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Overview of today’s lecture

⚫ First, a simple most basic real-time lighting

model

– Shading parts: ambient, diffuse, specular, emission.
⚫ It is also OpenGL’s old fixed pipeline lighting model

⚫ Physically-based shading (PBS)
– Metalness (vs dielectric) in percent,

– Fresnel: F0. (”reflection color”, base reflectance)

– Specularity: shininess or roughness,
– Base color: 𝒄𝑏𝑎𝑠𝑒

⚫ Fog

⚫ Gamma correction

⚫ Transparency and alpha



Lighting and Shading

Typically done in the 

fragment shader.

Lighting

computation
Full shading

light



Material:

•Ambient   (r,g,b,a) 

•Diffuse   (r,g,b,a)

•Specular (r,g,b,a)

•Emission   (r,g,b,a)  =”self-glowing color”

Light: (r,g,b)

DIFFUSE Base color

SPECULAR Highlight Color

AMBIENT Low-light Color

EMISSION Glow Color

SHININESS Surface Smoothness

A basic lighting model



The ambient/diffuse/specular/emission 
lighting contribution model

n

⚫ The most basic real-time model:
⚫ Light interacts with material and change color at bounces:

⚫ Ambient light: incoming homogeneous background light from all 

directions (view-independent and light-position- independent color)

outColorrgb ~materialrgb Ä lightColorrgb

Ambient

i.e., (ir , ig , ib) = (mr , mg , mb ) (lr , lg , lb) = (mr lr , mg lg , mb lb)

iamb = mamb lamb 

We assume homogeneous 

background light

is here component-wise 

mult. – not cross product.



The ambient/diffuse/specular/emission 
model

⚫ The most basic real-time model:
⚫ Light interacts with material and change color at bounces:

⚫ Ambient light:  incoming homogeneous background light from all 

directions (view-independent and light-position- independent color)

⚫ Diffuse light: from light source,  bouncing equally into all directions (view 
independent) due to surface being very rough on microscopic level

n

outColorrgb ~materialrgb Ä lightColorrgb

Light source

Amb + Diff

diffdiffdiff smlni = )(

l

Just scale light intensity with incoming angle

𝒏 ⋅ 𝒍 = 𝒄𝒐𝒔 𝝓

𝝓



A 100% diffuse material is called a 

”Lambertian” Surface

• A perfectly diffuse reflector

• Light scattered equally in all directions

Highly reflective 

surface (specular)

Fully diffuse surface 

(Lambertian)



The ambient/diffuse/specular/emission 
model

n

⚫ The most basic real-time model:
⚫ Light interacts with material and change color at bounces:

⚫ Ambient light: incoming homogeneous background light from all directions 

(view-independent and light-position- independent color)

⚫ Diffuse light: from light source,  bouncing equally into all directions (view 
independent) due to surface being very rough on microscopic level

⚫ Specular light: the part that spreads mostly in the reflection direction 

(often same color as light source)

outColorrgb ~materialrgb Ä lightColorrgb

Amb + Diff + Spec



Specular: Phong’s model
⚫ Phong’s specular highlight model

⚫ Scales the light that reflects

along v, i.e., towards eye, by angle 
from main reflection direction:

l)n2(nlr +−=
shishi mm

speci )(cos)( == vr

Next slide: Blinns highlight formula: (n.h)m

nl

v

r

n

r
l

-l
nln )( 

ln 

(n must be 

unit vector)

How to compute r:

Full computation:
Shininess affects lobe width:

max() – due to not wanting negative light.

Also check that cam is on same surface side as light 

source.



Specular: Blinn’s model

Blinn proposed replacing v·r by n·h, where

h = (l+v)/|l + v|

h is halfway between l and v

If n, l, and v are coplanar:

   = 

Must then adjust exponent

so that 

(n·h)e’ ≈ (r·v)e, (e’ ≈ 4e)

If the surface is rough, there is a probability distribution of the microscopic normals n. This means 

that the intensity of the reflection is decided by how many percent of the microscopic normals are 

aligned with h. And that probability often scales with how close h is to the macroscopic surface 

normal n. 



