
Chalmers | GÖTEBORGS UNIVERSITET

Sandro Stucki, Computer Science and Engineering

Principles of Concurrent Programming TDA384/DIT391
Wednesday, 21 August 2019, 14:00–18:00

Exam set and supervised by: Sandro Stucki (sandros@chalmers.se, 076 420 8639)
Examiner: K. V. S. Prasad (prasad@chalmers.se)

Material permitted during the exam (hjälpmedel):
Two textbooks; four sheets of A4 paper with notes; English dictionary.

Grading: You can score a maximum of 70 points. Exam grades are:

Points in exam Grade Chalmers Grade GU

28–41 3 G
42–55 4 G
56–70 5 VG

Passing the course requires passing the exam and passing the labs. The overall grade for
the course is determined as follows:

Points in exam + labs Grade Chalmers Grade GU

40–59 3 G
60–79 4 G

80–100 5 VG

The exam results will be available in Ladok within 15 working days after the exam’s date.

Instructions and rules:

• Please write your answers clearly and legibly: unnecessarily complicated solutions
will lose points, and answers that cannot be read will not receive any points!

• Justify your answers, and clearly state any assumptions that your solutions may
depend on for correctness.

• Answer each question on a new page. Glance through the whole paper first; there
are five questions, numbered Q1 through Q6. Do not spend more time on any
question or part than justified by the points it carries.

• Be precise. In your answers, try to use the programming notation and syntax used
in the questions. You can also use pseudo-code, provided the meaning is precise
and clear. If need be, explain your notation.

1

2

Q1. Filing cabinet (10p)
The following pseudo code models a filing cabinet with the capacity to hold 100 files.
(See Appendix A.1 for a full Java version of the code.)

1 class LockedCabinet {

2 int[] files = { 1, 1, ..., 1 }; // one hundred ’1’s

3 Lock lock = new ReentrantLock();

4

5 void checkout(int index) {

6 lock.lock();

7 while (files[index] <= 0) { lock.unlock(); lock.lock(); } // busy wait

8 files[index] = files[index] - 1;

9 lock.unlock();

10 }

11

12 void store(int index) {

13 lock.lock();

14 files[index] = files[index] + 1;

15 lock.unlock();

16 }

17 }

The field files[i] indicates the status of the i-th file: files[i] = 1 means that the file
is currently stored in the cabinet, files[i] = 0 means the file has been checked out. All
100 files are initially stored in the cabinet. The methods checkout() and store() are
used to checkout and return the file at position index. If a thread tries to checkout a file
that is not in the cabinet, it waits for the file to be returned. To avoid multiple threads
accessing the cabinet simultaneously, all read and write instructions to files are guarded
by a lock.

(Part a) Why does the while loop on line 7 repeatedly acquire and release the lock?
What could go wrong if the calls to lock() and unlock() in the loop were removed?
Describe a scenario where this would happen. (2p)

(Part b) Assume that two threads t and u concurrently access the filing cabinet. Thread
t calls store(0), while thread u simultaneously calls checkout(0). Can any data races
occur in this situation? If so, give an example. Otherwise, explain why the code is free
from data races. (2p)

Turn page for the rest of this question. . .

3

A semaphore-based implementation
Consider the following alternative, semaphore-based implementation of a filing cabinet.

1 class SemaphoreCabinet {

2 Semaphore[] files = {

3 new Semaphore(1), ..., new Semaphore(1) // one hundred semaphores

4 };

5 void checkout(int index) { files[index].acquire(); }

6 void store(int index) { files[index].release(); }

7 }

Instead of an array of integers and a lock, SemaphoreCabinet uses an array of semaphores
to keep track of files. The value of the semaphore files[i] indicates the status of file i.
A value of 1 means the file is in the cabinet, 0 means it has been checked out. To checkout
a file, a thread must acquire the corresponding semaphore; to return a file, it releases the
semaphore. (See Appendix A.2 for a full Java version.)

(Part c) Assume we are given one instance lc = new LockedCabinet() of the lock-
based implementation, and one instance sc = new SemaphoreCabinet() of the sema-
phore-based implementation. What is the maximum number of threads that can call
store() on the lock-based instance lc concurrently without blocking? What about the
semaphore-based instance sc? Justify your answers. (2p)

Assume that there are a hundred threads, each executing the following code:

for (int j = 0; j < 10000; ++j) { c.checkout(id); c.store(id); }

where c is either an instance of LockedCabinet or of SemaphoreCabinet, and id is the
thread identifier (id = 0, 1, . . . , 99).

