
Shading

Slides by Ulf Assarsson and Tomas

Akenine-Möller

Department of Computer Engineering

Chalmers University of Technology

Z

X

Y

Overview of today’s lecture

⚫ First, a simple most basic real-time lighting

model

– Shading parts: ambient, diffuse, specular, emission.
⚫ It is also OpenGL’s old fixed pipeline lighting model

⚫ Physically-based shading (PBS)
– Metalness (vs dielectric) in percent,

– Fresnel: F0. (”reflection color”, base reflectance)

– Specularity: shininess or roughness,
– Base color: 𝒄𝑏𝑎𝑠𝑒

⚫ Fog

⚫ Gamma correction

⚫ Transparency and alpha

Lighting and Shading

Typically done in the

fragment shader.

Lighting

computation
Full shading

light

Material:

•Ambient (r,g,b,a)

•Diffuse (r,g,b,a)

•Specular (r,g,b,a)

•Emission (r,g,b,a) =”self-glowing color”

Light: (r,g,b)

DIFFUSE Base color

SPECULAR Highlight Color

AMBIENT Low-light Color

EMISSION Glow Color

SHININESS Surface Smoothness

A basic lighting model

The ambient/diffuse/specular/emission
lighting contribution model

n

⚫ The most basic real-time model:
⚫ Light interacts with material and change color at bounces:

⚫ Ambient light: incoming homogeneous background light from all

directions (view-independent and light-position- independent color)

outColorrgb ~materialrgb Ä lightColorrgb

Ambient

i.e., (ir , ig , ib) = (mr , mg , mb) (lr , lg , lb) = (mr lr , mg lg , mb lb)

iamb = mamb lamb

We assume homogeneous

background light

is here component-wise

mult. – not cross product.

The ambient/diffuse/specular/emission
model

⚫ The most basic real-time model:
⚫ Light interacts with material and change color at bounces:

⚫ Ambient light: incoming homogeneous background light from all

directions (view-independent and light-position- independent color)

⚫ Diffuse light: from light source, bouncing equally into all directions (view
independent) due to surface being very rough on microscopic level

n

outColorrgb ~materialrgb Ä lightColorrgb

Light source

Amb + Diff

diffdiffdiff smlni =)(

l

Just scale light intensity with incoming angle

𝒏 ⋅ 𝒍 = 𝒄𝒐𝒔 𝝓

𝝓

A 100% diffuse material is called a

”Lambertian” Surface

• A perfectly diffuse reflector

• Light scattered equally in all directions

Highly reflective

surface (specular)

Fully diffuse surface

(Lambertian)

The ambient/diffuse/specular/emission
model

n

⚫ The most basic real-time model:
⚫ Light interacts with material and change color at bounces:

⚫ Ambient light: incoming homogeneous background light from all directions

(view-independent and light-position- independent color)

⚫ Diffuse light: from light source, bouncing equally into all directions (view
independent) due to surface being very rough on microscopic level

⚫ Specular light: the part that spreads mostly in the reflection direction

(often same color as light source)

outColorrgb ~materialrgb Ä lightColorrgb

Amb + Diff + Spec

Specular: Phong’s model
⚫ Phong’s specular highlight model

⚫ Scales the light that reflects

along v, i.e., towards eye, by angle
from main reflection direction:

l)n2(nlr +−=
shishi mm

speci)(cos)(== vr

Next slide: Blinns highlight formula: (n.h)m

nl

v

r

n

r
l

-l
nln)(

ln 

(n must be

unit vector)

How to compute r:

Full computation:
Shininess affects lobe width:

max() – due to not wanting negative light.

Also check that cam is on same surface side as light

source.

Specular: Blinn’s model

Blinn proposed replacing v·r by n·h, where

h = (l+v)/|l + v|

h is halfway between l and v

If n, l, and v are coplanar:

  = 

Must then adjust exponent

so that

(n·h)e’ ≈ (r·v)e, (e’ ≈ 4e)

If the surface is rough, there is a probability distribution of the microscopic normals n. This means

that the intensity of the reflection is decided by how many percent of the microscopic normals are

aligned with h. And that probability often scales with how close h is to the macroscopic surface

normal n.

