
Ray Tracing II

Tomas Akenine-Möller

Modified by Ulf Assarsson

Department of Computer Engineering

Chalmers University of Technology

1

Image: Nvidia RTX ray tracer

Lab 7

⚫ YOU MUST START NOW

– Or you may fail!

– Purpose of Lab 7:
⚫ Now, you have to implement more on your own (for real),

without close guidance.

– For real-time rendering and learning to do special

effects.

– Or: Path Tracer Lab for realistic beautiful rendering!

2

Overview
⚫ Shadow Rays and shadow cache:

– Shadow rays only need to search for any hit (not closest) on its way to light

source.

– Shadow cache can give speedup for shadow rays if cached triangle is large

(i.e., high probability of next shadow ray hitting same triangle).

⚫ Spatial data structures and ray traversal

– Bounding volume hierarchies (BVHs)

– BSP trees

– Grids

– Cache aware coding: Shoot primary rays according to a Hilbert Curve

or Morton (Z) curve:

⚫ Materials

– Fresnell Effect

– Beer’s Law

⚫ Additional ray tracing techniques

– Constructive Solid Geometry

– Fractals3

Shadow Rays

Shadow Rays:
– It does not matter which object between the red ellipse and the light is

detected

⚫ Any-hit-traversal instead of first-hit-traversal (here, ”first” means first along the ray)

– The point is in shadow if we find at least one object between

Shadow Cache (optimization):
– Assume shadow ray A hits the triangle

⚫ You can store triangle in shadow cache

– For next ray B, start with testing the triangle in the shadow cache

– If high coherence, then we’ll get many hits in cache.

– E.g., use a cache per level of reflection-/refraction-ray recursion

– Shadow cache not popular in parallel ray tracing. For parallel ray tracing, packet ray
tracing and ray streams have a similar effect by utilizing ray coherency, together with
”any-hit-traversal”.

image plane
light source

ray A

shadow ray A

ray B
shadow ray B

4

Alternatively,

you could use
shadow maping.

Spatial data structures and
Ray Tracing

⚫ Use spatial data structures to get faster rendering

– Because ray tracing is often slow

– Avoids intersection tests between the ray and each object in

the scene.

⚫ Rather, you test a small subset

⚫ Typically, O(log n) instead of O(n) for each ray

⚫ We will look at

5
AA BSP trees

Bounding volume

hierarchies (BVHs)
Grids

Bounding Volume Hierarchy (BVH)

⚫ We’ll use axis-aligned bounding boxes

(AABBs) here

⚫ The goal: find closest (positive) intersection

between ray and all objects in the scene

⚫ Simple: traverse the tree from the root

⚫ If the ray intersects the AABB of the

root, then continute to traverse the

children

⚫ If ray misses a child, stop traversal

in that subtree

6

Example: ray against BVH

⚫ Without BVH, we would test each triangle of
every object against the ray

⚫ With BVH:
– Only test the triangles of the leaves against the ray

– Plus some AABBs, but these are cheap

hit

hit

hit

miss

miss

7

Optimizations

⚫ Always make a reference implementation

– And save it for benchmarking!

⚫ Benchmarking is key here:

– Not all ”optimizations” yield better performance

– However, this definitely depends on what kind
of scene you try to render

⚫ Preprocessing is good

– Use when possible

8

BVH traversal optimizations

1. Use current closest intersection as an upper
bound on how far the ray may ”travel”

⚫ Example, if a ray hits a polygon at distance t,
then we don’t need to traverse a BV which is
located farther than t.

2. Can also sort the BVs with respect to hit
distance along ray, and only open up if
necessary.

3. Shadow cache can be used for shadow
rays

9

t

• Shadow cache is not efficient for small triangles and
are not popular for parallel code (CPU/GPU). E.g.:

• parallelism may break the assumption that the
next hit is close to the previous hit.

• But shadow maps may be used instead.

• They are also not popular for path tracing (see next
week) due to rays being incoherent.

• However, they can be good for soft shadows.

