
Chalmers | GÖTEBORGS UNIVERSITET

Sandro Stucki, Computer Science and Engineering

Principles of Concurrent Programming TDA384/DIT391
Tuesday, 19 March 2019, 8:30–12:30

Exam set and supervised by: Sandro Stucki (sandros@chalmers.se, 076 420 8639)
Examiner: K. V. S. Prasad (prasad@chalmers.se)

Material permitted during the exam (hjälpmedel):
Two textbooks; four sheets of A4 paper with notes; English dictionary.

Grading: You can score a maximum of 70 points. Exam grades are:

Points in exam Grade Chalmers Grade GU

28–41 3 G
42–55 4 G
56–70 5 VG

Passing the course requires passing the exam and passing the labs. The overall grade for
the course is determined as follows:

Points in exam + labs Grade Chalmers Grade GU

40–59 3 G
60–79 4 G

80–100 5 VG

The exam results will be available in Ladok within 15 working days after the exam’s date.

Instructions and rules:

• Please write your answers clearly and legibly: unnecessarily complicated solutions
will lose points, and answers that cannot be read will not receive any points!

• Justify your answers, and clearly state any assumptions that your solutions may
depend on for correctness.

• Answer each question on a new page. Glance through the whole paper first; there
are five questions, numbered Q1 through Q5. Do not spend more time on any
question or part than justified by the points it carries.

• Be precise. In your answers, try to use the programming notation and syntax used
in the questions. You can also use pseudo-code, provided the meaning is precise
and clear. If need be, explain your notation.

1



2



Q1. Concurrent counter array (14p)
The following Java class implements a thread-safe array of counters:

1 class LockedCounterArray {

2 private int[] counters;

3 private Lock lock = new ReentrantLock();

4

5 LockedCounterArray(int size) { counters = new int[size]; /* all 0s */ }

6

7 void increment(int index) {

8 lock.lock();

9 counters[index] = counters[index] + 1;

10 lock.unlock();

11 }

12

13 int value(int index) {

14 lock.lock();

15 int cnt = counters[index];

16 lock.unlock();

17 return cnt;

18 }

19 }

The number of counters in the array is given by the constructor argument size; the method
increment() safely increments the counter at a given index; the method value() returns
the value of counter index. See Appendix A.1 for the full Java code listing.

(Part a) Assume we are given a counter array lca = new LockedCounterArray(100).
What is the maximum number of threads that can call the method increment() on lca

concurrently without blocking? What is the maximum number of counters that could
safely be incremented concurrently in principle? Justify your answers. (2p)

(Part b) How could the implementation of LockedCounterArray be adjusted to allow a
maximal number of threads concurrent access to the counter array? Propose a lock-based
solution. Describe which fields and methods of the class need to be changed and how. You
may describe the changes either in words or by giving concrete Java code for new/updated
fields and methods. (4p)

Turn page for the rest of this question. . .

3



Eliminating locking overhead

Locking can introduce significant overhead in some situations. For the remainder of this
question, assume that the size of counters, the number of threads trying to access the
counters, and the number of processor cores all have the same value: 16.

(Part c) Explain what type of overhead your lock-based solution from Part b may suffer
from under this assumption. How costly is locking compared to just incrementing the
counter? Does it take orders of magnitude fewer CPU cycles, orders of magnitude more,
or about the same? (2p)

(Part d) How could the implementation of LockedCounterArray be adjusted to remove
locking overhead while still allowing a maximal concurrent access to the counter array?
Describe which fields and methods of the class need to be changed and how. You may
assume that strong synchronization primitives/instructions of the type you have seen in
the course are supported by the underlying machine architecture. (4p)

(Part e) How does the performance of your solutions from Part b and Part d compare?
Which of the two solutions would you expect to perform better in the given scenario?
Briefly motivate your answer. (2p)

4



Code and transition table for Q2 and Q3
The code below implements barrier synchronization for two threads t and u using a pair
of semaphores. (See Appendix A.2 for the full Java program.)