(n·h)s (r·v)s (n·h)4s

The ambient/diffuse/specular/emission
model

n

Amb + Diff + Spec + Em

⚫ The most basic real-time model:
⚫ Light interacts with material and change color at bounces:

⚫ Ambient light: incoming homogeneous background light from all directions

(view-independent and light-position- independent color)

⚫ Diffuse light: from light source, bouncing equally into all directions (view
independent) due to surface being very rough on microscopic level

⚫ Specular light: the part that spreads mostly in the reflection direction

(often same color as light source)

⚫ Emission: self-glowing surface

outColorrgb ~materialrgb Ä lightColorrgb

iem = memission

The ambient/diffuse/specular/emission
model

Amb + Diff + Spec + Em

⚫ Summary of formulas:

Amb + Diff + SpecAmb + DiffAmbient

Ambient: iamb = mamb lamb

Diffuse: 𝒏 ⋅ 𝒍 mdiff ldiff

Specular:

• Phong: 𝒓 ⋅ 𝒗 𝑠ℎ𝑖 mspec lspec

• Blinn: 𝒉 ⋅ 𝒏 𝑠ℎ𝑖 mspec lspec

Emission: memission

“color result from homogeneous background light”

“Scale illumination by surface’s angle to light source”

“strength of highlight based on viewing

angle from main reflection direction”

“Self-glowing color”

Physically-based Shading (PBS)

Physically-based Shading (PBS)

Radiance
• In graphics, we typically use rgb-colors, c = (cr,cg,cb), and mean the

intensity or radiance for the red, green, and blue light.

• Radiance, L : a radiometric term. What we store in a pixel is the radiance

towards the eye through that pixel: a tripplet L = (Lr,Lg,Lb)

– Radiance = the amount of electromagnetic radiation leaving or arriving at a

point on a surface (per unit solid angle per unit projected area)

• Radiance is ”power per unit projected area per unit solid angle”

Radiance from a specific direction

uses differentials, where the cone

of the solid angle becomes

an infinitesmally thin ray.

Hence, in graphics we often sloppily

talk about the radiance from an

incoming direction to a surface point.

d

• BRDF = Bidirectional Reflection
Distribution Function

• Is a material description, f (i,o)

• What the BRDF describes: how much
of the incoming radiance Li from a given direction i that will leave in a
given outgoing direction o.

How to compute color, i.e outgoing radiance Lo

from a point light:

where π comes from that the definition of radiance uses differentials d𝜔𝑖 and integrates a cosine
factor 𝒏 ∙ 𝝎𝑖 for the hemisphere. The brdf, f(), contains a division by π, which cancel out π.

The cosines, 𝒏 ∙ 𝝎𝑖 , comes from decreased incoming intensity
for higher incoming angles:_

BRDF

A fully diffuse (Lambertian) brdf

can be written as:

𝑓 𝜔𝑖, 𝜔𝑜 =
𝒄𝑑𝑖𝑓𝑓

𝜋

=>

diffuse color: 𝑳𝑜 𝜔𝑜 = 𝒄𝑑𝑖𝑓𝑓 𝒄𝑙𝑖𝑔ℎ𝑡 𝑛 ∙ 𝜔𝑖

Li

Lo

Lo
Li = 𝝅 𝒄𝑙𝑖𝑔ℎ𝑡

𝑳𝑜 𝝎𝑜 = 𝑓 𝝎𝑖, 𝝎𝑜 𝑳𝑖 𝜔𝑖 𝒏 ∙ 𝝎𝑖

𝑳𝑜 𝝎𝑜 = 𝑓 𝝎𝑖, 𝝎𝑜 𝜋𝒄𝑙𝑖𝑔ℎ𝑡 𝒏 ∙ 𝝎𝑖

Material-light model:

• Some amount of incoming
light from direction i :

– reflects to various outgoing
directions (yellow), causing the
specular reflection.