(Part d) On a system with N = 100 CPU cores, which choice of implementation for
c will make the program complete faster, LockedCabinet or SemaphoreCabinet? How
does your answer change if there is only N = 1 CPU core? For each case, give a rough
estimate of the speedup/slowdown of the semaphore-based implementation compared to
the lock-based implementation (1×, 10×, 100×, . . .). Justify your answers. (4p)

4

Code and transition table for Q2 and Q3
The code below models a pair of threads t and u collaborating to solve two tasks. See Q2
for a detailed explanation of the code, and Appendix A.3 for the full Java program.

boolean[] done = { false, false }; Lock[] lock = { ... };

thread t thread u
1 while (true) {

2 lock[t].lock();
3 if (!done[t]) {

4 done[t] = true;

5 } else {

6 lock[u].lock();
7 if (!done[u]) done[u] = true;

8 else break; // exit loop

9 lock[u].unlock();
10 }

11 lock[t].unlock();
12 } // t terminates

1while (true) {

2lock[u].lock();
3if (!done[u]) {

4done[u] = true;

5} else {

6lock[t].lock();
7if (!done[t]) done[t] = true;

8else break; // exit loop

9lock[t].unlock();
10}

11lock[u].unlock();
12} // u terminates

Below is an incomplete state transition table for this program. Each state consists of the
current values of the program counters (pct, pcu), and the arrays done (dt, du) and lock

(lt, lu) for each thread. The value of li is the thread holding lock[i]. In the table, pct and
pcu only take the values 2, 6, 9, 11 or 12; pct = 2 means the next line executed by t is 2.

current state s′(t) = next state s′(u) = next state
s = (pct, pcu, dt, du, lt, lu) if t moves if u moves

s1 (2, 2, F, F, –, –) (11, 2, T, F, t, –) = s2 (2, 11, F, T, –, u) = s3
s2 (11, 2, T, F, t, –) fill this in = s5 (11, 11, T, T, t, u) = s4
s3 (2, 11, F, T, –, u) (11, 11, T, T, t, u) = s4 (2, 2, F, T, –, –) = s6
s4 (11, 11, T, T, t, u) (2, 11, T, T, –, u) = s7 (11, 2, T, T, t, –) = s8
s5 fill this in fill this in = s9 (2, 11, T, T, –, u) = s7
s6 (2, 2, F, T, –, –) (11, 2, T, T, t, –) = s8 (2, 6, F, T, –, u) = s10
s7 (2, 11, T, T, –, u) fill this in = s11 (2, 2, T, T, –, –) = s13
s8 (11, 2, T, T, t, –) (2, 2, T, T, –, –) = s13 (11, 6, T, T, t, u) = s12
s9 fill this in fill this in = s14 fill this in = s11
s10 (2, 6, F, T, –, u) (11, 6, T, T, t, u) = s12 (2, 9, T, T, u, u) = s15
s11 fill this in fill this in fill this in = s16
s12 (11, 6, T, T, t, u) (2, 6, T, T, –, u) = s17 no move
s13 (2, 2, T, T, –, –) fill this in = s16 (2, 6, T, T, –, u) = s17
s14 fill this in (11, 2, T, T, t, –) = s8 fill this in
s15 (2, 9, T, T, u, u) no move (2, 11, T, T, –, u) = s7
s16 fill this in fill this in = s19 fill this in = s18
s17 (2, 6, T, T, –, u) fill this in = s18 (2, 12, T, T, u, u) = s20
s18 fill this in fill this in fill this in
s19 fill this in fill this in fill this in
s20 (2, 12, T, T, u, u) fill this in no move

5

This page left blank so that you can detach this sheet when doing Q2 and Q3 which refer
to the code and transition table on page 5.

6

Q2. Collaborating threads – state transitions (20p)
The pseudo-code given on page 5 models a pair of threads t and u collaborating to solve
two tasks. Each task is represented by a Boolean done[i] indicating whether task i has
been completed. Each thread is assigned a task and attempts to complete that task first.
Once it has completed its task, it attempts to steal and complete the task assigned to the
other thread. If it discovers that both tasks have been completed already, it terminates.

