition tables are equivalent representations of the information of 

state/transition diagrams

CURRENT NEXT WITH t NEXT WITH u

(0,− , ▷1,⊥ , ▷6,⊥ ) (0, @t,▷2,⊥ , ▷6,⊥ ) (0, @u,▷1,⊥ , ▷7,⊥ )

(0, @t, ▷2,⊥ , ▷6,⊥ ) (1,− , ▷5,− , ▷6,⊥ ) —

(0, @u,▷1,⊥ , ▷7,⊥ ) — (1,− , ▷1,⊥ , ▷10,−)

(1,− , ▷5,− , ▷6,⊥ ) — (1, @u,▷5,− , ▷7,⊥ )

(1,− , ▷1,⊥ , ▷10,−) (1, @t,▷2,⊥ , ▷10,−) —

(1, @u,▷5,− , ▷7,⊥ ) — (2,− , ▷5,− , ▷10,−)

(1, @t, ▷2,⊥ , ▷10,−) (2,− , ▷5,− , ▷10,−) —

(2,− , ▷5,− , ▷10,−) — —

0,−

▷1

⊥

▷6

⊥

0, @t

▷2

⊥

▷6

⊥

1, −

▷5 ▷6

⊥

1, @u

▷5 ▷7

⊥

0, @u

▷1

⊥

▷7

⊥

1, −

▷10▷1

⊥

1, @t

▷2

⊥

▷10

2, −

▷5 ▷10

t

u

u

t

t

u

u

t
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Specification



Writing correct programs
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Programming means writing instructions that achieve a certain functionality

How do we know if a program is correct?

And what does it even mean that a program is correct?

To this end, we distinguish between implementation and specification:

• The implementation is the code that is written, compiled, and executed

• The specification is a description of what the program should do, usually at

a more abstract level than the implementation

Implementation:

void withdraw(int amount) { 

balance -= amount;

}

Specification:

method withdrawtakes a positive integer

amountnot exceeding balance, and

decreases balance by amount



Functional specifications
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In sequential programming, we are mainly interested in functional – or 

input/output – specifications of individual methods

Such specifications consist of two parts:

1. precondition: a constraint that defines the method’s valid inputs,

2. postcondition: a functional description of the expected output after

executing the method

In object-oriented programs, the input and output of a method also include

the object state before and after executing the method

Implementation:

void withdraw(int amount) { 

balance -= amount;

}

Specification:

1. precondition:

0 < amount && amount <= balance

2. postcondition:

“after” balance ==

“before” balance - amount



Pre/postconditions in Java
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Java does not have support for writing pre/postcondition specifications

in the source file

JML (Java Modeling Language) is a system for annotating Java programs in

special comments

class BankAccount {

i n t balance;

//@ r e q u i r e s 0 < amount && amount <= ba lance;

//@ ensures balance == \ o l d ( b a l a n c e ) - amount;

void withdraw(int amount) { balance -= amount;

}

}



Invariants
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class BankAccount {

i n t balance;

i n va r i a n t { balance >= 0 } / / balance never negat i ve

/ / ( h o l d s i f w i thdraw i s c a l l e d w i t h amount <= balance)

void withdraw(int amount) { 

balance -= amount;

}

void deposit(int amount) { 

balance += amount;

}

}

In addition to pre- and postconditions of individual methods, functional

specifications include class invariants, which specify properties of the state of

objects of that class that should always hold between method calls



Specifications of concurrent programs
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The specification of concurrent programs should cover two parts:

• a functional specification defines the correct input/output

behavior

• a temporal specification defines the absence of undesired behavior,

such as no race conditions, deadlock, and starvation

Functional specification techniques such as pre- and postconditions, and

class invariants are also applicable to concurrent programs

Class invariants are particularly useful for shared-memory concurrency,

where invariants characterize the valid states of shared objects

Temporal specifications require new notations and techniques



Temporal logic
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Temporal logic was invented by philosophers and later brought to 

computer science by Pnueli in the 1970s

Temporal logic is a notation to specify behavior over time

More precisely, it formally defines properties of traces of states, like

those that originate from the execution of a (concurrent) program

Out of the many variants of temporal logic that have been developed, 

we present the widely used LTL (Linear Temporal Logic)