Semaphore[] barrier = { new Semaphore(0), new Semaphore(0) };

thread t thread u
1 boolean done = false;

2 do {

3 // synchronize

4 barrier[t].up();
5 barrier[u].down();
6 // do work

7 done = doWork();

8 } while (!done);

9 // t terminates

10boolean done = false;

11do {

12// synchronize

13barrier[u].up();
14barrier[t].down();
15// do work

16done = doWork();

17} while (!done);

18// u terminates

Below is an incomplete state transition table for this program. Each state consists of the
current values of the program counters for both threads (pct, pcu), the local variable done

in each thread (dt, du), and the barrier semaphores (bi is the value of barrier[i]). The
states in the table cover only a subset of program positions: statements that access the
shared variable barrier (lines 4, 5 for t, and 13, 14 for u), and the ends of the threads
(lines 9 and 18). Remember that pct = 4 means that the next line executed by t is 4.

current state s′(t) = next state s′(u) = next state
s = (pct, pcu, dt, du, bt, bu) if t moves if u moves

s1 (4, 13, F, F, 0, 0) fill this in = s2 (4, 14, F, F, 0, 1) = s3
s2 fill this in fill this in fill this in = s4
s3 (4, 14, F, F, 0, 1) fill this in = s4 no move
s4 fill this in (4, 14, F, F, 1, 0) = s5 fill this in = s6

(9, 14, T, F, 1, 0) = sX1 (5, 18, F, T, 0, 1) = sY 1

s5 (4, 14, F, F, 1, 0) fill this in = s7 (4, 13, F, F, 0, 0) = s1
(4, 18, F, T, 0, 0) = sY 2

s6 fill this in (4, 13, F, F, 0, 0) = s1 fill this in = s8
(9, 13, T, F, 0, 0) = sX2

s7 fill this in fill this in fill this in = s2
(5, 18, F, T, 1, 0) = sY 3

s8 fill this in (4, 14, F, F, 0, 1) = s3 fill this in
(9, 14, T, F, 0, 1) = sX3

sX1 (9, 14, T, F, 1, 0) no move (9, 13, T, F, 0, 0) = sX2

(9, 18, T, T, 0, 0) = sZ
sX2 (9, 13, T, F, 0, 0) no move (9, 14, T, F, 0, 1) = sX3

sX3 (9, 14, T, F, 0, 1) no move fill this in
sY 1 (5, 18, F, T, 0, 1) (4, 18, F, T, 0, 0) = sY 2 no move

(9, 18, T, T, 0, 0) = sZ
sY 2 (4, 18, F, T, 0, 0) (5, 18, F, T, 1, 0) = sY 3 no move
sY 3 (5, 18, F, T, 1, 0) no move no move
sZ (9, 18, T, T, 0, 0) no move no move

5



This page left blank so that you can detach this sheet when doing Q2 and Q3 which refer
to the code and transition table on page 5.

6



Q2. Barriers – state transitions (20p)
The pseudo-code given on page 5 implements barrier synchronization for two threads t
and u using semaphores (see Appendix A.2 for the complete Java program).

Before doing any work, the threads synchronize at the barrier. After synchronization,
each thread performs some computation by calling the doWork() method. The method
returns true to indicate that the thread is done and should terminate, or false to indi-
cate that more work needs to be done. Every call to doWork() terminates but not every
invocation takes the same amount of time to do so.

Page 5 also contains an incomplete state transition table modeling the behavior of the
two threads. To keep the table small, only program positions relevant to the concurrent
behavior of the program are tracked (see page 5 for details). Remember that pct = 4
means the next line executed by t is 4.

Note that a thread sometimes has more than one move: depending on the value of the
variable done, a thread may execute another iteration of the while loop or terminate. For
example, thread u has two possible moves from state s5: to s1 if doWork() returns false,
or to sY 2 if it returns true.

Your job is to complete the state transition table and prove (or disprove) that the code is
free from deadlocks and starvation.

(Part a) Fill in the missing fields in the transition table (rows s1–s8 and sX3). Make sure
your solution is consistent with the names given for the missing fields in rows s1, s3 and
s5. Don’t write directly into the table on page 5. Instead, note the names and fields of the
incomplete rows as si : (X, Y, . . . ), (U, V, . . . ) . . . on a separate sheet of paper with the
rest of your solutions. (6p)

(Part b) List all the final states in the table. (1p)

(Part c) Are any of the fields in the state tuples redundant? Is it possible to remove any of
the variables pct, pcu, dt, du, bt, bu without collapsing two previously distinct states? (2p)

Deadlock

A thread is blocked in state s if it cannot move from s even though it has not yet termi-
nated. For example u is blocked in s3.