To ensure that only one thread works on a given task, the array done is guarded by a
pair of locks. Before a thread can read or modify done[i], it must acquire lock[i].

Page 5 also contains an incomplete state transition table modeling the behavior of the
two threads. To keep the table small, only program positions relevant to the concurrent
behavior of the program are tracked: lines where a lock is acquired (2 and 6) or released
(9 and 11), and the end of the threads (line 12). Remember that pct = 2 means the next
line executed by t is 2.

Your task is to complete the state transition table and prove or disprove that the code is
free from deadlocks and starvation.

(Part a) Fill in the missing fields in rows s5, s9, s11, s14, s16, s18, s19 and s20 of the tran-
sition table. Make sure your solution is consistent with the names given for the missing
fields in rows s2, s7, s13 and s17. Don’t write directly into the table on page 5. Instead,
write down the complete rows as si : (X, Y, . . .), (U, V, . . .) . . . on a separate sheet of
paper with the rest of your solutions. (8p)

(Part b) Does the table contain any final states? If so, list all of them, otherwise explain
what the absence of final states means for the program. (1p)

(Part c) Are any of the fields in the state tuples redundant? Is it possible to remove any of
the variables pct, pcu, dt, du, lt, lu without collapsing two previously distinct states? (2p)

Deadlock

A thread is blocked in state s if it cannot move from s even though it has not yet termi-
nated. For example u is blocked in s12. A deadlock occurs if the program reaches a state
where both threads are blocked.

(Part d) Can the program deadlock? Prove your answer from the state transition table. If
your answer is yes, also give a trace (i.e. a sequence of states starting from the initial state
s1) that exhibits the deadlock. (2p)

Turn page for the rest of this question. . .

7

Starvation

Remember that a thread is starving if it is blocked indefinitely while other threads can
make progress or terminate. We say a thread has become immortal if it is starving while
all other threads have terminated.

(Part e) Can either of the threads become immortal? Prove your answer from the state
transition table. If your answer is yes, also give a trace (i.e. a sequence of states starting
from the initial state s1) that exhibits starvation. (2p)

Releasing locks on termination

Assume that line 8 in the code for threads t and u is changed from

8 else break; // exit loop

to

8 else { lock[t].unlock(); lock[u].unlock(); break; }

As a consequence, the values of states s19 and s20 must be updated, and 3 new states have
to be added to the transition table.

.
s19 (12, 2, T, T, –, –) no move fill this in = s21
s20 (2, 12, T, T, –, –) fill this in = s22 no move
s21 fill this in fill this in fill this in = s23
s22 fill this in fill this in = s23 fill this in
s23 fill this in fill this in fill this in

(Part f) Fill in the missing fields in rows s21–s23 in the updated state transition table.
Make sure your solution is consistent with the updated rows s19 and s20. (3p)

(Part g) Do your answers to Parts d and e change after the code update to line 8? If so,
prove your new answers from the updated state transition table. (2p)

8

Q3. Collaborating threads – logical reasoning (8p)
Consider again the collaboration problem described in its original form on page 5 (not the
updated version from Q2.f). See Q2 for an explanation of the code.

Here in Q3, you must argue from the program, not from the state transition table
(though you may seek inspiration from it). You get full credit for correct reasoning,
whether you use formal logic, everyday language, or a mixture. Formulas and logical
laws make your argument concise and precise, and help you keep track. With everyday
language, be careful not to be fuzzy, or to mistake wishful thinking for proof. Appendix B
reviews briefly the notation of propositional logic and linear temporal logic.

In your reasoning you may assume the following basic invariants about t and u:

1. the threads are only ever observed at the following locations:

pct ∈ {2, 6, 11, 9, 12} and pcu ∈ {2, 6, 11, 9, 12};
2. the done flags are Boolean-valued: either dt or ¬dt and similarly for du.

3. the possible values of the locks lt and lu are lt ∈ {−, t, u} and lu ∈ {−, t, u};
4. at any given time, the program counters, and locks have exactly one value:

pct = i ∧ pct = j if and only if i = j, and similarly for pcu, lt, and lu.

