
Chalmers | Göteborgs Universitet

Concurrent Programming TDA384/DIT391

Wednesday, 9 June 2021

Exam supervisor: N. Piterman (piterman@chalmers.se, 073 856 49 10)

(Exam set by N. Piterman and G. Schneider, based on the courses given in
September-October 2020 and January-March 2021)

Material permitted during the exam (hjälpmedel):

As the exam is run remotely we cannot realy restrict your usage of mate-
rial.

Grading: You can score a maximum of 70 points. Exam grades are:

points in exam Grade Chalmers Grade GU

28�41 3 G
42�55 4 G
56�70 5 VG

Passing the course requires passing the exam and passing the labs. The
overall grade for the course is determined as follows:

points in exam + labs Grade Chalmers Grade GU

40�59 3 G
60�79 4 G
80�100 5 VG

The exam results will be available in Ladok within 15 working days after
the exam's date.

Instructions and rules:

� You should be monitored on the dedicated zoom channel while taking
the exam!

� Submit the exam solution as a PDF �le on Canvas. The solution
should be typeset using your favourite software. No scanned hand-
written notes or diagrams are allowed.

� Please write your answers clearly and legibly: unnecessarily compli-
cated solutions will lose points, and answers that cannot be read will
not receive any points!

� Justify your answers, and clearly state any assumptions that your so-
lutions may depend on for correctness.

1



� Answer each question on a new page. Glance through the whole paper
�rst; �ve questions, numbered Q1 through Q5. Do not spend more
time on any question or part than justi�ed by the points it carries.

� Be precise. In your answers, try to use the programming notation and
syntax used in the questions. You can also use pseudo-code, provided
the meaning is precise and clear. If need be, explain your notation.

� A Word template and a Latex template are available on Canvas so you
can use them to deliver your answer.

2



Q1.(14p). This question is concerned with the model of cake baking production
using Erlang.

The production system consists of two types of processes. There is a
baking process that keeps track of which cakes have been baked, and
M baker processes that do the work of baking. Each cake is baked by
one baker, and one baker can bake multiple cakes sequentially. Baking
a cake takes a non-trivial, indeterminate amount of time. Every baker
asks the baking process for an unbaked cake, bakes it, and then gives
it back. This is repeated until all cakes are baked. The baker processes
terminate when there is no work left to be done (note though that the
baking process never terminates).

You can assume the following functions (you do not need to concern
yourself with the internal structure of the cake data types.)

� bake(Cake): Bake the given cake (the work done by the bakers).
Blocks while the cake is being baked. Returns a baked version of
Cake.

� get_unbaked_cake(Cakes): Find and return a cake in the list
Cakes which has not yet been baked. Returns false if all cakes
have been baked.

� set_baked_cake(Cakes, Cake): Mark that Cake in the list Cakes

has been baked.

(Part a). Implement the init_bakers function, which spawns M baker
processes (each running the baker function, which you will implement
in the next question). Use the following signature:
init_bakers(M) -> ... (2p)

(Part b).The baking process runs the following function:

baking1(Cakes) ->

receive

{idle, Pid} ->

case get_unbaked_cake(Cakes) of

false -> Pid ! finished ;

Cake ->

Pid ! {bake, Cake},

receive

{ready, CakeBaked} ->

baking1(set_baked_cake(Cakes, CakeBaked))

end

end

end.

3



Implement the baker function, which communicates with this bak-
ing process and behaves as described above. You can decide the sig-
nature of this function, but it should match your implementation of
init_bakers above. You can assume that the baking process is running
and registered to the atom baking. (6p)

(Part c).The `baking1` function de�ned above is not e�cient. Explain
why. (2p)

(Part d). The following is an attempt at improving the baking func-
tion:

baking2(Cakes) ->

receive

{idle, Pid} ->

case get_unbaked_cake(Cakes) of

false -> Pid ! finished ;

Cake -> Pid ! {bake, Cake}

end,

baking2(Cakes) ;

{ready, CakeBaked} ->

baking2(set_baked_cake(Cakes, CakeBaked))

end.

Explain why the above solution is an improvement over the previous
version. Are there any potential problems with this implementation?
Explain. (4p)

4



Q2 (19p). We have seen the following parallel implementation of merge sort (lec-
ture 09, combination of slides 21, 22, and 25):

1 public class PMergeSort extends RecursiveAction {

2 private Integer[] data;

3 private int low, high;

4

5 @override

6 protected void compute() {

7 if (high - low <= 1) {

8 sort(data,low,high); // sort sequentially small chunks of 1024

9 return; // or less

10 }

11 int mid = low + (high - low)/2; // mid point

12 // left and right halves

13 PMergeSort left = new PMergeSort(data,low,mid);

14 PMergeSort right = new PMergeSort(data,mid,high);

15 left.fork(); // fork thread working on left

16 right.fork(); // fork thread working on the right

17 left.join(); // wait for sorted left half

18 right.join(); // wait for sorted right half

19 merge(mid); // merge halves

20 }

21 }

The following appears somewhere in the main:

1 RecursiveAction sorter = new PMergeSort(numbers,0,numbers.length);

2 ForkJoinPool.commonPool().invoke(sorter);

Based on the dependency graph (or otherwise) for a run of invoke(sorter)
when the array numbers has 8 elements, answer the following.

(Part a). How many threads participate in the computation? (4p)

(Part b). What is the maximum number of tasks that can be executed
in parallel in this implementation on the same data (excluding parent
tasks waiting for a child task to �nish)? (4p)

You apply the second optimization in slide 25. That is, you change
line 16 to right.compute(); and comment out line 18.