– refracts into the material, bounces
around, gets color tinted by the
atoms or molecules, and refracts
out as a fully diffuse reflection

Materials – the basic model

• The Fresnell equations describe how much of the incoming light that reflects or
refracts. They depend on the relative refraction index  =  (which is
wavelength dependent) and the incoming angle, 𝛼, to the surface.

• The amount of light that reflects as diffuse is equal to the amount that refracts into
the material (minus total absorption but then that is often baked into 𝒄𝑏𝑎𝑠𝑒).

• The Fresnel equations accurately models this % of refraction, but we like to use a
faster approximation called Schlick’s approximation and that models the specular
reflection. Let’s call it F.

• Hence, amount of diffuse reflection = % of refraction = (1-F).

• So, how do we model F?





ln

(blue). This coloring is modeled by the material’s base color (albedo), 𝒄𝑏𝑎𝑠𝑒.

𝛼Diffuse

reflection

Specular

reflection

𝒄𝑏𝑎𝑠𝑒

Materials – Schlick’s approximation





𝑭 𝒉, 𝒗 ≈ 𝑭0+ 1 − 𝑭0 1 − 𝒉 ∙ 𝒗 5

ln

glass copper aluminum

The refraction indices are wavelength dependent, so F0 is also wavelength dependent (highly for metals,

not so for dielectrics). Thus, 𝑭0 is described as an (r,g,b) triplet.

F0

F0,b

F0,g

F0,r

where F0 =
𝜂1−𝜂2
𝜂1+𝜂2

2
 , i.e., the

reflectance at 𝛼 = 0 degrees

𝛼

𝛼 =

re
fl

e
c
ti

v
e
n
es

s

v
𝜔𝑜

h𝑭 𝛼 ≈ 𝑭0+ 1 − 𝑭0 1 − cos 𝛼 5

Approximates the Fresnel effect for specular reflection

where 𝛼 is half the angle between
incoming direction, l, and outgoing
direction, v (often called 𝜔𝑖 and 𝜔𝑜).

Cos 𝛼 can be computed as:

• cos 𝛼 = 𝒉 ⋅ 𝒗 (see image),

where half vector 𝒉 =
𝒍+𝒗

𝒍+𝒗

i.e., vector half between l and v.

(Rationale: it is only those microfacets with normal h, that will reflect from l along v – see later slide.)
Hence, Schlick’s approximation can be written as:

Vice versa:

η =
1 + 𝐹0

1 − 𝐹0

Also clamp

cos 𝛼, i.e.,

𝒉 ⋅ 𝒗 to [0,1].

Materials – dielectrics vs metals

Materials:

• Dielectrics:

• Ex: glass, plastic, water,
wood, stone, concrete,
hair, leather, skin,

• The glossy reflection has
the light’s color.

• The diffuse reflection is
colored by the material

F0 values p:322-323.

• Metals: has only reflection,
no refraction (so no diffuse component)

Example of the typical PBS material parameters:

• Metalness (vs dielectric). In percent.

• Allows layered mtrls, e.g., metal with
lacquer layer

• Roughness (in [0,1]) or Shininess (in [0,∞])

• Fresnel F0. p:322-323.

• Base_color: 𝒄𝑏𝑎𝑠𝑒

Basic Physically-Based Shading model

Putting it together…

Metalness: vs dielectric, in %.

Fresnel F0: base reflectance, in %.

Roughness: in [0,1]

Base color: 𝒄𝑏𝑎𝑠𝑒 i.e., color tint by absorption

Radiance from point light: Li = π clight *1/r2

Radiance from directional light: Li = π clight

Fresnell effect: 𝑭 𝒉, 𝒗 ≈ 𝑭0 + 1− 𝑭0 1 − 𝒉 ∙ 𝒗 5

diffuse_brdf =
𝒄𝑏𝑎𝑠𝑒
𝜋

metal_brdf = * cbase

dielectric_brdf = * vec3(1) + (1-F) diffuse_brdf

tot_brdf = metalness * metal_brdf + (1 - metalness) * dielectric_brdf

TOTAL: 𝑳𝑜 𝜔𝑜 = σ𝑖=1
#𝑙𝑖𝑔ℎ𝑡𝑠

𝐭𝐨𝐭_𝐛𝐫𝐝𝐟 (Li) 𝒏 ∙ 𝝎𝑖

Li = π clightn

𝑳𝑜

𝐺(𝜔𝑖,𝜔𝑜)𝐷 𝜔ℎ 𝐹(𝜔ℎ,𝜔𝑜)