If an intersection t is

found for the green

box, there is no

closer t in the purple

box

AABB hierarchy optimization

⚫ An AABB is the intersection
of three slabs (2 in 2D)

⚫ Observation: all boxes’ slabs
share the same plane normals

⚫ Exploit this for faster AABB/ray
intersection!

⚫ AABB/ray needs to compute one division
per x,y, and z

– Precompute these once per ray, and use
for entire AABB hierarchy

BOX

10

d1 d2

d3 d4

o

n

t= (- 𝒏 ∙ 𝒐 -d) / 𝒏 ∙ 𝒅
set a= - 𝒏 ∙ 𝒐 / 𝒏 ∙ 𝒅
b = -1/ 𝒏 ∙ 𝒅
 t1 = a + d1*b

t2 = a + d2*b

t3 …

Just 1 madd instr. per

ray/plane test

BVH traversal… skip-pointer trees

⚫ Standard (depth-first) traversal is slow:

– Involves recursion with a function call
per step.

– And memory may be allocated once
per node

B
ri

a
n

 S
m

it
s,

 ”
E

ff
ic

ie
n

cy
 I

ss
u

es
 i

n
 R

ay
 T

ra
ci

n
g

”,
 J

o
u
rn

a
l

o
f

G
ra

p
h

ic
s

T
o
o

ls
,

v
o
l.

 3
,
n

o
.
2

.
p
p

.
1

—
1

4
,

1
9
9

8
.

A

B

D E F

C

⚫ Left-child, right-sibling, parent pointers

avoids recursion
▪ Instead follow pointers

A

B

D E F

C

⚫ Store tree in array, with skip pointers
• Storing all nodes in depth-first order

• A skip pointer points to the place where

traversal shall continue given a miss.

A
B
D
E
F
C

11 Good for single-threaded (non-parallel) code.

⚫ If no miss, continue in depth first order

⚫ If nodes are allocated linear in memory,

then we can expect many cache hits

⚫ However, a node’s children cannot be

accessed in any order (child n can only be

reached via child 0..n-1).
– Is a problem if sorting the children on distance.

– Also, for modern parallel CPUs/GPUs, you often want all

of a node’s children to be located adjacently in memory,

so they can be efficiently fetched for intersection testing in
parallel.

⚫ Then, better the parent just stores one pointer to an array of all

children. This also decreases the number of pointers needed to store,
which significantly lowers memory usage, which increases cache

coherency.

A
B
D
E
F
C

12

BVH traversal… skip-pointer trees

A

B

D E F

C

child, …, child

Split BVHs (SBVH)
⚫ SBVH – typically AABB hierarchies but allowing triangles to be

part of several BV:s, to minimize empty volume and overlaps: E.g:

– Requires careful analysis. See papers. Google on best ways or see

Intel’s Embree.

– Popular for CPU ray tracing but not real-time GPU ray tracing.

13

Clip and split

boxes. Add

triangles to boxes if

necessary.

Split boxes.

Surface Area Heuristics (SAH)

⚫ Can be used to decide how to split a node to minimize ray traversal cost if a ray hits it.

…by minimizing the sum of the expected ray-traversal costs of the node’s children after

split.

– SAH cost = i=1..#children (traversal_cost x traversal_probability)child_i

– traversal_cost ≈ #tris_in_child (because need testing ray vs each triangle)

– traversal_probability = (surface_areaChildNode /surface_areaParentNode)

– Surface area means for the bounding volume.

A
B

P

𝑆𝐴𝐻 𝑐𝑜𝑠𝑡 = ෍

𝑖=1

#𝐶ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒𝑠

#𝑡𝑟𝑖𝑠𝑖
𝐴𝑟𝑒𝑎𝑖
𝐴𝑟𝑒𝑎𝑃

Where:

• #trisi = #triangles in child node i

• Areai = surface area of child i.

• AreaP = surface area of parent node.