Consider the following propositions:

• Bt ≡ (pct = 2 ∧ lt 6= −) ∨ (pct = 6 ∧ lu 6= −),

• Bu ≡ (pcu = 2 ∧ lu 6= −) ∨ (pcu = 6 ∧ lt 6= −),

• W ≡ (pct = 6 ∧ pcu = 6),

• D ≡ Bt ∧Bu,

• Ft ≡ Bt → 3(pct = 12).

(Part a) Describe the propositions Bt, D and Ft in words. Which concurrency properties
do D and Ft correspond to? (3p)

(Part b) Explain briefly why the following invariants hold at any point during the execu-
tion of the program:
(I1) whenever pct = 6, we must have lt = t;
(I2) whenever pcu = 6, we must have lu = u. (1p)

(Part c) Show that, at any point in the execution of the program, if W holds, so does D.
(Hint: you may use the invariants from Part b.) (2p)

(Part d) Give a counterexample to Ft, i.e. describe a program run whereBt becomes true,
but pct = 12 can never become true afterwards. (2p)

9

10

Q4. Fork/join parallelism (10p)
The following recursive Java method computes the sum of the values stored in an array
arr between index start and index end (excluding arr[end]).

1 int sum(int[] arr, int start, int end) {

2 if (end <= start) return 0;

3 else return arr[start] + sum(arr, start + 1, end);

4 }

Based on this method, Billy has implemented the following naive fork-join task for sum-
ming up numbers in an array. (See Appendix A.4 for a full code listing.)

1 class SumTask extends RecursiveTask<Integer> {

2 protected int[] arr;

3 protected int start, end;

4

5 SumTask(int[] arr, int start, int end) {

6 this.arr = arr; this.start = start; this.end = end;

7 }

8

9 @Override public Integer compute() {

10 if (end <= start) return 0;

11 else {

12 SumTask t = new SumTask(arr, start + 1, end);

13 t.fork();

14 int s = t.join();

15 return arr[start] + s;

16 }

17 }

18 }

(Part a) Draw the dependency graph for a run of SumTask(arr, 0, 8) assuming arr

has exactly 8 elements. Each node should represent a task instance, with leaf nodes
representing the base cases (where end <= start). Edges should represent parent-child
relationships between tasks. How many nodes does the graph contain? (2p)

(Part b) What is the approximate runtime of SumTask(arr, 0, 8) assuming each task
takes about one unit of time to perform its computation? What is the maximum number of
tasks that can be executed in parallel in this implementation (excluding parent tasks wait-
ing for a child task to finish)? How can these numbers be inferred from the dependency
graph? (4p)

Turn page for the rest of this question. . .

11

After taking a class on concurrent programming, Billy adjusts the compute() method of
SumTask as follows:

1 @Override public Integer compute() {

2 if (end <= start) return 0;

3 else if (end == start + 1) return arr[start];

4 else {

5 int mid = (start + end) / 2;

6 SumTask t1 = new SumTask(arr, start, mid);

7 SumTask t2 = new SumTask(arr, mid, end);

8 t1.fork();

9 t2.fork();

10 int s1 = t1.join();

11 int s2 = t2.join();

12 return s1 + s2;

13 }

14 }

(Part c) What is the total number of tasks created by the updated implementation when
running an instance of SumTask(arr, 0, 8)? Assume this instance is running on a ma-
chine with 8 or more CPU cores. Does the new implementation improve the total runtime
compared to the naive one? If so, why? Justify your answers by drawing the dependency
graph for SumTask(arr, 0, 8) using the new implementation of compute(). (4p)

12

Q5. Event counter (12p)
The following Erlang function implements the event handler of a so-called event counter.

1 handler(Goal, Done, Clients) when Done == Goal -> % Goal reached

2 [C ! {done, N} || {C , N} <- dict:to_list(Clients)],

3 handler(Goal, 0, dict:new()); % reset server state

4 handler(Goal, Done, Clients) -> % Goal not yet reached

5 receive

6 {event, From} ->

7 From ! ok,

8 NewClients = dict:update_counter(From, 1, Clients),

9 handler(Goal, Done + 1, NewClients)

10 end.