LTL operators

LTL includes all the usual Boolean operators of propositional logic:

FORMULA MEANING

p p is true

¬p p is not true (i.e., false)

p ∧ q p and q are true

p ∨ q p or q is true (or both)

p⇒ q p true implies that q true (if p then q too)
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LTL operators

LTL includes all the usual Boolean operators of propositional logic:

FORMULA MEANING

p p is true

¬p p is not true (i.e., false)

p ∧ q p and q are true

p ∨ q p or q is true (or both)

p⇒ q p true implies that q true (if p then q too)

In addition, it has a few temporal operators:

FORMULA MEANING

◊p

□p 

p U q 

Xp

22 / 43

p is eventually true (from now on)

p is always true (from now on)

p is true (from now on) until q is true

p is true in the next step



LTL specifications

When we use LTL to specify properties of concurrent programs, propositions

(like p and q) represent properties of a program’s global state – including

shared memory, and threads’ local memory and program counters 

For example:
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PROPOSITION STATE PROPERTY

ct

cu

et

nt

thread t is in its critical section 

thread u is in its critical section

thread t is trying to enter its critical section 

thread t has terminated

With this convention, we can rigorously specify temporal properties



LTL specifications: example

i n t cnt;

1 cnt = counter;

2 counter = cnt + 1;

3 / /  t e rmina tes

4

5

i n t cnt;

cnt = counter; counter =

cnt + 1;

/ /  t e rmina tes 6

PROPOSITION MEANING

t ▷k

u ▷k

thread t is at line k

thread u is at line k

FORMULA DEFINITION

et

ct

nt
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t ▷1

t ▷2

t ▷3

i n t counter = 0;

thread t thread u

In our running example of concurrent increment of counter:

• each thread’s critical section is the whole code it executes

• the global state includes: the value of counter, the values of the local cnt,

and the program counter of each thread



LTL specifications: example with locks

i n t counter = 0; Lock lock = new ReentrantLock();

thread t thread u

i n t cnt;

1 lock.lock();

2 cnt = counter;

3 counter = cnt + 1;

4 lock.unlock();

5 / /  t e rmina tes

6

7

8

9

i n t cnt; lock.lock(); 

cnt = counter;

counter = cnt + 1; 

lock.unlock();

/ /  t e rmina tes

10

PROPOSITION MEANING

thread t is at line k

thread u is at line k

FORMULA DEFINITION

et

ct

nt
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In our running example of concurrent increment of counter:

t ▷k

u ▷k

t ▷1

t ▷2 ∨ t ▷3 ∨ t ▷4

t ▷5



Mutual exclusion in LTL
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Mutual exclusion means that no two threads are in the critical section 

at the same time

For a program with two threads t and u:

□¬ (ct ∧ cu )

“Always (in every state), it is not the case that 

both t and u are in their critical section.”



Deadlock freedom in LTL

For a program with two threads t and u:
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“Always, if both t and u are trying to enter their critical sections, 

then t or u will eventually (in some future state)

be inside its critical section”

Or, equivalently:

“Not all threads get stuck forever”

et

eu

thread t is trying to enter its critical section 

thread u is trying to enter its critical section

PROPOSITION STATE PROPERTY

□ ((et ∧ eu) ⇒ ◊(c t ∨ cu ))

A deadlock occurs when no thread makes progress

Thus deadlock freedom is when some thread makes progress



Starvation freedom in LTL
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Starvation occurs when one thread does not make progress

Thus starvation freedom is when all threads make progress

For a program with two threads t and u, using the same propositions

as before:

□ et ⇒ ◊c t ∧ □ eu ⇒ ◊cu

“Always, if t is trying to enter its critical sections, then t will eventually 

be inside its critical section; and the same holds for u”

Equivalently: “No threads get stuck forever”



Counter without locks: mutual exclusion

Mutual exclusion in writing to counter: □¬ (ct ∧ cu ), with nt denoting 

that t is not in its critical section, and nu denoting that u is not in its 

critical section

0

et

⊥

eu

⊥

0

ct

0

eu

⊥

0

et

⊥

cu

0

1

nt eu

⊥

1

et

⊥
nu

1

nt cu

1

1

ct

1

nu

2

nt nu

0

ct

0

cu

0

1

nt cu

0

1

nuct

0

1

nt nu

t

u

t

u

t

u

u

t

t

u

u

t

u

t
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Counter with locks: mutual exclusion

0, −

▷et

⊥
▷eu

⊥

0, @t

▷ct

⊥
▷eu

⊥

0, @t

▷ct

0
▷eu

⊥

1, @t

▷ct

0
▷eu

⊥

1, −

▷nt ▷eu

⊥

▷nt ▷cu

⊥

1, @u

▷nt ▷cu

1

2, @u

▷nt ▷cu

1

0, @u

▷et

⊥
▷cu

⊥

0, @u

▷et

⊥
▷cu

0

1, @u

▷et

⊥
▷cu

0

1, −

▷nu▷et

⊥

1, @t

▷nu▷ct

⊥

1, @t

▷nu▷ct

et

2, @t

▷ct

et

▷nu

2, −

▷nt ▷nu

t

u

t

u

t

u

t

u

u

1, @u

t

u

t

u

t

u

t
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Mutual exclusion in writing to counter: □¬ (ct ∧ cu ), with nt denoting 

that t is not in its critical section, and nu denoting that u is not in its 

critical section



Counter with locks: mutual exclusion

0, −

▷et

⊥
▷eu

⊥

0, @t

▷ct

⊥
▷eu

⊥

1, −

▷nt ▷eu

⊥

1, @u

▷nt ▷cu

⊥

0, @u

▷et ▷cu

1, −

▷et ▷nu

1, @t

▷ct

⊥
▷nu

2, −

▷nt ▷nu

t

u

t

u

u

t

u

t

⊥ ⊥ ⊥
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Mutual exclusion in writing to counter: □¬ (ct ∧ cu ), with nt denoting 

that t is not in its critical section, and nu denoting that u is not in its 

critical section



Counter with locks: deadlock and starvation freedom

Deadlock freedom: □ ((et ∧ eu) ⇒ ◊(c t ∨ cu))

Starvation freedom: □ (e t ⇒ ◊c t ) ∧ □ (eu ⇒ ◊cu )
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0, −

▷et

⊥
▷eu

⊥

0, @t

▷ct

⊥
▷eu

⊥

1, −

▷nt ▷eu

⊥

1, @u

▷nt ▷cu

⊥

0, @u

▷et ▷cu

1, −

▷et ▷nu

1, @t

▷ct

⊥
▷nu

2, −

▷nt ▷nu

t

u

t

u

u

t

u

t

⊥ ⊥ ⊥



Verification



Verification
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Verification is the process of checking that a program is correct

This means that, in addition to the implementation, there is also some

form of specification (possibly only informal)

Two main techniques to do verification:

• testing: run the program using many different inputs and check

that every run satisfies the specification

• formal verification: mathematically prove that every possible run of

the program satisfies the specification
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Verification

Testing



Testing
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Testing in a nutshell:

• run the program using many different inputs

• check that every run satisfies the specification

Method depositunder test:

class BankAccount {

i n t balance;

void deposit(int amount);

void withdraw(int amount);

}

Testing code:

BankAccount ba = new BankAccount(); 

ba.deposit(100);

check(ba.balance == 100); ba.deposit(20); 

check(ba.balance == 100 + 20); 

ba.withdraw(11);

check(ba.balance == 100 + 20 - 11);

/ /  . . .