(n·h)s               (r·v)s               (n·h)4s 



The ambient/diffuse/specular/emission 
model

n

Amb + Diff + Spec + Em

⚫ The most basic real-time model:
⚫ Light interacts with material and change color at bounces:

⚫ Ambient light: incoming homogeneous background light from all directions 

(view-independent and light-position- independent color)

⚫ Diffuse light: from light source,  bouncing equally into all directions (view 
independent) due to surface being very rough on microscopic level

⚫ Specular light:  the part that spreads mostly in the reflection direction 

(often same color as light source)

⚫ Emission: self-glowing surface

outColorrgb ~materialrgb Ä lightColorrgb

iem = memission



The ambient/diffuse/specular/emission 
model

Amb + Diff + Spec + Em

⚫ Summary of formulas:

Amb + Diff + SpecAmb + DiffAmbient

Ambient: iamb = mamb lamb

Diffuse: 𝒏 ⋅ 𝒍 mdiff ldiff

Specular: 

• Phong: 𝒓 ⋅ 𝒗 𝑠ℎ𝑖 mspec lspec

• Blinn: 𝒉 ⋅ 𝒏 𝑠ℎ𝑖 mspec lspec

Emission: memission

“color result from homogeneous background light”

“Scale illumination by surface’s angle to light source”

“strength of highlight based on viewing 

angle from main reflection direction”

“Self-glowing color”



Physically-based Shading (PBS)



Physically-based Shading (PBS)



Radiance
• In graphics, we typically use rgb-colors, c = (cr,cg,cb), and mean the 

intensity or radiance for the red, green, and blue light. 

• Radiance, L : a radiometric term. What we store in a pixel is the radiance

towards the eye through that pixel: a tripplet L = (Lr,Lg,Lb) 

– Radiance = the amount of electromagnetic radiation leaving or arriving at a 

point on a surface (per unit solid angle per unit projected area)

• Radiance is ”power per unit projected area per unit solid angle”

Radiance from a specific direction

uses differentials, where the cone

of the solid angle becomes

an infinitesmally thin ray.

Hence, in graphics we often sloppily 

talk about the radiance from an 

incoming direction to a surface point.

d



• BRDF = Bidirectional Reflection
Distribution Function

• Is a material description, f (i,o)

• What the BRDF describes: how much
of the incoming radiance Li from a given direction i that will leave in a 
given outgoing direction o.

How to compute color, i.e outgoing radiance Lo

from a point light:

where π comes from that the definition of radiance uses differentials d𝜔𝑖 and integrates a cosine
factor 𝒏 ∙ 𝝎𝑖 for the hemisphere. The brdf, f(), contains a division by π, which cancel out π.

The cosines, 𝒏 ∙ 𝝎𝑖 , comes from decreased incoming intensity
for higher incoming angles:_

BRDF

A fully diffuse (Lambertian) brdf

can be written as:

𝑓 𝜔𝑖, 𝜔𝑜 =
𝒄𝑑𝑖𝑓𝑓

𝜋

=> 

diffuse color:  𝑳𝑜 𝜔𝑜 = 𝒄𝑑𝑖𝑓𝑓 𝒄𝑙𝑖𝑔ℎ𝑡 𝑛 ∙ 𝜔𝑖

Li

Lo

Lo
Li = 𝝅 𝒄𝑙𝑖𝑔ℎ𝑡

𝑳𝑜 𝝎𝑜 = 𝑓 𝝎𝑖, 𝝎𝑜 𝑳𝑖 𝜔𝑖 𝒏 ∙ 𝝎𝑖

𝑳𝑜 𝝎𝑜 = 𝑓 𝝎𝑖, 𝝎𝑜 𝜋𝒄𝑙𝑖𝑔ℎ𝑡 𝒏 ∙ 𝝎𝑖



Material-light model:

• Some amount of incoming
light from direction i :

– reflects to various outgoing
directions (yellow), causing the 
specular reflection. 

– refracts into the material, bounces
around, gets color tinted by the 
atoms or molecules, and refracts
out as a fully diffuse reflection

Materials – the basic model

• The Fresnell equations describe how much of the incoming light that reflects or 
refracts. They depend on the relative refraction index  =  (which is 
wavelength dependent) and the incoming angle, 𝛼, to the surface.

• The amount of light that reflects as diffuse is equal to the amount that refracts into
the material (minus total absorption but then that is often baked into 𝒄𝑏𝑎𝑠𝑒). 

• The Fresnel equations accurately models this % of refraction, but we like to use a 
faster approximation called Schlick’s approximation and that models the specular
reflection. Let’s call it F.

• Hence, amount of diffuse reflection = % of refraction = (1-F).

• So, how do we model F?





ln

(blue). This coloring is modeled by the material’s base color (albedo), 𝒄𝑏𝑎𝑠𝑒. 