4 𝑛⋅𝜔𝑜 |𝑛⋅𝜔𝑖|

𝐺(𝜔𝑖,𝜔𝑜)𝐷 𝜔ℎ 𝐹(𝜔ℎ,𝜔𝑜)

4 𝑛⋅𝜔𝑜 |𝑛⋅𝜔𝑖|

𝐺(𝜔𝑖,𝜔𝑜)𝐷 𝜔ℎ 𝐹(𝜔ℎ,𝜔𝑜)

4 𝑛⋅𝜔𝑜 |𝑛⋅𝜔𝑖|

Parameters:

Formulas:

For a good and deep explanation, see for instance “Advanced Computer Graphics Materials” by Matthias Teschner:

https://cg.informatik.uni-freiburg.de/course_notes/graphics2_02_materials.pdf

𝜔𝑜

Diffuse

reflection

Specular

reflection

Specular reflection

𝒄𝑏𝑎𝑠𝑒

Diffuse reflection

https://cg.informatik.uni-freiburg.de/course_notes/graphics2_02_materials.pdf

Basic Physically-Based Shading model

G() is Geometry function. Describes specular self-

shadowing, i.e., fraction of microfacets visible (non-

occluded) from both incoming and outgoing

direction.

Clamp to [0,1] and avoid denominators ≈ 0

Is explained by Erik… see his online videos 1 2 3 4.

D() is Distribution function, a.k.a. microfacet

distribution function, a.k.a. normal distribution

function. Describes the specular lobe shape:

E.g., the normalized Blinn-Phong function used in
lab 4: There are various masking-shadowing

functions, e.g.:

Specular reflection weight for

semi-rough) surfaces:
𝐺(𝜔𝑖,𝜔𝑜)𝐷 𝜔ℎ 𝐹(𝜔ℎ,𝜔𝑜)

4 𝑛⋅𝜔𝑜 |𝑛⋅𝜔𝑖|

http://www.cse.chalmers.se/edu/course/TDA362/videos/Physically%20Based%20Rendering/video1.mp4
http://www.cse.chalmers.se/edu/course/TDA362/videos/Physically%20Based%20Rendering/video2.mp4
http://www.cse.chalmers.se/edu/course/TDA362/videos/Physically%20Based%20Rendering/video3.mp4
http://www.cse.chalmers.se/edu/course/TDA362/videos/Physically%20Based%20Rendering/video4.mp4

The GGX Specular Reflection Formula
Very popular model for D and G.

• GGX stands for Trowbridge-Reitz GGX, where GGX refers to the generalized gaussian

distribution used for microfacet normal distributions.

• GGX better simulates how light reflects off rougher surfaces, especially at oblique angles, compared to

older models like the Beckmann distribution. The GGX distribution produces sharp reflections for

smoother surfaces and blurry reflections for rougher surfaces. Found in Unreal Engine, Unity, and in the

Disney BRDF - a cornerstone of modern PBR workflows.

Normal Distribution Function D() for GGX

𝐷 … =
𝛼2

𝜋 𝒏 ⋅ 𝒉 2 𝛼2− 1 + 1 2

𝛼 = roughness.

Geometry function G() – Smith GGX variant:

𝐺 … = 𝐺1 𝒏, 𝒗 𝐺1(𝒏, 𝒍)

𝐺1 𝒏,𝝎 =
2 𝒏 ⋅ 𝝎

𝒏 ⋅ 𝝎 + 𝛼2+ 1 − 𝛼2 𝒏 ⋅ 𝝎 2

Extra… (bonus)

• Anisotropic Normal Distribution Functions – update D() in

the microfacet model - see p343

• Multibounce surface reflections – p:346

• Subsurface Scattering: p:347 – modify the Diffuse brdf and the Fresnell

factor.