Testing concurrent programs?

Testing is unreliable to find error in concurrent programs because of 

nondeterminism: a correct run does not guarantee that some other run

with the same input will also be correct!

publ ic class Counter 

implements Runnable

{

/ / t h r e ad ’ s computat ion:

publ ic void run() { i n t

cnt = counter; counter =

cnt + 1;

}

}

Counter c = new Counter(); Thread t =

new Thread(c); Thread u = new

Thread(c); t.start();

u.start();

t.join();

u.join(); check(c.count() == 2);

sometimes it holds, sometimes it fails!
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Testing deadlock freedom?
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Besides nondeterminism, there is another problem that occurs if we

try to test temporal properties

• Testing mutual exclusion: if we run the program and detect that two

threads are in their critical section at the same time, we know that

there is a bug

• Testing deadlock freedom: if we run the program and detect that all

threads are blocked for, say, one hour, we still cannot be sure that

they will be blocked there forever

In simple examples, setting an arbitrary timeout may be enough, but in

large systems with massive workloads it may be hard to figure out how

much waiting time is to be expected
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Verification

Model Checking



Safety and liveness properties
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The difference between properties such as mutual exclusion and 

deadlock freedom is captured by two classes of temporal properties:

Safety properties are violated by a finite trace:

• informally: “nothing bad ever happens”

• example: mutual exclusion – a trace where, at some given time, 

two threads are both in their critical section shows that mutual 

exclusion does not hold

Liveness properties are violated only by an infinite trace:

• informally: “something good eventually happens”

• example: deadlock freedom – a trace where, from some time on, 

all threads are in the same state forever shows that deadlock 

freedom does not hold



Formal verification
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Testing is inadequate to reliably verify concurrent programs; formal

verification is more widely used even if it's more difficult and expensive

Specification of concurrent programs consists of two parts: functional

and temporal

Verification proceeds as follows:

• first, prove that the temporal spec is always satisfied

• then, assume the temporal spec and prove that the functional

specification is always satisfied

Advantages of this approach include:

• verifying a temporal spec alone often feasible on abstract models of

programs (it ignores details such as the precise value of all variables)

• if a strong temporal specification holds, we can often verify the 

functional specification as if the program were sequential

(because concurrent executions are free from race conditions!)



Formal verification of the counter
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Verifying the concurrent counter:

• to prove mutual exclusion, we only analyze the locking behavior and ignore

the exact value of counter

• if mutual exclusion holds, the two threads execute run sequentially,

thus we analyze the program as if it were sequential

publ ic class Counter 

implements Runnable

{

/ / t h r e ad ’ s computat ion:

publ ic void run() {

lock();

i n t cnt = counter; 

counter = cnt + 1;

unlock();

}

Counter c = new Counter(); Thread t =

new Thread(c); Thread u = new

Thread(c); t.start();

u.start();

t.join();

u.join(); check(c.count() == 2);



Model checking
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Model checking is an effective technique to verify concurrent programs,

first developed in the 1980s

Model checking mainly targets the verification of temporal specifications –

expressed in temporal logic – about the behavior of state/transition diagrams

(also called transition systems or finite-state automata):

1. given a concurrent program, build a state/transition diagram using

finitely many states that captures its concurrent behavior

2. model checking algorithms analyze all infinitely many traces of the

state/transition diagram and check whether a given temporal logic

specification holds:

• if model checking is successful, we have verified that all executions 

of the program satisfy the temporal specification

• if model checking is unsuccessful, it returns a counterexample

– a concrete trace that shows that the temporal specification is violated



Model checking in practice
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Building a state/transition diagram that correctly captures the behavior

of a concurrent program is something that cannot always be done

automatically

Model checking tools provide convenient languages to formalize

concisely complex state/transition diagrams

For example, this is a model of the concurrent behavior of the shared 

counter in ProMeLa – the input language of the Spin model checker:

i n t count = 0;

proctype IncThread() {

i n t tmp; tmp = count; count = tmp + 1;