1 triangle 5 triangles

Here:

• #trisA = 1

• #trisB = 5

• AreaA = 5

• AreaB = 3

• AreaP = 6

Ray traversal cost of P ≈

E.g., finding optimal split position (for kd trees)

SAH cost = 1 * (5/6) + 5*(3/6)

P
A

B

Here:

• #trisA = 1

• #trisB = 5

• AreaA = 1.5

• AreaB = 2

• AreaP = 6

SAH cost = 1 * (1.5/6) + 5*(2/6)

1

2

E.g., finding optimal BVH subdivision (for BVHs)

2

1

Try many split positions and keep the one with lowest cost Try many divisions and keep the one with lowest cost

SAH says that if a ray hits the parent, P, then the likelihood of hitting a child, i, is:
𝐴𝑟𝑒𝑎𝑖

𝐴𝑟𝑒𝑎𝑃

[“
H

eu
ri

st
ic

s
fo

r
R

ay
 T

ra
ci

n
g
 U

si
n
g

 S
p
ac

e
S

u
b

d
iv

is
io

n
”,

 M
ac

D
o
n

al
d
 a

n
d
 B

o
o
th

 ´
8
9

]

https://graphicsinterface.org/wp-content/uploads/gi1989-22.pdf

Intel Embree

⚫ Kind of the fastest

general CPU ray

tracer

⚫ Uses BVHs

⚫ Made by

Ingo Wald et al.

⚫ SAH – Surface

Area Heuristics

⚫ Packet ray tracing – traversing a packet of rays (e.g., 4,8,or 16) using

SIMD instructions. Performance increase proportional to SIMD width

⚫ Ray Streams – 1K-4K, 10-30% performance increase. Finds coherent ray

batches requiring similar shading. (Shading is often most time consuming.)

15

Packet ray tracing

Axis-Aligned BSP trees

⚫ An advantage is that

that we automatically

traverse the space in a

rough sorted order

along the ray

⚫ Pretty simple code as we will see

A

B

C

D E

16

If we have a fixed order for the splitting dimension (e.g.

x,y,z,x,y,z… or z,x,y,z,x,y… etc) this is called a kD-tree.

Axis-aligned BSP tree against ray
RayTreeIntersect(Ray, Node, min, max)

{

if(node==NULL) return no_intersection;

if(node is leaf)

{

test all primitives in leaf, discard if not between min and max;

return closest intersection point if any;

}

dist = signed distance along Ray to cutting plane of Node;

near = child of Node that contains ray origin;

far = child of Node that does not contain ray origin;

if(dist>0 and dist<max) // interval intersects plane of Node

{

hit=RayTreeIntersect(Ray,near,min,dist); // test near side

if(hit) return hit;

return RayTreeIntersect(Ray,far,dist,max); // test far side

}

else if(dist>max or dist<0) // whole interval is on near side

return RayTreeIntersect(Ray,near,min,max);

else // whole interval is on far side

return RayTreeIntersect(Ray,far,min,max);

}

K
e
lv

in
 S

u
n

g
 a

n
d

 P
et

e
r

S
h

ir
le

y
,
”
R

ay
 T

ra
ci

n
g

 w
it

h
 t

h
e
 B

S
P

 T
re

e”
,

G
ra

p
h
ic

s
G

em
s

II
I,

 p
p
.

2
7
1

—
2

7
4

,
1
9

9
2
.

17

Bonus

AA-BSP Tree Traversal
⚫ Test the planes against the ray

⚫ Test recursively from root

⚫ Continue on the ”hither” side first, then farther side

eye

0

1a

A B

1b

C 2

D E

1a 1b

2

0

RayTreeIntersect(Ray, Node, min, max){

if(node==NULL) return no_intersection;

if(node is leaf)

test all primitives in leaf, discard if not between min and max;

return closest intersection point if any;

dist = signed distance along Ray to cutting plane of Node;

near = child of Node that contains ray origin;

far = child of Node that does not contain ray origin;

if(dist>0 and dist<max) // interval intersects plane of Node

hit=RayTreeIntersect(Ray,near,min,dist); // test near side

if(hit) return hit;

return RayTreeIntersect(Ray,far,dist,max); // test far side

else if(dist>max or dist<0) // whole interval is on near side

return RayTreeIntersect(Ray,near,min,max);

else return RayTreeIntersect(Ray,far,min,max); // whole interval is on far side

}

max

dist

18 Ulf Assarsson © 2010

K
e
lv

in
 S

u
n

g
 a

n
d

 P
et

e
r

S
h

ir
le

y
,
”
R

ay
 T

ra
ci

n
g

 w
it

h
 t

h
e
 B

S
P

 T
re

e”
,

G
ra

p
h
ic

s
G

em
s

II
I,

 p
p
.