• Cloth brdf:s – p:356

• Light falloff: page 111, Unreal, Frostbite + CryEngine

– Distance falloff function / windowing function: Just Cause 2

• Lambertian brdf = diffuse color = albedo, and terms are often used

interchangeably.

• Some light source types: point lights, area lights,

– Incoming light from the surrounding can also be captured by environment maps.

Non-symmetric lobes

Environment maps (reflection maps)

Tomas Akenine-Mőller © 2002

Additions to the lighting equation

⚫ Accounting for distance: 1/(a+bt+ct2)

⚫ Several lights: just sum their respective

contributions

⚫ Different light types:

Tomas Akenine-Mőller © 2002

Additions to the lighting equation
⚫ Accounting for distance: 1/(a+bt+ct2)

⚫ For several lights: just sum their respective

contributions

⚫ Some different light types:

Clarification on accounting for distance

⚫ Energy is emitted at equal proportions in all directions from a

spherical radiator. Due to energy conservation, the intensity is

proportional to the spherical area at distance r from the light

center.

• A = 4πr2

⚫ Thus, the intensity scales

~ 1/r2

⚫ For efficiency, we often cap or limit

how far the light source will affect the

environment.
– Hence, we often want to fade its intensity to zero

at some finite distance r.

r

Tomas Akenine-Mőller © 2002

Shading

⚫ Shading: compute the fragment’s final

color contribution to the pixel.

⚫ Three types of shading

regarding how often it is computed per triangle:
⚫ Flat shading: once per triangle

⚫ Goraud shading: once per vertex

⚫ Phong shading: once per pixel (standard today)

Tomas Akenine-Mőller © 2002

Shading

⚫ Flat, Goraud, and Phong shading:

⚫ Flat shading: one normal per triangle. Lighting computed once per triangle.

⚫ Gouraud shading: the lighting is computed per vertex and for each pixel, the

color is interpolated from the colors at the vertices.

⚫ Phong Shading: the lighting is computed per pixel. The normal is

interpolated per pixel from the normals defined at the vertices, and full

lighting is computed per pixel using this normal. This is of course more

expensive but looks better.

Flat Gouraud Phong

Gouraud

shading

Phong

shading

Flat

shading

Transparency and alpha

⚫ Transparency

– Very simple in real-time contexts

⚫ The tool: alpha blending (mix two colors)

⚫ Alpha () is the forth color component (r,g,b,)

– e.g., of the material for a triangle

– Represents the opacity

– 1.0 is totally opaque

– 0.0 is totally transparent

⚫ The over operator:

dso ccc)1( −+=

Rendered object

Color already in

the frame buffer at the

corresponding position

Ulf Assarsson© 2007

Transparency

⚫ Need to sort the transparent objects

– Render back to front (blending is order dep.)
⚫ See next slide…

⚫ Exist different blending modes

⚫ Can store RGB in textures as well

So the texels with =0.0

do not not hide the

objects behind

dso ccc)1( −+=

Rendered fragment Background

Transparency

⚫ Need to sort the transparent objects

– First, render all non-transparent triangles as

usual.

– Then, sort all transparent triangles and
render them back-to-front with blending

enabled.
⚫ The reason for sorting is that the blending operation

(i.e., over operator) is order dependent.

If we have high frame-to-frame coherency regarding the objects to be

sorted per frame, then Bubble-sort (or Insertion sort) are really good!

(superior to Quicksort).

Because, they have expected runtime of resorting already almost sorted

input in O(n) instead of O(n log n), where n is number of elements.

Ulf Assarsson © 200334

⚫ Used for

– Transparency

⚫ glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)

– Effects (shadows, reflections)

– (Complex materials)

⚫ Quake3 used up to 10 rendering passes, blending toghether

contributions such as:

– Diffuse lighting (for hard shadows)

– Bump maps

– Base texture

– Specular and emissive lighting

– Volumetric/atmospheric effects

⚫ Today, we can merge all those passes into one fragment shader.