(Part d) Can the program deadlock? In other words, is there a state where both threads
are blocked? Prove your answer from the state transition table. If your answer is yes, also
give a trace (i.e. a sequence of states starting from the initial state s1) that exhibits the
deadlock. (1p)

Turn page for the rest of this question. . .

7



Starvation

Remember that a thread is starving if it is blocked indefinitely while other threads can
make progress. Formally, a t-starvation path is a finite, non-empty sequence of states

s1 −→ s2 −→ s3 −→ · · · −→ sn

where t is blocked in every state si, while u moves from si to si+1 and either terminates
in sn or loops forever on the path, i.e. it moves from sn back to s1 and starts over. A
u-starvation path is an analogous sequence of states where only t makes progress. (Note
that a path can be of length n = 1.)

(Part e) Can either of the threads starve? That is, is there a t- or u-starvation path? Prove
your answer from the state transition table. If your answer is yes, also give a trace (i.e.
a sequence of states starting from the initial state s1) that exhibits the starvation (i.e. that
ends in a starvation path). If your answer is no, briefly explain why there cannot be any t-
or u-starvation paths. (3p)

Scenario: equal work for t and u

Now, assume that the doWork() methods of t and u are set up in such a way that the
while loops of both threads execute the same number of iterations. For example, the
two doWork() methods could execute tasks from a pair of work list lt and lu of the same
length. Call this the equal work scenario.

(Part f) List all the states from the transition table that become unreachable in the equal
work scenario. (A state is unreachable if no execution of the program will visit it.) Why
are they unreachable? (4p)

(Part g) Does your answer to Part e change in the equal work scenario? If yes, prove your
new answer from the updated state transition table (with unreachable states removed). If
your new answer is yes, give a trace that ends in a starvation path. If your new answer is
no, briefly explain why there cannot be any t- or u-starvation paths in this scenario. (3p)

8



Q3. Barriers – temporal logic (8p)
Consider again the barrier synchronization problem described on page 5, and see Q2 for
an explanation of the code.

Here in Q3, you must argue from the program, not from the state transition table
(though you may seek inspiration from it). You get full credit for correct reasoning,
whether you use formal logic, everyday language, or a mixture. Formulas and logical
laws make your argument concise and precise, and help you keep track. With everyday
language, be careful not to be fuzzy, or to mistake wishful thinking for proof. Appendix B
reviews briefly the notation of propositional logic and linear temporal logic.

In your reasoning you may assume the following basic invariants about t and u:

1. a thread is in exactly one program location at once:

pct = i ∧ pct = j if and only if i = j, and similarly for pcu;

2. the threads are only ever observed at three locations:

if pct = i then i ∈ {4, 5, 9}, and if pcu = i then i ∈ {13, 14, 18}.
3. the values of the semaphores bt and bu are non-negative: bt ≥ 0 and bu ≥ 0;

4. a semaphore has exactly one value:

bt = i ∧ bt = j if and only if i = j, and similarly for bu.

Consider the following propositions:

• Bt ≡ (pct = 5 ∧ bu = 0) and Bu ≡ (pcu = 14 ∧ bt = 0),

• Rt ≡ (pct = 5→ bt > 0),

• D ≡ ¬(Bt ∧Bu),

• St ≡ Bt → 3(pct = 4 ∨ pct = 9).

(Part a) Describe the propositions Bt, D and St in words. Which concurrency properties
do D and St correspond to? (3p)

(Part b) Show that D is true if Rt is. (2p)

(Part c) Give a counterexample to St, i.e. describe a program run where Bt is true, but
pct = 4 ∨ pct = 9 never becomes true. (3p)

9



10



Q4. Fork/join parallelism (10p)
Consider the following recursive Java method max(), which finds the maximum value
stored in the array arr from index start to index end− 1 (excluding arr[end]).

1 int max(int[] arr, int start, int end) {

2 if (end - start < 1) return Integer.MIN_VALUE;

3 else if (end - start == 1) return arr[start];

4 else {

5 int mid = (start + end) / 2;

6 int m1 = max(arr, start, mid);

7 int m2 = max(arr, mid, end);

8 return max2(m1, m2);

9 }

10 }

The method max() uses of the helper function max2(int x, int y), which computes the
maximum value of two integers x and y (see Appendix A.3 for its implementation).