𝛼Diffuse 

reflection

Specular 

reflection

𝒄𝑏𝑎𝑠𝑒 



Materials – Schlick’s approximation





𝑭 𝒉, 𝒗 ≈ 𝑭0+ 1 − 𝑭0 1 − 𝒉 ∙ 𝒗 5

ln

glass copper aluminum

The refraction indices are wavelength dependent, so F0 is also wavelength dependent (highly for metals, 

not so for dielectrics). Thus, 𝑭0 is described as an (r,g,b) triplet.

F0

F0,b

F0,g

F0,r

where F0 = 
𝜂1−𝜂2
𝜂1+𝜂2

2
 , i.e., the 

reflectance at 𝛼 = 0 degrees

𝛼

𝛼 =

re
fl

e
c
ti

v
e
n
es

s

v
𝜔𝑜

h𝑭 𝛼 ≈ 𝑭0+ 1 − 𝑭0 1 − cos 𝛼 5

Approximates the Fresnel effect for specular reflection

where 𝛼 is half the angle between
incoming direction, l, and outgoing
direction, v (often called 𝜔𝑖 and 𝜔𝑜).

Cos 𝛼 can be computed as:

• cos 𝛼 = 𝒉 ⋅ 𝒗 (see image),

where half vector 𝒉 =
𝒍+𝒗

𝒍+𝒗

i.e., vector half between l and v.

(Rationale: it is only those microfacets with normal h, that will reflect from l along v – see later slide.)
Hence, Schlick’s approximation can be written as:

Vice versa: 

η =
1 + 𝐹0

1 − 𝐹0

Also clamp 

cos 𝛼, i.e.,  

𝒉 ⋅ 𝒗 to [0,1].



Materials – dielectrics vs metals

Materials:

• Dielectrics: 

• Ex: glass, plastic, water, 
wood, stone, concrete, 
hair, leather, skin, 

• The glossy reflection has 
the light’s color.

• The diffuse reflection is 
colored by the material

F0 values p:322-323.

• Metals: has only reflection,
no refraction (so no diffuse component)

Example of the typical PBS material parameters:

• Metalness (vs dielectric). In percent.

• Allows layered mtrls, e.g., metal with
lacquer layer

• Roughness (in [0,1]) or Shininess (in [0,∞])

• Fresnel F0. p:322-323.

• Base_color: 𝒄𝑏𝑎𝑠𝑒



Basic Physically-Based Shading model

Putting it together…

Metalness:   vs dielectric, in %.

Fresnel F0:  base reflectance, in %. 

Roughness:  in [0,1]

Base color:  𝒄𝑏𝑎𝑠𝑒  i.e., color tint by absorption

Radiance from point light: Li = π clight *1/r2

Radiance from directional light: Li = π clight 

Fresnell effect: 𝑭 𝒉, 𝒗 ≈ 𝑭0 + 1− 𝑭0 1 − 𝒉 ∙ 𝒗 5

diffuse_brdf = 
𝒄𝑏𝑎𝑠𝑒
𝜋

metal_brdf       =                                           * cbase

dielectric_brdf =                                          * vec3(1) + (1-F) diffuse_brdf

tot_brdf = metalness * metal_brdf + (1 - metalness) * dielectric_brdf

TOTAL:  𝑳𝑜 𝜔𝑜 = σ𝑖=1
#𝑙𝑖𝑔ℎ𝑡𝑠

𝐭𝐨𝐭_𝐛𝐫𝐝𝐟 (Li) 𝒏 ∙ 𝝎𝑖  

Li = π clightn

𝑳𝑜

𝐺(𝜔𝑖,𝜔𝑜)𝐷 𝜔ℎ 𝐹(𝜔ℎ,𝜔𝑜)

4 𝑛⋅𝜔𝑜 |𝑛⋅𝜔𝑖|

𝐺(𝜔𝑖,𝜔𝑜)𝐷 𝜔ℎ 𝐹(𝜔ℎ,𝜔𝑜)

4 𝑛⋅𝜔𝑜 |𝑛⋅𝜔𝑖|

𝐺(𝜔𝑖,𝜔𝑜)𝐷 𝜔ℎ 𝐹(𝜔ℎ,𝜔𝑜)

4 𝑛⋅𝜔𝑜 |𝑛⋅𝜔𝑖|

Parameters:

Formulas:

For a good and deep explanation, see for instance “Advanced Computer Graphics Materials” by Matthias Teschner:

https://cg.informatik.uni-freiburg.de/course_notes/graphics2_02_materials.pdf

𝜔𝑜

Diffuse 

reflection

Specular 

reflection

Specular reflection

𝒄𝑏𝑎𝑠𝑒 

Diffuse reflection

https://cg.informatik.uni-freiburg.de/course_notes/graphics2_02_materials.pdf


Basic Physically-Based Shading model

G() is Geometry function. Describes specular self-

shadowing, i.e., fraction of microfacets visible (non-

occluded) from both incoming and outgoing 

direction. 