(Part c). How many threads participate now in the computation?
(4p)

(Part d). What is the maximum number of tasks that can be executed
in parallel? (3p)

(Part e).

5



You now get an array with 9000 elements. Change the program ac-
cording to the �rst advice in slide 25 so that the number of threads
that participate in the computation does not change to all the previous
answers. (4p)

6



Q3 (11p). This program solves solves the critical section problem for two-threads.
Remember that we assume that a thread leaves the critical section after
a �nite time but may stay forever in the non-critical section.

The label pi can mean the command that follows pi, or the proposition
that thread p is at pi, and the next command p will execute is pi.

int turn= 1; int flaga= 1; int flagb= 1;

p q

while(true) { while(true) {
p1 //NCS (non-critical section) q1 //NCS (non-critical section)
p2: flaga= 0; q2: flagb= 0;
p3: turn= 1; q3: turn= 0;
p4: while(flagb!= turn) { }; q4: while(flaga== turn) { };
p5 //CS (critical section) q5 //CS (critical section)
p6: flaga= 1; q6: flagb= 1;

} }

For simplicity, we ignore the locations p1 and p4 and similarly q1 and
q4. Process p moves directly from p4 to p6 and from p6 to p2 and
similarly for q. We treat p6 and q6 as the critical section.

(Part a) Show that (p2 ⇐⇒ (flaga == 1)) is an invariant of the
program. That is, it always holds. Show that it holds initially and
that it is preserved under every transition of process p. (2p)

Use the invariant (q2 ⇐⇒ (flagb == 1)) without proof. Notice
that these are equivalent to ((p3 ∨ p4 ∨ p6) ⇐⇒ (flaga == 0)) and
((q3 ∨ q4 ∨ q6) ⇐⇒ (flagb == 0)).

(Part b) Show that (p4 =⇒ ((turn == 1)∨q4)) is an invariant of the
program. Show that it holds initially and that it is preserved under
every transition of every process. (3p)

The invariant (q4 =⇒ ((turn == 0) ∨ p4)) holds as well.

(Part c) Show that (p6 =⇒ ((turn == 1) ∨ q4)) is an invariant of
the program. (3p)

Use the invariant (q6 =⇒ ((turn == 0) ∨ p4)) without proof.

(Part d) Show that the program maintains mutual exclusion. (3p).

7



Q4 (17p). The program from Q3 is repeated below for convenience.

int turn= 1; int flaga= 1; int flagb= 1;

p q

while(true) { while(true) {
p1 //NCS (non-critical section) q1 //NCS (non-critical section)
p2: flaga= 0; q2: flagb= 0;
p3: turn= 1; q3: turn= 0;
p4: while(flagb!= turn) { }; q4: while(flaga== turn) { };
p5 //CS (critical section) q5 //CS (critical section)
p6: flaga= 1; q6: flagb= 1;

} }

You are going to construct the transition table of this program. A full
state is of the form (pi, qj , flaga, flagb, turn), where i and j range over
{2, 3, 4, 6}, and flaga, flagb, and turn range over 0 and 1. From Q2

we know that flaga and flagb can be deduced from pi and qj . So a
reduced state is of the form (pi, qj , turn). As transitions into p4 and
q4 set turn, we can ignore the value of turn when both p and q are in
locations 2 or 3. Only 16 states are reachable.

Notation: We denote the value of turn by x when we do not care about it.
For example, (p2, q2, x) correponds to either (p2, q2, 0) or (p2, q2, 1).

Here is a partial state transition table for the program above. As
mentioned, only 16 states are reachable from the initial state (p2, q2, 1).

state new state if p moves new state if q moves

s1 (2, 2, x) (3, 2, x) = s3

s2 (2, 3, x) (2, 4, 0) = s5

s3 (3, 2, x) (4, 2, 1) = s7 (3, 3, x) = s4

s4 (3, 3, x)

s5 (2, 4, 0) (2, 6, 0) = s6

s6 (2, 6, 0) (2, 2, x) = s1

s7 (4, 2, 1) (6, 2, 1) = s8

s8 (6, 2, 1) (2, 2, x) = s1

s9 (4, 3, 1)

s10 (4, 4, 1)

s11 (4, 4, 0)

s12 (4, 6, 1) (4, 2, 1) = s7

s13 (6, 3, 1) (2, 3, x) = s2

s14 (6, 4, 0) (2, 4, 0) = s5

s15 (3, 4, 0)

s16 (3, 6, 0) (3, 2, x) = s3

8



(Part a) Fill in the blank entries in the table. (8p)

(Part b) Explain why the protocol maintains mutual exclusion. (2p)

(Part c) Explain why under fair scheduling the protocol avoids star-
vation. (7p)

9



Q5 (9p). Consider this two-threaded program with threads s and t. The two
threads share the variables n1 and n2. The function unknown(·, ·) is
an unknown function that gets two integer parameters and returns
one integer. The function unknown is meant to remain completely
unknown.

int n1 = 0;
int n2 = 0;

s t

s1: while(n1 <= 500) { t1: while(n2<=500) {
s2: n1 = n1 + 1; t2: n2 = n2 + 1;
s3: n2 = unknown(n1,n2) }

}

The labels s1, s2, s3, t1 and t2 are given only for ease of reference.

(Part a) Show an execution in which the program terminates. (4p)

(Part b) Does the program terminate in all fair executions? (5p)

10


