
Chalmers | Göteborgs Universitet

Concurrent Programming TDA384/DIT391
Thursday, 9 January 2020

Exam supervisor: Nir Pieterman (piterman@chalmers.se, 073 856 4910)
(Exam set by K. V. S. Prasad, based on the course given Sep-Oct 2019)

Material permitted during the exam (hjälpmedel):
Two textbooks; four sheets of A4 paper with notes; English dictionary.

Grading: You can score a maximum of 70 points. Exam grades are:

points in exam Grade Chalmers Grade GU
28–41 3 G
42–55 4 G
56–70 5 VG

Passing the course requires passing the exam and passing the labs. The
overall grade for the course is determined as follows:

points in exam + labs Grade Chalmers Grade GU
40–59 3 G
60–79 4 G

80–100 5 VG

The exam results will be available in Ladok within 15 working days
after the exam’s date.

Instructions and rules:

• Please write your answers clearly and legibly: unnecessarily compli-
cated solutions will lose points, and answers that cannot be read will
not receive any points!

• Justify your answers, and clearly state any assumptions that your
solutions may depend on for correctness.

• Answer each question on a new page. Glance through the whole paper
first; six questions, numbered Q1 through Q6. Do not spend more
time on any question or part than justified by the points it carries.

• Be precise. In your answers, try to use the programming notation and
syntax used in the questions. You can also use pseudo-code, provided
the meaning is precise and clear. If need be, explain your notation.

1



Q1 (10p). Below is the pseudo-code of a program with two threads, p and q. The
variables n and flag are shared between p and q.

boolean flag := true; integer n := 0
p q
p1: while flag q1: while flag
p2: n := n+1 q2: n := n-1
p3: flag := true q3: if n < 0

q4: flag := false

(Part a). Construct a scenario where the program terminates and
n < 0. (1p)
(Part b). Construct a scenario where the program terminates and
n < 0, and p2 executes at least once. (2p)
(Part c). Construct a scenario where the program terminates and
n >= 0. (2p)
(Part d). Construct a fair scenario where the program does not
terminate. (3p)
(Part e). Construct a scenario where the program does not terminate
and q4 is executed infinitely often. (2p)

Q2 (15p). A small building firm can only build one house at a time, and cannot
start on a new one till the present one is completed. The firm has
N specialist workers such as a mason, a carpenter, an electrician, a
plumber, etc. They are told to start on a house by the team manager,
who then waits till each worker reports that they are done on this
house, before starting the team on the next house. The firm never
stops building houses.
On the next page is a code skeleton of a program modelling the be-
haviour of this small firm.

2



class BuildingFirm {

final int NumSpecialists = 2;

// Semaphore declarations to be defined...

class TeamManager extends Thread {

public void run() {

// To be defined...

}

}

class Worker extends Thread {

public void run() {

// To be defined...

}

}

// Starting the workers and team manager

public static void main(String[] args) {

for (int i = 0; i<NumSpecialists; i++) {

new Worker().start();

}

new TeamManager().start();

}

}

Your task is to replace the comments // To be defined... as follows:
(Part a). Write the declarations of the semaphores you will use in
your solution. For each semaphore, indicate its name and the number
of permits with which it is initialised. What should the scope of these
semaphores be? (2p)
(Part b). Write the implementation of the method run() of the class
Worker according to the description above. Remember that the only
shared variables among threads are NumSpecialists and perhaps the
semaphores you defined in Part a. (5p)
(Part c). Write the implementation of the method run() of the class
TeamManager according to the description above. Remember that the
only shared variables among threads are NumSpecialists and perhaps
the semaphores you defined in Part a. (5p)
(Part d). How would your solution change if you only use binary
semaphores? (3p)

3



Q3 (12p). The program below tries to solve the critical section problem. The
global variable S can take values Z, P, Q, PQ, or QP. Commands (p3,
q3) await either of two conditions. Commands p2, q2, p5 and q5 are
atomic: testing S, and then assigning to it, run without interruption.

type switch = {Z, P, Q, PQ, QP}
switch S := Z

p q
loop forever loop forever

p1: //NCS (non-critical section) q1: //NCS (non-critical section)
p2: case S of q2: case S of