2
7
1

—
2

7
4

,
1
9

9
2
.

Bonus

dist

max

Grids

⚫ A large box is

divided into a

number of equally-

sized cells

⚫Each grid cell stores pointers to all objects

that are inside it

⚫During traversal, only the cells that the ray

intersect are visited, and objects inside these

cells are tested

19

Grid Traversal Algorithm
⚫ A modified line generating algorithm can be used

– Bresenham or DDA

⚫ But easier to think in geometrical terms

– Red circles mark where ray goes from one grid box to the next

Intersection points

appear with irregular

spacing

But, look first at only

intersection with horizontal

lines, then vertical

These are regular spaced!

Use that in implementation

20

Traversal example

loop

 if(tNextX < tNextY)

 X= X + stepX;

 tNextX += tDeltaX;

 else

 Y= Y + stepY;

 tNextY += tDeltaY;

 VisitVoxel(X,Y);
tNextY

tNextX

tNextX = t-value at next step in x

tNextY = t-value at next step in y

stepX/Y = ± 1 depending on ray’s slope21

At start, compute

tNextX and tNextY

ray origin

Grid Traversal (2)

⚫ Easy to code up,

⚫ Check out the following paper (for those

who want to implement in their path

tracer):

– Amantindes and Woo, ”A Fast Voxel Traversal

Algorithm for Ray Tracing”, Proc. Eurographics
'87, Amsterdam, The Netherlands, August 1987,

pp 1-10.

⚫ Available on course website

22

Testing the same object more than
once in grids

⚫ If an object intersects more
than one grid box, and a ray
traverses these, then you may
test the same object twice
(waste of performance).

⚫ Solution: assign a unique rayID
to each ray. For each tested
object, store the {hitPt,rayID}
with the object.

⚫ If rayID of ray and object are
the same, then we have
already tested the object.

23
So then just fetch the hitpoint, stored with the object

This is called

mailboxing

rayID

(hitPt, rayID)

Choose a good grid resolution

⚫ Assume n objects in scene, g is grid

resolution

3 ng = is only good if root box is cubical!

• Better to have different number of grid boxes

per side

• Let the number of grid boxes per side be

proportional to the length of the box side
• See Klimaszewkski and Sederberg, in IEEE Computer Graphics &

Applications, Jan-Feb, 1997, pp. 42—51.

24

4 x 4 3x6

Using

Hierarchical and Recursive Grids

⚫ We often use hierarchies in CG, so we

can do that now as well

⚫ When a grid box (voxel) contains many

primitives, introduce a smaller grid in that

grid box

Hierarchical grid
Recursive grid

25

Hierarchies to avoid the “Teapot in
a stadium" problem

26

Which spatial data structure is
best?

⚫ Depends on implementation, the type of scene, how complex shading,

etc, etc.

⚫ KD-trees:

– Fastest to traverse, small memorywise, slow to build

⚫ AABB-hierachies:

– Fast to build, slower to traverse (not automatically in order along ray). Fast to

update for moving rigid objects.

– RTX – uses AABB hierarchy,

– GPU: Linear-BVH (LBVH), Hierarchial LBVH. Sorts primitives by Morton order

– CPU ray tracing: Split-BVHs (SBVH),

⚫ Grids

– Fast to build, middle fast to traverse, typically needs to be hierarchial/recursive

– Hierarchical grids can be very fast to update for moving rigid objects.

– Recursive trees are surprisingly slower than hierarchical grids in terms of ray

traversal. And slow to rebuild for moving objects.

⚫ Sparse voxel octrees SVO and SVDAGs:

– Very fast to traverse.