An event counter is a server that receives and counts event messages from clients. The
server keeps track of the total number of received events using the argument Done, and of
the number of events received from particular clients using the dictionary Clients. When
Done reaches a predefined number Goal, the server sends a done message to all its clients
and resets its state (except for the Goal argument, which never changes).

Clients interact with the server by calling the functions event/0 and wait/0.

11 event() ->

12 counter ! {event, self()},

13 receive ok -> ok end.

14

15 wait() ->

16 receive {done, N} -> N end.

Clients notify the server of events by calling event(). When a client calls wait(), it
blocks until it receives a done message from the server.

See Appendix A.5 for a full code listing.

(Part a) List all the message types processed by the server. For each type, describe

• the name of the message (e.g. “ok”);
• the sender and receiver of the message (e.g. “from server to client”);
• the payload of the message (e.g. “the sender PID” or “no payload”);
• what causes a message to be sent (e.g. “a client calls the event function”). (3p)

(Part b) What is the meaning of the number returned by a call to wait()? (1p)

Turn page for the rest of this question. . .

13

Assume an event counter with Goal=2 has just been initialized and two processes P and Q

are spawned from the main process using the following code:

Main = self(), % remember PID of main process

P = spawn(fun() -> event(), event(), Main ! {self(), wait()} end),

Q = spawn(fun() -> event(), Main ! {self(), wait()} end),

event(). % event generated by the main process

Here are two possible sequences of messages received by the Main process after P and Q

terminate:
1. {P,2}, {Q,1}.
2. {Q,1}, {P,1}.

(Part c) For each sequence, give a corresponding sequence of messages received by the
server that explains the messages seen by Main. Your answer should be of the form
(M1, D1), (M2, D2), . . . , where each Mi is a message received by the server and Di is the
value of Done before Mi is processed by the server. (2p)

Resetting the server

Sometimes it is necessary to reset the event counter. For this, we introduce a new type of
message – reset – that can be sent to the server from any other process. reset messages
are handled as follows.

By the server: when the server receives a message of the form {reset, P} from process
P, it first responds to P with an ok message. It then sends a reset message to all its
clients (those listed in the Clients dictionary). Finally, it resets its internal state (Done
and Clients).

By clients: clients that receive a reset message while waiting for a done message from
the server (in a call to wait()) exit the wait function and return error to indicate that the
server was reset without reaching its goal.

You are now asked to write a short piece of code. You may use Erlang, pseudo code, or
a mixture of both. Syntax details, such as punctuation, are not important, but an experi-
enced Erlang programmer should be able to understand your code. Your code must use
functional style: use recursion, list comprehensions or higher-order functions instead of
mutable state or loops. You are not expected to write more than 20 lines of code in total.

(Part d) Implement the reset mechanism according to the above specification. Describe
the necessary changes to the functions wait/0 and handler/3. You don’t need to repeat
parts of the code that do not change. Describe also the new function reset/0 used to reset
the server. Calls to reset() should block until an acknowledgment from the server has
been received. (6p)

14

Q6. Lock-free filing cabinet (10p)
Recall the semaphore-based filing cabinet implementation SemaphoreCabinet from Q1
(page 4). See Appendix A.2 for the full Java version.

1 class SemaphoreCabinet {

2 Semaphore[] files = {

3 new Semaphore(1), ..., new Semaphore(1) // one hundred times

4 };

5 void checkout(int index) { files[index].acquire(); }

6 void store(int index) { files[index].release(); }

7 }

Here in Q6, you will be asked to implement a lock-free filing cabinet and to compare its
performance to the original SemaphoreCabinet.

Remember that the AtomicInteger class from the Java standard library provides a
compareAndSet method with the following signature.

boolean compareAndSet(int expectedValue, int newValue)

(Part a) Describe a lock-free implementation of SemaphoreCabinet. Your solution should
use a CAS (compare-and-set) synchronization primitive, such as Java’s AtomicInteger,
but no semaphores or locks. Describe all fields and methods of the class that need to be
added, changed or removed. You may use either Java code or pseudo code to do so. (6p)

Let c be a filing cabinet that is accessed by N different threads executing the following
code:

1 for (int j = 0; j < 100; ++j) {

2 // switch between index = 0 and index = 1 in even/odd iterations

3 int index = j % 2;

4 c.checkout(index);

5 doWork();

6 c.store(index);

7 }

Assume that the method doWork() performs a non-trivial computation (>106 CPU cycles).
Consider the following scenarios:

(Scenario 1) There are 32 CPU cores and N = 32 threads.