Clamp to [0,1] and avoid denominators ≈ 0

Is explained by Erik… see his online videos 1 2 3 4.

D() is Distribution function, a.k.a. microfacet

distribution function, a.k.a. normal distribution 

function. Describes the specular lobe shape:

E.g., the normalized Blinn-Phong function used in
lab 4: There are various masking-shadowing 

functions, e.g.: 

Specular reflection weight for 

semi-rough) surfaces: 
𝐺(𝜔𝑖,𝜔𝑜)𝐷 𝜔ℎ 𝐹(𝜔ℎ,𝜔𝑜)

4 𝑛⋅𝜔𝑜 |𝑛⋅𝜔𝑖|

http://www.cse.chalmers.se/edu/course/TDA362/videos/Physically%20Based%20Rendering/video1.mp4
http://www.cse.chalmers.se/edu/course/TDA362/videos/Physically%20Based%20Rendering/video2.mp4
http://www.cse.chalmers.se/edu/course/TDA362/videos/Physically%20Based%20Rendering/video3.mp4
http://www.cse.chalmers.se/edu/course/TDA362/videos/Physically%20Based%20Rendering/video4.mp4


The GGX Specular Reflection Formula
Very popular model for D and G.

• GGX stands for Trowbridge-Reitz GGX, where GGX refers to the generalized gaussian

distribution used for microfacet normal distributions.

• GGX better simulates how light reflects off rougher surfaces, especially at oblique angles, compared to

older models like the Beckmann distribution. The GGX distribution produces sharp reflections for

smoother surfaces and blurry reflections for rougher surfaces. Found in Unreal Engine, Unity, and in the

Disney BRDF - a cornerstone of modern PBR workflows.

Normal Distribution Function D() for GGX

𝐷 … =
𝛼2

𝜋 𝒏 ⋅ 𝒉 2 𝛼2− 1 + 1 2

𝛼 = roughness.

Geometry function G() – Smith GGX variant:

𝐺 … = 𝐺1 𝒏, 𝒗 𝐺1(𝒏, 𝒍)

𝐺1 𝒏,𝝎 =
2 𝒏 ⋅ 𝝎

𝒏 ⋅ 𝝎 + 𝛼2+ 1 − 𝛼2 𝒏 ⋅ 𝝎 2



Extra… (bonus)

• Anisotropic Normal Distribution Functions – update D() in 

the microfacet model - see p343

• Multibounce surface reflections – p:346

• Subsurface Scattering: p:347 – modify the Diffuse brdf and the Fresnell 

factor.

• Cloth brdf:s – p:356

• Light falloff: page 111, Unreal, Frostbite + CryEngine

– Distance falloff function / windowing function: Just Cause 2

• Lambertian brdf = diffuse color = albedo, and terms are often used 

interchangeably. 

• Some light source types: point lights, area lights,

– Incoming light from the surrounding can also be captured by environment maps.

Non-symmetric lobes



Environment maps (reflection maps)



Tomas Akenine-Mőller © 2002

Additions to the lighting equation

⚫ Accounting for distance: 1/(a+bt+ct2)

⚫ Several lights: just sum their respective

contributions

⚫ Different light types:



Tomas Akenine-Mőller © 2002

Additions to the lighting equation
⚫ Accounting for distance: 1/(a+bt+ct2)

⚫ For several lights: just sum their respective

contributions

⚫ Some different light types:



Clarification on accounting for distance

⚫ Energy is emitted at equal proportions in all directions from a 

spherical radiator. Due to energy conservation, the intensity is 

proportional to the spherical area at distance r from the light 

center. 

• A = 4πr2

⚫ Thus, the intensity scales

~ 1/r2

⚫ For efficiency, we often cap or limit 

how far the light source will affect the 

environment.
– Hence, we often want to fade its intensity to zero

at some finite distance r.

r



Tomas Akenine-Mőller © 2002

Shading

⚫ Shading: compute the fragment’s final 

color contribution to the pixel. 