– SVDAGs can be highly compressed versions of SVO:s.

– Slow to rebuild and does not store triangles.27

Splitpos (8b), childptr

32bits

Cache awareness

⚫ To maximize cache locality, you can utilize that the

next ray likely will access roughly the same memory

locations since it will traverse roughly the same part of

the tree and geometrical objects.

– To maximize spatial locality, shoot the primary rays according

to a Hilbert curve, instead of sequentially scanline by

scanline….

28

Hilbert Curve

29

2x2 pixels 4x4 pixels

16x16 pixels8x8 pixels

For code, see: https://en.wikipedia.org/wiki/Hilbert_curve

Z-curve

30

Shoot rays r = 0..w*h

 Assume ray is the n:th ray, and n’s binary value is:

 n = 1 1 0 1 0 1 1 0 = 214

 e.g., n = … y3 x3 y2 x2 y1 x1 y0 x0

 Then, the ray’s x and y coordinates are:

 x_coord = … x3 x2 x1 x0 = 1 1 1 0 = 14

 y_coord = … y3 y2 y1 y0 = 1 0 0 1 = 9

For primary ray n:

• the screen-x coord

is every 2nd bit of n,

starting with bit 0.

• the screen-y coord

is every 2nd bit of n,

starting with bit 1.

or “Morton order”

Recipe to shoot primary

rays in a Z-curve order:

Morton’s

trick is to

take every

2nd bit for the

x-coord and

y-coord

respectively

Faster Grid Traversal using
Proximity Clouds/Distance Fields

“Proximity Clouds

– An Acceleration

Technique for 3D

Grid Traversal”,

Daniel Cohen and

Zvi Sheffer

31

Typically 2-2.5x

speedup vs standard

grid traversal

MATERIALS

⚫ Types of material,

and how light interacts

– Dielectrics: Glass, plastic, stone, wood, water, ...

– Metals (conductive)

– Fresnel: can compute polarized, and unpolarized values for

the light (in CG, we ignore polarization, often)

Metall: rgb-dependent Fresnel effect

Dielectrics: not rgb-dependent.





ln

⚫ At some places, the reflection is saturated (almost white), but mostly, it is clearly

modulated by the copper color
– Plastic: highlight is just the color of the light source (i.e., not affected by the plastic’s color)

– Metal: highlight has the reflection color also modulated by the metal color. (Fresnell values are rgb-dependent)33

34

Fresnel - polarization
⚫ The Fresnel effect for reflections/refractions is polarization

dependent. Can compute polarized, and unpolarized values

for the light (in CG, we ignore polarization, often)

35

n

i

t

i

t





Unpolarized
light:

Polarized

sunglasses block

the s

polarization:S-pol

P-pol

n

Smooth dielectric materials
Transparency and Homegeneous impurities

E.g. Water, transparent plastic, glass…

⚫Light is attenuated with Beer’s law

⚫Looses intensity with: dI=-C I ds

⚫I(s)=I(0)e-Cs

⚫Compute once for each RGB

⚫Also, use the Fresnel equations for these

materials

36

Beer’s Law
Constant intensity decrease at

greater distance due to out-

scattering and absorption.

dI = -CIds

I(s) = I(0)e-C*s
ds

I(0) I(s)
s

37
From August Beer, 1852

Exponential decay of

light intensity Outscattering and

absorption

Beer’s law

The taller the glass, the darker the brew,

The less the amount of light that comes through

38

RAY TRACING ADDITIONALS

⚫ Geometrical objects

– Ray intersections: transform ray into object space

– Constructive Solid Geometry

– Blobs

⚫ Procedural textures

– Fractals from noise
⚫ Takes almost no memory. Texture memory is precious and

costs many many clock cycles to access.

⚫ Optics

– E.g., depth-of-field

39

Geometry

⚫ Object-oriented programming
– Makes it simple to add new geometrical objects from

simpler ones. E.g., elipsoid from scaled sphere.