(Part a) Draw the dependency graph for a call to max(arr, 0, 8) assuming arr has
exactly 8 elements. Each node should represent a recursive call to max() with the leaf
nodes representing the base cases (where end - start <= 1). Edges should represent
data dependencies between calls. How many nodes does the graph contain? (2p)

(Part b) What is the maximum number of calls to max() that can be executed in parallel
in this scenario (excluding parent calls waiting for a recursive call to finish)? How can
this be inferred from the dependency graph? (2p)

(Part c) What is the approximate runtime of a fully parallel version of max(arr, 0, 8),
assuming each call to max() takes about one unit of time? How can this be inferred from
the dependency graph? (2p)

Turn page for the rest of this question. . .

11



The class MaxTask below implements a naive fork/join parallelization of max(). The con-
structor of MaxTask has the same arguments as the method max(); the run() method
computes the maximum value and stores the result in the public result field. See Ap-
pendix A.3 for a full code listing.

1 class MaxTask extends Thread {

2 private int[] arr;

3 private int start, end;

4 public int result;

5

6 MaxTask(int[] arr, int start, int end) {

7 this.arr = arr; this.start = start; this.end = end;

8 }

9

10 public void run() {

11 if (end - start < 1) result = Integer.MIN_VALUE;

12 else if (end - start == 1) result = arr[start];

13 else {

14 int mid = (start + end) / 2;

15 MaxTask t1 = new MaxTask(arr, start, mid);

16 MaxTask t2 = new MaxTask(arr, mid, end);

17 t1.start(); t2.start();

18 try { t1.join(); t2.join(); } catch (InterruptedException i) {}

19 result = max2(t1.result, t2.result);

20 }

21 }

22 }

(Part d) What is the total number of threads started by MaxTask when running an instance
of MaxTask(arr, 0, 8)? How does this compare to the maximum number of parallel
calls to max() you computed in Part b? Are there any blocked threads at any point during
the execution? If yes, what is the maximum number of blocked threads? (2p)

(Part e) Assume that an instance of MaxTask(arr, 0, 1000000) is being run on a ma-
chine with a 4-core processor. Will this result in an efficient parallel computation? How
would the situation be improved if MaxTask was instead implemented as a RecursiveTask
and scheduled using a ForkJoinPool from the java.util.concurrent package? (2p)

12



Q5. Erlang bowling alley (18p)
Consider the following event handler function of an Erlang server. The server models a
clerk working at a bowling alley, handing out shoes to customers.

1 handler(Stock) ->

2 receive

3 {request, From, N} when N =< Stock ->

4 From ! ok,

5 handler(Stock - N);

6 {return, From, N} ->

7 From ! ok,

8 handler(Stock + N);

9 {stock, From} ->

10 From ! {ok, Stock},

11 handler(Stock)

12 end.

The clerk manages Stock pairs of shoes and needs to handle three types of events: cus-
tomers may request or return shoes for N players, and the manager (or anyone else) may
ask how many pairs of shoes the clerk currently has in stock. For the remainder of this
question, assume the following shoe dogma:

customers never return more shoes to the clerk than they previously obtained!

In the following, let C1, C2, . . . Cn be the PIDs of customers processes, S the PID of the
server, and B the PID of the boss. Assume the clerk starts off with 30 pairs of shoes,
i.e. the server is spawned using S = spawn(fun() -> handler(30) end).

(Part a) Assume the server receives the following sequence of messages in this order:

{request, C1, 8}, {request, C2, 25}, {return, C1, 5}, {stock, B}.

Give a sequence of responses sent by the server. Your answer should have the format
P1!r1, P2!r2, . . . where Pi are PIDs and ri are server responses. (1p)

(Part b) Is your answer to Part a the only possible sequence of responses? If so, explain
why. Does the order in which the server receives the messages impact its responses? (2p)

(Part c) Now, consider instead the following sequences of messages, given in the order
they are received by the clerk (starting with an initial stock of 30 pairs of shoes):

1. {request, C1, 40}, {request, C2, 5}

2. {request, C2, 8}, {request, C1, 25}, {request, C3, 10}, {return, C2, 8},
{request, C4, 9}, {return, C3, 10}

Are all messages in these sequences eventually processed and answered by the server? If
not, is it possible for customer processes to send additional messages to the server in such
a way that all messages are answered by the server in the end? Give separate answers for
each sequence and justify them. Your answers must respect the shoe dogma. (3p)

13



More robust servers

You will be asked to write two short pieces of code. You may use Erlang, pseudo code,
or a mixture of both. Syntax details, such as punctuation, are not important, but an expe-
rienced Erlang programmer should be able to understand your code. Your code must use
functional style: use recursion, list comprehensions or higher-order functions instead of
mutable state or loops. Each of your answers should fit into at most 10 lines of code.