Z → S:=P; Z → S:=Q;
Q → S:=QP; P → S:=PQ;
else → skip else → skip

p3: await (S=P or S=PQ) q3: await (S=Q or S=QP)
p4: //CS (critical section) q4: //CS (critical section)
p5: case S of q5: case S of

P → S:=Z; Q → S:=Z;
PQ → S:=Q; QP → S:=P;
else → skip else → skip

Below is part of the state transition table for an abbreviated version
of this program, skipping p1, p4, q1 and q4 (the CS and NCS parts).
The left column shows the state (where is p, where is q, what is S).
The middle column gives the next state if p now runs a step, and the
last column gives the next state if q now runs a step. In some states
both p or q are free to run a step. But in some states such as 5 below,
one or both processes may be blocked. There are 9 states in all.

State = (pi, qi, S) next state if p moves next state if q moves
1. (p2, q2, Z) (p3, q2, P) (p2, q3, Q)
2. (p2, q3, Q)
3.
4. (p3, q2, P)
5. (p3, q3, PQ) (p5, q3, PQ) no move
6.
7.
8. (p5, q2, P) (p2, q2, Z) (p5, q3, PQ)
9.

(Part a) Fill in the blanks in the state transition table. (4p)
Now use your table in Parts b, c and d, to:
(Part b) show whether the program ensures mutual exclusion. (2p)
(Part c) show the presence or absence of deadlock. (2p)
(Part d) show that even if q dies in q1, the program ensures the
liveness of p (i.e., it will progress). (4p)

4



Q4 (10p). The program in Q3 is reproduced below. Commands (p3, q3) await
either of two conditions; commands p2, q2, p5 and q5 are atomic.

type switch = {Z, P, Q, PQ, QP}
switch S := Z

p q
loop forever loop forever

p1: non-critical section q1: non-critical section
p2: case S of q2: case S of

Z → S:=P; Z → S:=Q;
Q → S:=QP; P → S:=PQ;
else → skip else → skip

p3: await (S=P or S=PQ) q3: await (S=Q or S=QP)
p4: critical section q4: critical section
p5: case S of q5: case S of

P → S:=Z; Q → S:=Z;
PQ → S:=Q; QP → S:=P;
else → skip else → skip

Below, you must argue from the program, not from the state transition
table. You get credit for correct reasoning. You may use a mixture
of formal logic and everyday language. Formulas and logical laws
make your argument concise and precise. With everyday language, be
careful to not be fuzzy, or to substitute wishful thinking for proof.
Below, pi is a logical proposition that means “process p is at pi”. Also,
for “S=X", we write just “X", as Z, P, Q, PQ and QP are unambiguous.
Note that p ∨ q (“p or q") is false iff (if and only if) both p and q are
false, and that p→ q (“p implies q") is false iff p is true and q is false.
Let Mp ≡ p4 → (P ∨ PQ), i.e., if p is at p4, then S will be P or PQ.
(Part a). Show that Mp is invariant (always holds).
Hint: How could Mp be false? Either because p arrives at p4 when S
is neither P nor PQ, or by both P and PQ becoming false while p is
at p4. Show both impossible. (4p)

(Part b). Assume Mp and its symmetric counterpart Mq for q are
both always true. Prove that the program ensures mutual exclusion,
i.e., we never have (p4 ∧ q4). (3p)

(Part c). Show that the program cannot reach a deadlocked state,
i.e., one where we are stuck with (p3 ∧ q3).
Hint: Suppose we are stuck with (p3 ∧ q3). Then what must S be?
Can it hold this value after p2 or q2 (one of which must be the last
command before p3 ∧ q3)? (3p)

5



Q5.(13p). In this question we model the exam grading process using Erlang.
There is an examiner process who keeps track of which exams have
been graded, and N grader processes who do the work of grading.
Each exam is graded by one grader, and one grader can grade multiple
exams. Grading an exam takes a non-trivial, indeterminate amount of
time. Every grader asks the examiner for an ungraded exam, grades
it, and then gives it back. This is repeated until all exams are graded.
The grader processes terminate when there is no work left to be done
(but the examiner process never terminates).
You can assume the following functions. You do not need to concern
yourself with the internal structure of the exam data types.

• grade(Exam): Grade the given exam (the work done by the graders).
Blocks while the exam is being graded. Returns a graded version
of Exam.