(Scenario 2) There are 2 CPU cores and N = 100 threads.

(Part b) Which of the implementations do you expect to perform better in Scenario 1,
the semaphore-based one from Q1 or your lock-free version? In Scenario 2? Justify your
answers for both scenarios. (4p)

15

16

Appendix A. Full code listings

Appendix A.1. Code for Q1

1 import java.util.concurrent.*;

2 import java.util.concurrent.locks.*;

3

4 class LockedCabinet {

5 final private int[] files = new int[100];

6 final private Lock lock = new ReentrantLock();

7 public LockedCabinet() {

8 for (int i = 0; i < 100; ++i) { files[i] = 1; }

9 }

10 public void checkout(int index) {

11 lock.lock();

12 try {

13 while (files[index] <= 0) { lock.unlock(); lock.lock(); }

14 files[index] = files[index] - 1;

15 } finally { lock.unlock(); }

16 }

17 public void store(int index) {

18 lock.lock();

19 try { files[index] = files[index] + 1; } finally { lock.unlock(); }

20 }

21 public static void main(String[] args) {

22 LockedCabinet lc = new LockedCabinet();

23 Thread[] ts = new Thread[100];

24 for (int i = 0; i < ts.length; ++i) {

25 final int id = i;

26 ts[i] = new Thread() {

27 @Override public void run() { // thread code for Q1

28 for (int j = 0; j < 10000; ++j) {

29 lc.checkout(id); lc.store(id);

30 }

31 }

32 };

33 ts[i].start();

34 }

35 for (int i = 0; i < ts.length; ++i) {

36 try { ts[i].join(); } catch (InterruptedException ie) {}

37 }

38 }

39 }

17

Appendix A.2. Code for Q1 and Q6

1 import java.util.concurrent.*;

2

3 class SemaphoreCabinet {

4 final private Semaphore[] files = new Semaphore[100];

5 public SemaphoreCabinet() {

6 for (int i = 0; i < 100; ++i) { files[i] = new Semaphore(1); }

7 }

8 public void checkout(int index) {

9 try { files[index].acquire(); } catch (InterruptedException ie) {}

10 }

11 public void store(int index) {

12 files[index].release();

13 }

14 public static void main(String[] args) {

15 SemaphoreCabinet sc = new SemaphoreCabinet();

16 Thread[] ts = new Thread[100];

17 for (int i = 0; i < ts.length; ++i) {

18 final int id = i;

19 ts[i] = new Thread() {

20 @Override public void run() { // thread code for Q1

21 for (int j = 0; j < 10000; ++j) {

22 sc.checkout(id); sc.store(id);

23 }

24 }

25 };

26 ts[i].start();

27 }

28 for (int i = 0; i < ts.length; ++i) {

29 try { ts[i].join(); } catch (InterruptedException ie) {}

30 }

31 }

32 }

18

Appendix A.3. Code for Q2 and Q3

1 import java.util.concurrent.*;

2 import java.util.concurrent.locks.*;

3

4 class TaskThread extends Thread {

5 private int id;

6 public static boolean[] done = { false, false };

7 public static Lock[] lock = { new ReentrantLock(), new ReentrantLock() };

8

9 TaskThread(int id) { this.id = id; }

10

11 @Override public void run() {

12 int me = id;

13 int other = 1 - id;

14 while (true) {

15 lock[me].lock();

16 if (!done[me]) {

17 done[me] = true;

18 System.out.println("Thread " + me + " completed task " + me);

19 } else {

20 lock[other].lock();

21 if (!done[other]) {

22 done[other] = true;

23 System.out.println("Thread " + me + " completed task " + other);

24 } else {

25 break; // exit loop

26 }

27 lock[other].unlock();

28 }

29 lock[me].unlock();

30 }

31 System.out.println("Thread " + me + " done.");

32 }

33

34 public static void main(String[] args) {

35 TaskThread t0 = new TaskThread(0);

36 TaskThread t1 = new TaskThread(1);

37 t0.start(); t1.start();

38 try {

39 t0.join(); t1.join();