⚫ Three types of shading

regarding how often it is computed per triangle:
⚫ Flat shading: once per triangle

⚫ Goraud shading: once per vertex

⚫ Phong shading: once per pixel (standard today)



Tomas Akenine-Mőller © 2002

Shading

⚫ Flat, Goraud, and Phong shading:

⚫ Flat shading: one normal per triangle. Lighting computed once per triangle. 

⚫ Gouraud shading: the lighting is computed per vertex and for each pixel, the 

color is interpolated from the colors at the vertices.

⚫ Phong Shading: the lighting is computed per pixel. The normal is 

interpolated per pixel from the normals defined at the vertices, and full 

lighting is computed per pixel using this normal. This is of course more

expensive but looks better. 

Flat Gouraud Phong

Gouraud 

shading

Phong 

shading

Flat 

shading



Transparency and alpha

⚫ Transparency

– Very simple in real-time contexts

⚫ The tool: alpha blending (mix two colors)

⚫ Alpha () is the forth color component (r,g,b,)

– e.g., of the material for a triangle

– Represents the opacity

– 1.0 is totally opaque

– 0.0 is totally transparent

⚫ The over operator:

dso ccc )1(  −+=

Rendered object

Color already in 

the frame buffer at the 

corresponding position



Ulf Assarsson© 2007

Transparency

⚫ Need to sort the transparent objects

– Render back to front (blending is order dep.)
⚫ See next slide…

⚫ Exist different blending modes

⚫ Can store RGB in textures as well

So the texels with =0.0 

do not not hide the 

objects behind

dso ccc )1(  −+=

Rendered fragment Background



Transparency

⚫ Need to sort the transparent objects

– First, render all non-transparent triangles as 

usual. 

– Then, sort all transparent triangles and 
render them back-to-front with blending

enabled. 
⚫ The reason for sorting is that the blending operation 

(i.e., over operator) is order dependent.

If we have high frame-to-frame coherency regarding the objects to be 

sorted per frame, then Bubble-sort (or Insertion sort) are really good! 

(superior to Quicksort).

Because, they have expected runtime of resorting already almost sorted

input in O(n) instead of O(n log n), where n is number of elements.



Ulf Assarsson © 200334

⚫ Used for

– Transparency

⚫ glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) 

– Effects (shadows, reflections)

– (Complex materials)

⚫ Quake3 used up to 10 rendering passes, blending toghether 

contributions such as:

– Diffuse lighting (for hard shadows)

– Bump maps

– Base texture

– Specular and emissive lighting

– Volumetric/atmospheric effects

⚫ Today, we can merge all those passes into one fragment shader.

– Enable with glEnable(GL_BLEND)

Blending 

dso ccc )1(  −+=



Tomas Akenine-Mőller © 2002

Fog

⚫ Simple atmospheric effect

– A little better realism 

– Help in determining distances



Tomas Akenine-Mőller © 2002

⚫ Color of fog:         color of surface: 
fc sc

  

cp = fcs + (1- f )c f       f Î[0,1]
⚫ How to compute f ?

⚫ E.g.: linear, exponential

⚫ Linear:

startend

pend

zz

zz
f

−

−
=

Program it yourself in the 
fragment shader. 

(Old OpenGL – just set OpenGL
parameters and turn it on)



Fog in up-direction

Tomas Akenine-Mőller © 2002



Gamma correction

We compute rgb color 

intensities in linear 

space from [0,1]

However, CRT-monitor output is exponential. 

Gives more precision for darker regions. Very 

Good! But we want linear output. Else, our 

images will be too dark.

xγ

Intensities: xγ vs linear

Exponential distribution better for 

humans. Our eyes have 

logarithmic sensitivity and 

monitors have limited brightness

xγ  is perceived

 as linear:

Actually linear:

γ = 2.2

So, store color intensities with more precision for darker colors: i.e., convert color to x (1/γ) before storing in 

8- bits in the frame buffer. Conversion to x(1/γ) is called gamma correction.

Shader rgb colors 

x(1/γ)

Frame buffer rgb colors.

“Dark pixels are made brighter”

 

x(1/γ)

Displayed by CRT
Linear output again, but 

redistributed precision.

sc
re

en

= rgb_in

xγ

rgb_in

rgb_out

(x(1/γ))γ

in
te

n
si

ty

Textures: often stored in 

gamma space for better 

distributed precision. 