• get_ungraded_exam(Exams): Find and return an exam in the list
Exams which has not yet been graded. Returns false if all exams
have been graded.

• set_graded_exam(Exams, Exam): Mark that Exam in the list Exams
has been graded.

(Part a). Implement the init_graders function, which spawns N
grader processes (each running the grader function, which you will
implement in the next question). Use the following signature:
init_graders(N) -> ... (2p)

6



(Part b).The examiner process runs the following function:

examiner1(Exams) ->

receive

{idle, Pid} ->

case get_ungraded_exam(Exams) of

false -> Pid ! finished ;

Exam ->

Pid ! {grade, Exam},

receive

{ready, ExamGraded} ->

examiner1(set_graded_exam(Exams, ExamGraded))

end

end

end.

Implement the grader function, which communicates with this exam-
iner process and behaves as described above. It is up to you to decide
the signature of this function, but it should match your implementa-
tion of init_graders above. You can assume that the examiner process
is running and registered to the atom examiner. (6p)
(Part c).The ‘examiner1‘ function defined above is not efficient. Ex-
plain why. (2p)
(Part d). Here’s an attempt at improving the examiner function:

examiner2(Exams) ->

receive

{idle, Pid} ->

case get_ungraded_exam(Exams) of

false -> Pid ! finished ;

Exam -> Pid ! {grade, Exam}

end,

examiner2(Exams) ;

{ready, ExamGraded} ->

examiner2(set_graded_exam(Exams, ExamGraded))

end.

Explain why it is an improvement over the previous version. Are there
any potential problems with this implementation? (3p)

7



Q6.(10p). Recall that a data structure implementation is thread safe if its oper-
ations can be executed by multiple concurrent threads without run-
ning into race conditions. In this exercise, you will evaluate different
implementations of an operation on a simple data structure in Java,
analyzing whether they are thread safe.
The data structure simply stores two integers X and Y in a way that
it is possible to increment both variables at once. Class Pair is a
sequential implementation of the data structure:

class Pair {

private int X;

private int Y;

public int getX() { return X; } // current value of X

public int getY() { return Y; } // current value of Y

public void incXY() { // increment X and Y

X = getX() + 1;

Y = getY() + 1;

}

}

(Part a). Why is the above implementation of Pair not thread safe?

• Describe a concrete scenario where race conditions may occur.
• List all operations (that is, methods) that are not thread safe.

(5p)
(Part b). Write the implementation of a class LockedPair, which
provides the same operations as Pair but is thread-safe. To this end
LockedPair introduces a single variable lock to guard access to the
data structure. (Your implementation of LockedPair may inherit from
Pair or directly modify its implementation.) (5p)

8



Appendix

A Linear Temporal Logic (LTL) notation
1. An atomic proposition such as q2 (process q is at label q2) holds for a

state s if and only if process q is at q2 in s.

2. Let ϕ and ψ be formulas of LTL. Formulas are either atomic proposi-
tions, or are built up from other formulas using the following operators:
¬ for “not", ∨ for “or", ∧ for “and", → for “implies", □ for “always",
and ♢ for “eventually". A convenient abbreviation is ϕ iff ψ (i.e., ϕ if
and only if ψ) for (ϕ→ ψ) ∧ (ψ → ϕ).
These operators have the obvious meanings, but two differ from what
might be your interpretation of the names. First, ϕ ∨ ψ (“ϕ or ψ") is
false iff both ϕ and ψ are false. This is an “inclusive or", so ϕ ∨ ψ is
also true if both ϕ and ψ are true. Second, ϕ → ψ (“ϕ implies ψ") is
false iff ϕ is true and ψ is false. So, in particular, ϕ→ ψ is true if ϕ is
false. The meanings of the operators □ and ♢ are defined below.

3. A path is a possible future of the system, a possibly infinite sequence
of states, each reachable from the previous state in the path. A state
s satisfies formula ϕ if every path from s satisfies ϕ.
A path π satisfies □ϕ if ϕ holds for the first state of π, and for all
subsequent states in π. The path π satisfies ♢ϕ if ϕ holds for some
state in π.
Note that □ and ♢ are duals:

□ϕ ≡ ¬♢¬ϕ and ♢ϕ ≡ ¬□¬ϕ.

9