(Part d) Let Total be the size of the clerk’s initial stock, or equivalently, the total number
of pairs of shoes in the bowling alley, counting both the clerk’s stock and the shoes worn
by customers. What happens when a customer asks for Total + 1 pairs of shoes? (1p)

(Part e) How could the server be changed so that customers requesting shoes for more
than Total players receive a message {error, Total}? How should the state of the
server (i.e. the arguments of handler) be adjusted? Propose one new clause to be inserted
at the beginning of the receive expression in handler. You may write this clause in
Erlang or pseudo code, but it should be of the form P -> E or P when G -> E, where P

is a message pattern, G is a guard condition, and E is an expression. Your solution should
work for arbitrary values of Total. (4p)

(Part f) Assume now that the server has been running for a while, handling out shoes to
customers, so that Stock < Total. Suddenly, a customer C arrives requesting N pairs of
shoes – more than the clerk has in stock, but such that Stock < N <= Total. Describe
a scenario where C’s request is delayed indefinitely, while other customers continuously
obtain and return shoes. What concurrency property is violated here? (2p)

(Part g) To avoid this type of scenario, we change the handler function of the original
server as follows, inserting a new clause in the receive expression:

handler(Stock) ->

receive

{request, From, N} when N =< Stock ->

% ...

{request, From, N} -> % request where ’Stock < N’

NewStock = recover(Stock, N),

From ! ok, handler(NewStock - N);

% ...

The new clause calls the helper function recover, which behaves like handler but takes
an additional argument Goal and ignores any request messages until Stock >= Goal,
at which point it simply returns the updated stock. Complete the following unfinished
implementation of recover (only replace the bit marked “todo”): (5p)

recover(Stock, Goal) ->

receive

{return, From, M} -> %%%%%% Implement this clause! %%%%%%

todo;

{stock, From} -> From ! {ok, Stock}, recover(Stock, Goal)

end.

14



Appendix A. Full code listings

Appendix A.1. Code for Q1

1 import java.util.concurrent.*;

2 import java.util.concurrent.locks.*;

3

4 class LockedCounterArray {

5 final private int[] counters;

6 final private Lock lock = new ReentrantLock();

7

8 public LockedCounterArray(int size) {

9 counters = new int[size]; /* all 0s by default */

10 }

11 public void increment(int index) {

12 lock.lock();

13 try { counters[index] = counters[index] + 1; }

14 finally { lock.unlock(); }

15 }

16 public int value(int index) {

17 lock.lock();

18 try { return counters[index]; }

19 finally { lock.unlock(); }

20 }

21 public static void main(String[] args) {

22 final int N = 10;

23 final int size = Integer.parseInt(args[0]);

24 LockedCounterArray lca = new LockedCounterArray(size);

25

26 Thread[] ts = new Thread[N];

27 for (int i = 0; i < N; ++i) {

28 ts[i] = new Thread() {

29 @Override public void run() {

30 for (int j = 0; j < size; ++j) { lca.increment((j + N) % size); }

31 }

32 };

33 ts[i].start();

34 }

35 for (int i = 0; i < N; ++i) {

36 try { ts[i].join(); } catch (InterruptedException ie) {}

37 }

38 for (int j = 0; j < size; ++j) {

39 System.out.println("Counter " + j + ": " + lca.value(j));

40 }

41 }

42 }

15



Appendix A.2. Code for Q2 and Q3.

1 import java.util.concurrent.*;

2

3 class BarrierThread extends Thread {

4 private int id, work;

5 public static Semaphore[] barrier = { new Semaphore(0), new Semaphore(0) };

6

7 BarrierThread(int id, int work) { this.id = id; this.work = work; }

8

9 boolean doWork() throws InterruptedException {

10 if (work > 0) { // more work?

11 sleep(500 + id * 100); // do "work"

12 work = work - 1; // update work counter

13 return false;

14 } else return true; // done!

15 }

16

17 @Override public void run() {

18 int me = id;

19 int other = 1 - id;

20 try {

21 boolean done = false;

22 do {

23 // synchronize: wait for both threads to reach the barrier.

24 System.out.println("Thread " + me + " synchronizing...");

25 barrier[me].release(); // I’m done.

26 barrier[other].acquire(); // Wait for the other thread.