– Enable with glEnable(GL_BLEND)

Blending

dso ccc)1( −+=

Tomas Akenine-Mőller © 2002

Fog

⚫ Simple atmospheric effect

– A little better realism

– Help in determining distances

Tomas Akenine-Mőller © 2002

⚫ Color of fog: color of surface:
fc sc

cp = fcs + (1- f)c f f Î[0,1]
⚫ How to compute f ?

⚫ E.g.: linear, exponential

⚫ Linear:

startend

pend

zz

zz
f

−

−
=

Program it yourself in the
fragment shader.

(Old OpenGL – just set OpenGL
parameters and turn it on)

Fog in up-direction

Tomas Akenine-Mőller © 2002

Gamma correction

We compute rgb color

intensities in linear

space from [0,1]

However, CRT-monitor output is exponential.

Gives more precision for darker regions. Very

Good! But we want linear output. Else, our

images will be too dark.

xγ

Intensities: xγ vs linear

Exponential distribution better for

humans. Our eyes have

logarithmic sensitivity and

monitors have limited brightness

xγ is perceived

 as linear:

Actually linear:

γ = 2.2

So, store color intensities with more precision for darker colors: i.e., convert color to x (1/γ) before storing in

8- bits in the frame buffer. Conversion to x(1/γ) is called gamma correction.

Shader rgb colors

x(1/γ)

Frame buffer rgb colors.

“Dark pixels are made brighter”

x(1/γ)

Displayed by CRT
Linear output again, but

redistributed precision.

sc
re

en

= rgb_in

xγ

rgb_in

rgb_out

(x(1/γ))γ

in
te

n
si

ty

Textures: often stored in

gamma space for better

distributed precision.

Gamma correction

⚫ If input to gun is 0.5, then you don’t get

0.5 as output in intensity

⚫ Instead, gamma correct that signal:

gives linear relationship

xγ

γ = 2.2 x(1/γ)

Tomas Akenine-Mőller © 2002

Gamma correction

⚫ I=intensity on screen

⚫ V=input voltage (electron gun)

⚫ a, and  are constants for each system

⚫ Common gamma values: 2.2-2.6

⚫ Assuming =0, gamma correction is:

)(+= VaI

)/1(

icc =

Gamma correction
⚫ Reasons for wanting gamma correction (standard is 2.2):

1. Screen has non-linear color intensity

– We want linear output for correctness.

– But, today, screens can be made with linear output, so non-linearity is more

for backwards compatibility and better 8-bit color precision.

2. Also gives more efficient color space (when compressing intensity from
32-bit floats to 8-bits). Thus, often desired when storing images (color

buffer, textures) in 8 bits rgb.
Gamma of 2.2. Better

distribution for humans.

Perceived as linear.

Truly linear intensity

increase.

A linear intensity output (bottom) has a large jump in perceived brightness

between the intensity values 0.0 and 0.1, while the steps at the higher end of the

scale are hardly perceptible.

A nonlinearly-increasing intensity (upper), will show much more even steps in

perceived brightness.

Important on Gamma correction

⚫ Give two reasons for gamma correction:

– screen output is non-linear so we need gamma

to counter that.

– Textures/images and color buffer can be stored
with better precision (for human eye) for low-

intensity regions.

– Antialiasing:

AntialiasingAliasing

Gamma correction is

required for correct half-

tones.

Important on Gamma correction

⚫ Give two reasons for gamma correction:

– screen output is non-linear so we need gamma

to counter that.

– Textures/images can be stored with better
precision (for human eye) for low-intensity

regions.

Tomas Akenine-Mőller © 2002

Lecture 3.1 Shading - summary

• The fragment color is the surface’s radiance at that point.