}

i n i t { / / spawn two th reads runn ing i n p a r a l l e l

run IncThread(); run IncThread();

}



Model checking techniques and tools

43 / 43

There are two large families of model-checking techniques and tools:

• Explicit-state model checking works by explicitly exploring the 

state space generated by a given state/transition diagram. Spin

is the most popular explicit-state model checker

• Symbolic model checking works by encoding a given state/transition

diagram using logic formulas (or other specialized data structures),

and then expressing the temporal properties as logic properties of

the encoding

NuSMV is a state-of-the-art symbolic model checker

To know more about model checking:

course “Formal methods for software development”
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Weak Memory Models



• Why synchronization?
• Atomicity!

• Visibility!

• We have used modelling languages and pseudo-code.

• Real languages (e.g., Java) have additional issues:
• Memory model – how threads interact through memory and share data.

• In this lecture:
• Rudiments of the Java Memory Model and how to program in it.

• Principles applying to concurrent programming in other languages.

Telling the truth
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N. Piterman

• What are memory models?

• Why weak memory models?

• Something about the Java Memory Model (as an example of a weak memory 
model)

• Programming in the JMM

Lesson’s menu
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What are memory models?
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• As part of language semantics:
• How threads communicate through shared memory.

• What values are variable reads allowed to return?

• There are different memory models:
• Sequential Consistency – one of the “strongest” memory models. Often assumed for 

pseudocode (and up to now in this course).

• Java uses Java Memory Model (JMM) – a weak memory model.

Memory Models

N. Piterman 7Principles of Concurrent Programming



int x = 0;

int y = 0;

x = 1;

y = 1;

print(y);

print(x);

Reading variables: Sequential programming

What value will this read of y return?

Obviously 1! We always get the latest value!



bool done = false; int res = 0;

green_thread {

res = 666;

done = true;

}

blue_thread {

if (done)

print(res);

}

Reading variables: Concurrent programming
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What are the possible outcomes of running?
1

2

3

1

2

3

Let’s consider all possible interleavings.



666

666

666

bool done = false;

int res = 0;

green_thread {

res = 666;

done = true;

}

blue_thread {

if (done)

print(res);

}

Reading variables: Concurrent programming
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1

2

3

1

2

3

res

done true

1;1;2; No output

res

done true

1;1;2; No output

res

done

666

true

1;2;1;2; Output 666



Let’s see what Java says …
Demo OutOfOrderTest.java



Some visibility guarantees in SC:

• ”Program order” always maintained
• In particular, r = 666 always before done= true in any interleaving

• No “stale” values: Always see the latest  value written to any
variable

But the above guarantees not provided  by all weak memory 
models (e.g. JMM)!
Interleaving-based semantics is the “obvious” semantics.
Why make things more difficult? Why give up program order?
Because sequential consistency costs too much.

Reading variables: Sequential consistency (SC)

bool done = false;

int res = 0;

green_thread {

res = 666;

done = true;

}

blue_thread {

if (done)

print(res);

}



You must understand the memory model in order to write correct programs. 

Take home message 1
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Why weak-memory models?
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For some compiler optimizations we want to reorder writes  to variables. 

This does not happen in pseudocode …

Messy details …

SC problem 1: Compiler  optimizations



Transformed program:  

y = 2;

x = 1;

z = x + y; // x = 1, y = 2, 

z = 3

SC problem 1: Compiler  optimizations
• E.g., the transformation to the right  

“semantics preserving” in  sequential 
setting if we only  consider final state of
program

• Not equivalent if we can inspect  
program under execution, which  we can 
if x and y are shared  variables in a 
concurrent setting

• Breaks illusion of “program order”!