27 System.out.println("Thread " + me + " ready to work!");

28 // do work.

29 done = doWork();

30 } while (!done);

31 } catch (InterruptedException i) {}

32 }

33

34 public static void main(String[] args) {

35 final int N1 = Integer.parseInt(args[0]);

36 final int N2 = Integer.parseInt(args[1]);

37 BarrierThread t0 = new BarrierThread(0, N1);

38 BarrierThread t1 = new BarrierThread(1, N2);

39 t0.start(); t1.start();

40 try {

41 t0.join(); t1.join();

42 } catch (InterruptedException i) {}

43 }

44 }

16



Appendix A.3. Code for Q4

1 import java.util.concurrent.*;

2

3 class MaxTask extends Thread {

4 private int[] arr;

5 private int start, end;

6 public int result;

7

8 MaxTask(int[] arr, int start, int end) {

9 this.arr = arr; this.start = start; this.end = end;

10 }

11

12 static int max2(int x, int y) {

13 if (x > y) return x;

14 else return y;

15 }

16

17 @Override public void run() {

18 if (end - start < 1) result = Integer.MIN_VALUE;

19 else if (end - start == 1) result = arr[start];

20 else {

21 int mid = (start + end) / 2;

22 MaxTask t1 = new MaxTask(arr, start, mid);

23 MaxTask t2 = new MaxTask(arr, mid, end);

24 t1.start(); t2.start();

25 try { t1.join(); t2.join(); } catch (InterruptedException i) {}

26 result = max2(t1.result, t2.result);

27 }

28 }

29

30 public static void main(String[] args) {

31 final int N = 20; int[] numbers = new int[N];

32 for (int i = 0; i < N; ++i) { numbers[i] = i; }

33 MaxTask m = new MaxTask(numbers, 0, N);

34 m.run();

35 System.out.println("Max: " + m.result);

36 }

37 }

17



Appendix A.4. Code for Q5

1 -module(shoes).

2 -export([init/1,request/1,return/1,stock/0]).

3

4 % start the clerk process managing a stock of N pairs of shoes

5 init(N) ->

6 register(clerk, spawn(fun () -> handler(N) end)).

7

8 % request N pairs of shoes

9 request(N) ->

10 clerk ! {request, self(), N},

11 receive ok -> ok end.

12

13 % return N pairs of shoes

14 return(N) ->

15 clerk ! {return, self(), N},

16 receive ok -> ok end.

17

18 % ask the clerk what the current stock is

19 stock() ->

20 clerk ! {stock, self()},

21 receive {ok, N} -> N end.

22

23 % the clerk’s event handler

24 handler(Stock) ->

25 receive

26 {request, From, N} when N =< Stock ->

27 From ! ok,

28 handler(Stock - N);

29 {return, From, N} ->

30 From ! ok,

31 handler(Stock + N);

32 {stock, From} ->

33 From ! {ok, Stock},

34 handler(Stock)

35 end.

18



Appendix B. Linear Temporal Logic (LTL) notation
1. An atomic proposition such as q2 (process q is at label q2) holds for a state s if and

only if process q is at q2 in s.

2. Let φ and ψ be formulas of LTL. Formulas are either atomic propositions, or are
built up from other formulas using the following operators: ¬ for “not", ∨ for “or",
∧ for “and",→ for “implies", 2 for “always", and 3 for “eventually". A convenient
abbreviation is φ iff ψ (i.e., φ if and only if ψ) for (φ→ ψ) ∧ (ψ → φ).

These operators have the obvious meanings, but two differ from what might be your
interpretation of the names. First, φ∨ψ (“φ or ψ") is false iff both φ and ψ are false.
This is an “inclusive or", so φ ∨ ψ is also true if both φ and ψ are true. Second,
φ→ ψ (“φ implies ψ") is false iff φ is true and ψ is false. So, in particular, φ→ ψ
is true if φ is false. The meanings of the operators 2 and 3 are defined below.

3. A path is a possible future of the system, a possibly infinite sequence of states, each
reachable from the previous state in the path. A state s satisfies formula φ if every
path from s satisfies φ.

A path π satisfies 2φ if φ holds for the first state of π, and for all subsequent states
in π. The path π satisfies 3φ if φ holds for some state in π.

Note that 2 and 3 are duals:

2φ ≡ ¬3¬φ and 3φ ≡ ¬2¬φ.

19