⚫ Just add a transform (TRS)

⚫ The standard trick is to not apply the transform
matrix to the object, but instead inverse-
transform the ray

40
Now, simply a rotated

and scaled ray vs sphere.

Geometry:
Constructive Solid Geometry (CSG)

⚫ Boolean operations on objects
– Union (or)

– Subtraction (A not B)

– Xor

– And

⚫ Simple to implement

⚫ Must find all intersections with a ray and
an object

⚫ Then do this for involved objects, and
apply operators to found interval

41

Geometry:
Constructive Solid Geometry (CSG)

⚫ Examples, operators:

42

A union B (OR)

A and B

A not B

(A AND !B)

Geometry:
Constructive Solid Geometry (CSG)

⚫ Another

example

⚫ Done with 4

cylinders

43

x

y

Constructive Solid Geometry (CSG)
How to implement

⚫ Try: sphere A minus sphere B (i.e., A not B)

A

B

⚫ In summary: find both entry and exit points on both

spheres. Such two points on a sphere is an interval (1D).

Apply the operator on these intervals
44

CSG

⚫ Works on any geometrical object, as long

as you can find all intersection point

along a line

– So, be careful with optimizations…

⚫ And objects should be closed

– Example: put caps on cylinder.

45

Geometry:
Blobs

⚫ A method for blending implicit surfaces

(e.g., spheres, x2+y2+z2=1)

⚫ After blend, you get a higher order

surface

⚫ Need a numerical root finder

46

Blob example

47

Geometry
⚫ Quadrics (2:a-gradsytor)

– Cone, cylinder, paraboloids, hyperboloids, ellipsoids, etc.

⚫ Higher order polynomial surfaces

– Example: torus, 4th degree

⚫ Fractal landscapes

– Pretty simple, fast algorithm exist

48

Fractals

49

Perlin Noises in 1-D

50

N

x

Noise signal with certain

frequency and amplitude:
(E.g., use random-number

generator and spline interpolation)

Next octave: ~double

frequency, ~half amplitude:

Adding gives Fractal Noise:

Perlin Noises in 1-D

51

Ridged: c-||N(x)-c||
c

N

x

Noise signal with certain

frequency and amplitude:
(E.g., use random-number

generator and spline interpolation)

Next octave: ~double

frequency, ~half amplitude:

Adding gives Fractal Noise:

Perlin Noises in 2-D

52

+ + +

+ =

Simulating materials

K. Perlin

Noise (1 octave):

-Worn metal

-Water wave

Sum[1/f * noise]:

-Rock

-Mountains

-Clouds

Sum[1/f * |noise|]:

-Turbulent flows

-Fire

-Marble

-Clouds

Sin(x +

Sum[1/f *|noise|]):

-Turbulent flows

-Fire

-Marble

53

5454

Terragen v4, free for students

Iñigo Quilez - Brave

55 https://www.iquilezles.org/www/articles/multiresaocc/multiresaocc.htm

Realtime OpenGL with ambient occlusion.

Worked on procedural terrain, moss, grass, etc.

56 Texturing and Modeling – a procedural approach, by Perlin, Musgrave, Ebert…

Procedural texturing:

More fractal examples…

WebGL examples:
• https://www.shadertoy.com/view/MdfGRX

• Ladybug (fully procedural, open in Chrome):

https://www.shadertoy.com/view/4tByz3

• Girl: https://www.shadertoy.com/view/WsSBzh

https://www.shadertoy.com/view/MdfGRX
https://www.shadertoy.com/view/4tByz3
https://www.shadertoy.com/view/WsSBzh

Optics

⚫ You can add

– Fog

– Light fall off : 1/d2

– Fresnel equations

– Depth of field

– Motion blur

– Participating media

57

Participating media

… also for real-time rendering

More effects

⚫ You can add

– Optics
⚫ Depth of field

– Motion blur
⚫ i.e., temporal antialiasing

– Light scattering in
participating media
⚫ Fog

⚫ Smoke

⚫ Clouds

⚫ Shafts of Light

⚫ …

58

Participating media

… also for real-time rendering

Optics

⚫ Depth-of-field

– Add more samples on a virtual camera lens

59

Soft shadows

⚫ Soft shadows are typically more realistic than hard

shadows

⚫ Examples:

60

Soft shadows

⚫ Why do they appear?