40 } catch (InterruptedException i) {}

41 }

42 }

19

Appendix A.4. Code for Q4

1 class SumTaskNaive extends RecursiveTask<Integer> {

2 protected int[] arr;

3 protected int start, end;

4

5 static int sum(int[] arr, int start, int end) {

6 if (end <= start) return 0;

7 else return arr[start] + sum(arr, start + 1, end);

8 }

9

10 SumTaskNaive(int[] arr, int start, int end) {

11 this.arr = arr; this.start = start; this.end = end;

12 }

13 @Override public Integer compute() {

14 if (end <= start) return 0;

15 else {

16 SumTaskNaive t = new SumTaskNaive(arr, start + 1, end);

17 t.fork(); int s = t.join();

18 return arr[start] + s;

19 }

20 }

21 public static void main(String[] args) {

22 final int N = 200; int[] numbers = new int[N];

23 for (int i = 0; i < N; ++i) { numbers[i] = i; }

24 SumTaskNaive t = new SumTaskNaive(numbers, 0, N);

25 int res = ForkJoinPool.commonPool().invoke(t);

26 System.out.println("Sum: " + res);

27 }

28 }

29

30 class SumTask extends SumTaskNaive {

31 SumTask(int[] arr, int start, int end) { super(arr, start, end); }

32 @Override public Integer compute() {

33 if (end <= start) return 0;

34 else if (end == start + 1) return arr[start];

35 else {

36 int mid = (start + end) / 2;

37 SumTask t1 = new SumTask(arr, start, mid);

38 SumTask t2 = new SumTask(arr, mid, end);

39 t1.fork(); t2.fork();

40 int s1 = t1.join(); int s2 = t2.join();

41 return s1 + s2;

42 }

43 }

44 }

20

Appendix A.5. Code for Q5

1 -module(counter).

2 -export([init/1,event/0,wait/0,reset/0]).

3

4 % start the event counter process with a given Goal

5 init(Goal) ->

6 register(counter, spawn(fun () -> handler(Goal, 0, dict:new()) end)).

7

8 % notify the counter about an event

9 event() ->

10 counter ! {event, self()},

11 receive ok -> ok end.

12

13 % wait until the counter reaches its goal

14 wait() ->

15 receive {done, N} -> N end.

16

17 % synchronously reset the counter

18 reset() ->

19 todo.

20

21 % the server’s event handler

22 handler(Goal, Done, Clients) when Done == Goal -> % Goal reached

23 [C ! {done, N} || {C , N} <- dict:to_list(Clients)],

24 handler(Goal, 0, dict:new()); % reset server state

25 handler(Goal, Done, Clients) -> % Goal not yet reached

26 receive

27 {event, From} ->

28 From ! ok,

29 NewClients = dict:update_counter(From, 1, Clients),

30 handler(Goal, Done + 1, NewClients);

31 {reset, From} ->

32 todo

33 end.

21

Appendix B. Linear Temporal Logic (LTL) notation
1. An atomic proposition such as q2 (process q is at label q2) holds for a state s if and

only if process q is at q2 in s.

2. Let φ and ψ be formulas of LTL. Formulas are either atomic propositions, or are
built up from other formulas using the following operators: ¬ for “not", ∨ for “or",
∧ for “and",→ for “implies", 2 for “always", and 3 for “eventually". A convenient
abbreviation is φ iff ψ (i.e., φ if and only if ψ) for (φ→ ψ) ∧ (ψ → φ).

These operators have the obvious meanings, but two differ from what might be your
interpretation of the names. First, φ∨ψ (“φ or ψ") is false iff both φ and ψ are false.
This is an “inclusive or", so φ ∨ ψ is also true if both φ and ψ are true. Second,
φ→ ψ (“φ implies ψ") is false iff φ is true and ψ is false. So, in particular, φ→ ψ
is true if φ is false. The meanings of the operators 2 and 3 are defined below.

3. A path is a possible future of the system, a possibly infinite sequence of states, each
reachable from the previous state in the path. A state s satisfies formula φ if every
path from s satisfies φ.

A path π satisfies 2φ if φ holds for the first state of π, and for all subsequent states
in π. The path π satisfies 3φ if φ holds for some state in π.

Note that 2 and 3 are duals:

2φ ≡ ¬3¬φ and 3φ ≡ ¬2¬φ.

22