Original program:

x = 1;

y = 2;

z = x + y; // x = 1, y = 2, 

z = 3

Write order  
swapped

Write order swapped



SC cost 2: Causes too much cache  synchronization

Cost of SC not obvious with too simplified machine models:

Shared global memory

CPU CPU CPUCPU



SC cost 2: Causes too much cache

Shared global memory

Local cache

resources

CPU CPU CPUCPU

Local cache Local cache Local cache

Slightly more realistic model of today’s computers:

Large (but slow) 

shared memory

Small and fast
In real 

machines:

Multiple 

layers of 

cache!

In modern CPUs, 

even a single 

CPU may 

execute out of 

order and in 

parallel …

Problem with SC:
If all CPUs are always to see latest 
value, must push all writes through 
to slow shared resources! 

Want to keep 

computations local 

(avoid 

communication 

overhead)



• Examples:
• Out of order execution
• Compiler optimizations
• Avoid communication

• SC too expensive in many situations

• Solution to mentioned problems:
Relax some guarantees offered by SC → we get weak memory models

Weaker memory models (potentially) more performant, but more difficult  to 
program in

Why not SC?



Something about JMM
Example of a weak memory model
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More context: machine details
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Programmer

Java

Machine

Program in Java 

memory model

Java protects us 

from assembly 

language and from 

the machine’s 

memory model.

Java compiler 

developers 

implement Java 

memory model in 

the memory model 

of the underlying 

machine (different 

machines have 

different memory 

models)



• Less convenient than SC, but implementable on modern machine  
architectures without too much performance loss

• There is no “right design”:

The Java memory model



• A few languages have converged to “sequential consistency for  data-race-free 
programs” memory models

• Java included in this family

• Reasoning principle: If there are no data races (under SC), we can  assume 
SC when reasoning about our program

• Important to remember definitions of data race and race conditions  

SC for data-race-free programs



Def. 
Two memory accesses are in a data race iff they access the same memory 
location simultaneously (they are interleaved next to each other), at least one 
access is a write, insufficient explicit synchronization used to protect the
accesses

Def. 
A program is data-race-free iff no SC execution of the program contains a data
race

Notes:

• We quantify over all SC executions in the second 

• Data-race-freedom is a “language-level” property!

Data races: slight (Java) variation



Does this program contain any data races?

bool x = false, y = false;  

t1 {

if (x) y = true;

}

t2 {

if (y) x = true;

}

Definition of data race surprisingly subtle



Note that this is an “application-level” property!

I.e., for a given program p, to answer the question “is p free from race  
conditions?” we must have access to the specification of p.

Race conditions



• For Java programs, we have SC for programs without data races

• Reasoning principle in more detail:
1. Assume SC and make sure that there are no data races

2. If no data races, we can assume SC when reasoning about race conditions

• What about the semantics of programs with data races?

• Will not be considered here 
• In e.g. C++ data races result in undefined behavior (see C++ specification or 

https://en.cppreference.com/w/cpp/language/memory_model)

• Java is supposed to be a ”safe language”, some guarantees 

SC for data-race-free programs, again



Programming in the JMM
As an example of a weak memory model

N. Piterman 30Principles of Concurrent Programming



• I.e: How does “weak memory models” affect my daily life as a programmer?

• Answer: You must “annotate” your program more than with SC
• Sprinkle additional synchronization information on top of your program

• Variable qualifiers, synchronization mechanisms (e.g. locks), etc.

• Exactly what “annotate” means depends on language

• Essentially, you annotate which data/actions are shared and which  are not

What does all this mean in practice?



• Race condition = even if we had a specification, we 
have  a data race so our reasoning principle does 
not apply!

• Race condition = depends on the specification we 
are to  satisfy (what it means for the program to be
correct)

Simpler example: only one variable! 
bool done = false;

t1 {

done = true;

}

t2 {

if (done) print(33);

}

• Does this program contain

• data races?