• The radiance, LOut, can be split into:

• Flat, Gouraud, and Phong shading

• Transparency

• Gamma correction:

dso ccc)1( −+=

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)

“How to shade your fragments”

Ambient contribution

Assume homogeneous

background light everywhere

Lo = mr,g,b lrgb ,

where mr,g,b is surface color and

lrgb is background-light color.

Diffuse contribution

For material part that is

fully rough (Lambertian),

scale incoming light with

angle to surface normal:

Lo += mr,g,b lrgb 𝒏 ∙ 𝒍 ,

where lrgb is light-source

color and l is direction to

the light.

Emission contribution

Self-glowing material

Lo += mr,g,b , where mr,g,b is the

glow color or radiance.

Specular contribution

For material part that is glossy (=semi-specular): Scale light-source

reflection with view angle from light’s main reflection direction:

Phong: Lo += mr,g,b lrgb 𝒓 ∙ 𝒗 shi, where r is refl. direction, v = view dir.

Blinn: Lo += mr,g,b lrgb 𝒉 ∙ 𝒏 4 shi, where h is half vector of l and v.

PBS (Physically-based Shading):

 Lo += mr,g,b lrgb

𝐺(𝒍,𝒗)𝐷 𝒉 𝐹(𝒉,𝒗)

4 𝒏⋅𝒗 |𝒏⋅𝒍|
𝒏 ∙ 𝒍

Either way, mr,g,b is white (1,1,1) for dielectrics and mtrl col for metals.

Render transparent triangles in

back-to-front order, with blending.

, where cs is fragment color, cd is pixel color in frame buffer.

What is important

⚫ Amb-, diff-, spec-, emission model + formulas

– But not for PBS. E.g., for specular refl, then only:
⚫ Phong’s + Blinn’s highlight model:

– Phong: 𝒓 ∙ 𝒗 s

– Blinn: 𝒉 ∙ 𝒏 s , halfvector h = (l+v)/|l + v|

⚫ Flat-, Gouraud- and Phong shading

⚫ Fog – just understand how we can use blending to do it

⚫ Transparency:

– Draw transparent triangles back-to-front.

– Use blending with this over operator:

⚫ Two reasons for wanting gamma correction

dso ccc)1( −+=

	Slide 1: Shading
	Slide 2: Overview of today’s lecture
	Slide 3: Lighting and Shading
	Slide 4
	Slide 5: The ambient/diffuse/specular/emission lighting contribution model
	Slide 6: The ambient/diffuse/specular/emission model
	Slide 7: A 100% diffuse material is called a ”Lambertian” Surface
	Slide 8: The ambient/diffuse/specular/emission model
	Slide 9: Specular: Phong’s model
	Slide 10: Specular: Blinn’s model
	Slide 11
	Slide 12: The ambient/diffuse/specular/emission model
	Slide 13: The ambient/diffuse/specular/emission model
	Slide 14: Physically-based Shading (PBS)
	Slide 15: Physically-based Shading (PBS)
	Slide 16: Radiance
	Slide 17: BRDF
	Slide 18: Materials – the basic model
	Slide 19: Materials – Schlick’s approximation
	Slide 20: Materials – dielectrics vs metals
	Slide 21: Basic Physically-Based Shading model
	Slide 22: Basic Physically-Based Shading model
	Slide 23: The GGX Specular Reflection Formula
	Slide 24: Extra… (bonus)
	Slide 25: Environment maps (reflection maps)
	Slide 26: Additions to the lighting equation
	Slide 27: Additions to the lighting equation
	Slide 28: Clarification on accounting for distance
	Slide 29: Shading
	Slide 30: Shading
	Slide 31: Transparency and alpha
	Slide 32: Transparency
	Slide 33: Transparency
	Slide 34: Blending
	Slide 35: Fog
	Slide 36
	Slide 37: Fog in up-direction
	Slide 38: Gamma correction
	Slide 39: Gamma correction
	Slide 40: Gamma correction
	Slide 41: Gamma correction
	Slide 42: Important on Gamma correction
	Slide 43: Important on Gamma correction
	Slide 44: Lecture 3.1 Shading - summary
	Slide 45: What is important