Gamma correction

⚫ If input to gun is 0.5, then you don’t get 

0.5 as output in intensity

⚫ Instead, gamma correct that signal:     

gives linear relationship

xγ

γ = 2.2 x(1/γ)



Tomas Akenine-Mőller © 2002

Gamma correction

⚫ I=intensity on screen

⚫ V=input voltage (electron gun)

⚫ a, and  are constants for each system

⚫ Common gamma values: 2.2-2.6

⚫ Assuming =0, gamma correction is:

 )( += VaI

)/1( 

icc =



Gamma correction
⚫ Reasons for wanting gamma correction (standard is 2.2):

1. Screen has non-linear color intensity

– We want linear output for correctness.

– But, today, screens can be made with linear output, so non-linearity is more 

for backwards compatibility and better 8-bit color precision.

2. Also gives more efficient color space (when compressing intensity from 
32-bit floats to 8-bits). Thus, often desired when storing images (color 

buffer, textures) in 8 bits rgb.
Gamma of 2.2. Better 

distribution for humans. 

Perceived as linear.

Truly linear intensity 

increase.

A linear intensity output (bottom) has a large jump in perceived brightness 

between the intensity values 0.0 and 0.1, while the steps at the higher end of the 

scale are hardly perceptible. 

A nonlinearly-increasing intensity (upper), will show much more even steps in 

perceived brightness.



Important on Gamma correction

⚫ Give two reasons for gamma correction:

– screen output is non-linear so we need gamma 

to counter that.

– Textures/images and color buffer can be stored 
with better precision (for human eye) for low-

intensity regions.

– Antialiasing:

AntialiasingAliasing

Gamma correction is 

required for correct half-

tones.



Important on Gamma correction

⚫ Give two reasons for gamma correction:

– screen output is non-linear so we need gamma 

to counter that.

–  Textures/images can be stored with better 
precision (for human eye) for low-intensity 

regions.

Tomas Akenine-Mőller © 2002



Lecture 3.1 Shading - summary

• The fragment color is the surface’s radiance at that point.

• The radiance, LOut, can be split into:

• Flat, Gouraud, and Phong shading

• Transparency

• Gamma correction:

dso ccc )1(  −+=

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)

“How to shade your fragments”

Ambient contribution

Assume homogeneous 

background light everywhere

Lo = mr,g,b lrgb , 

where mr,g,b is surface color and 

lrgb is background-light color.

Diffuse contribution

For material part that is 

fully rough (Lambertian), 

scale incoming light with 

angle to surface normal: 

Lo += mr,g,b lrgb 𝒏 ∙ 𝒍 , 

where lrgb is light-source 

color and l is direction to 

the light.

Emission contribution

Self-glowing material 

Lo += mr,g,b , where mr,g,b is the 

glow color or radiance. 

Specular contribution

For material part that is glossy (=semi-specular): Scale light-source 

reflection with view angle from light’s main reflection direction: 

Phong: Lo += mr,g,b lrgb 𝒓 ∙ 𝒗 shi, where r is refl. direction, v = view dir.

Blinn:  Lo += mr,g,b lrgb 𝒉 ∙ 𝒏 4 shi, where h is half vector of l and v.

PBS (Physically-based Shading): 

            Lo += mr,g,b lrgb

𝐺(𝒍,𝒗)𝐷 𝒉 𝐹(𝒉,𝒗)

4 𝒏⋅𝒗 |𝒏⋅𝒍|
𝒏 ∙ 𝒍

Either way, mr,g,b is white (1,1,1) for dielectrics and mtrl col for metals.

Render transparent triangles in 

back-to-front order, with blending.

, where cs is fragment color, cd is pixel color in frame buffer.



What is important

⚫ Amb-, diff-, spec-, emission model + formulas

– But not for PBS. E.g., for specular refl, then only:
⚫ Phong’s + Blinn’s highlight model: 

– Phong: 𝒓 ∙ 𝒗 s

– Blinn: 𝒉 ∙ 𝒏 s , halfvector h = (l+v)/|l + v|

⚫ Flat-, Gouraud- and Phong shading

⚫ Fog – just understand how we can use blending to do it

⚫ Transparency:

– Draw transparent triangles back-to-front.

– Use blending with this over operator: 

⚫ Two reasons for wanting gamma correction

dso ccc )1(  −+=
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