• race conditions?

• Data race = yes, done is accessed without  
synchronization and one of the accesses is a
write

• There is a problem with this 
program!

• From SC perspective, everything is 
fine!

• No atomicity problems … but 
visibility problems!



Simple example (fixed)
volatile done = false;

t1 {

done = true;

}

t2 {

if (done) print(33);

}

• Solution: Annotate your program. E.g., in Java 
volatile is considered synchronization.

• Does this program contain

• data races?

• race conditions?

• Data race = no, in Java volatileaccesses are  
considered synchronized

• Race condition = still depends on specification
• Example spec: “If the program outputs something, it 

must output 33”.
• Race condition = no, for the above specification the 

correct output does not depend on specific 
execution/interleaving. 

• Example spec: “The program outputs 33”.
• Race condition = yes, some interleavings give us the 

correct output, others do not. 



Similar example, with locks
lock lock = new lock();  

int id = 0;

t1 {  

lock.lock();  

id++;

lock.unlock();

}

t2 {  

print(id);

}

Data races?
We have a race! All accesses to the 
shared  variable done must be 
synchronized!

Here we have (again) atomicity, but 
not visibility



id might exist as multiple copies…
lock lock = new lock();  

int id = 0;

t1 {  

lock.lock();  

id++;

lock.unlock();

}

t2 {  

print(id);

}
Shared global memory

resources

CPUCPU

Local cache Local cacheid =
1

id = 0

id =
1

id = 1

Might read “stale” 

value



Similar example, with locks (fixed)
lock lock = new lock();

int id = 0;

t1 {  

lock.lock();  

id++;

lock.unlock();

}

t2 {

lock.lock(); // new  

print(id);  

lock.unlock(); // new

}

This is how the program would look like 
with  proper annotations/synchronization

Now there are no data races.



JMM in More Detail
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Or memory 

consistency model



From the Java language specification (v. 15):

Two accesses to (reads of or writes to) the same variable are said to be conflicting if at 
least one of the accesses is a write.  

[…]

When a program contains two conflicting accesses (§17.4.1) that are not ordered by a  

happens-before relationship, it is said to contain a data race.

[…]

A program is correctly synchronized if and only if all sequentially consistent executions 
are free of data races.  

[…]

If a program is correctly synchronized, then all executions of the program will appear 
to be  sequentially consistent (§17.4.3).

Data races defined in terms of happens-before
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Happens-before example
static int x = 1;

x = 2;

Thread t = new Thread(() ->

System.out.println(x));

x = 3;

t.start();

• Data race because t reads x  without
synchronization?

• (Could argue read and write not  
overlapping in any SC execution.)

• x write happens-before x read,
because happens-before transitive





Demo OutOfOrderTest.java again



Reading suggestions

• See Java Concurrency in Practice (2006) if you want
more of this. The book presents simplified rules you can  
follow to do concurrent programming in Java instead of
having to learn the details of the Java memory model.

•E.g., the book provides useful “safe publication  
idioms”

• Also e.g.: Hans-J. Boehm, “Threads cannot be
implemented as a library” (2005).  
(https://doi.org/10.1145/1065010.1065042)

• Also e.g.: Hans-J. Boehm and Sarita V. Adve, “You

models” (2012).
don’t know jack about shared variables or memory  

(https://doi.org/10.1145/2076450.2076465)



Advice from JCP, p. 16

• Don’t share the state variable across threads;

• Make the state variable immutable; or

• Use synchronization whenever accessing the state variable.

• If multiple threads access the same mutable state variable without  
appropriate synchronization, your program is broken. There are three  ways to 
fix it:

• Don’t underestimate
• the two first

alternatives!



Make sure to not have data races in your Java programs

One way to think about all of this: Atomicity and visibility

Visibility aspect new in weak memory models compared to SC!

Summary?
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