⚫ Because light sources have an area or

volume (seldom point lights)

point source

umbra

area source

umbrapenumbra61

Example

62

Glossy (blurry) reflections

⚫ Trace many reflection directions

– Each perturbed slightly from the main reflection direction:

Do the same

with the transmission

vectors63

Speed-up techniques

⚫ For eye rays:
– Render scene with OpenGL

– Let each triangle or object have a unique color

– Then read back color buffer

– For each pixel, the color identifies the object

– However
⚫ the primary rays (eye rays) are typically so few compared

to all other secondary rays, so often not worth optimizing.

64

Typical Exam Questions
 – what you need to know

⚫ Draw grid (plain/hierarchical/recursive)
– Mailboxing.

⚫ Draw all our other spatial data structures:
– Octree/quadtree, AABSP-tree (kd-tree), polygon-aligned BSP tree, Sphere/AABB/OBB-

tree,

⚫ What’s a

– skip-pointer tree?

– Shadow cache?

– Kd-tree? (=AABSP with fixed split-plane order)

⚫ Descibe ray/BVH intersection test

⚫ The Fresnel-effect: metal vs dielectrics

– How does dielectrics (e.g., plastic/glass/water/air) behave?

– How does metal behave?

⚫ Describe how ray trace using Constructive Solid Geometry

65

Guardians of the Galaxy 2
– Ego’s Planet

⚫ Sierpinsky gasket

– Ego’s world constructed by

fractals (partially)

⚫ By procedural generation and boolean operators

⚫ Some geometry triangulated by photogrammetry

⚫ Photogrammetry = 3D reconstruction of a scene just from many photographs of it.

⚫ James Gunn – director

⚫ Fish fountain
⚫ Victoria Alonso,

was: President of Physical,

Post Production, VFX and

Animation at Marvel Studios

66

Sierpinsky triangle Apollonian circle packing

 Start Movie (12 min)

Start Movie

(12 min)

	Slide 1: Ray Tracing II
	Slide 2: Lab 7
	Slide 3: Overview
	Slide 4: Shadow Rays
	Slide 5: Spatial data structures and Ray Tracing
	Slide 6: Bounding Volume Hierarchy (BVH)
	Slide 7: Example: ray against BVH
	Slide 8: Optimizations
	Slide 9: BVH traversal optimizations
	Slide 10: AABB hierarchy optimization
	Slide 11: BVH traversal… skip-pointer trees
	Slide 12: BVH traversal… skip-pointer trees
	Slide 13: Split BVHs (SBVH)
	Slide 14: Surface Area Heuristics (SAH)
	Slide 15: Intel Embree
	Slide 16: Axis-Aligned BSP trees
	Slide 17: Axis-aligned BSP tree against ray
	Slide 18: AA-BSP Tree Traversal
	Slide 19: Grids
	Slide 20: Grid Traversal Algorithm
	Slide 21: Traversal example
	Slide 22: Grid Traversal (2)
	Slide 23: Testing the same object more than once in grids
	Slide 24: Choose a good grid resolution
	Slide 25: Hierarchical and Recursive Grids
	Slide 26: Hierarchies to avoid the “Teapot in a stadium" problem
	Slide 27: Which spatial data structure is best?
	Slide 28: Cache awareness
	Slide 29: Hilbert Curve
	Slide 30: Z-curve
	Slide 31: Faster Grid Traversal using Proximity Clouds/Distance Fields
	Slide 32: MATERIALS
	Slide 33
	Slide 34
	Slide 35: Fresnel - polarization
	Slide 36: Smooth dielectric materials Transparency and Homegeneous impurities
	Slide 37: Beer’s Law
	Slide 38: Beer’s law
	Slide 39: RAY TRACING ADDITIONALS
	Slide 40: Geometry
	Slide 41: Geometry: Constructive Solid Geometry (CSG)
	Slide 42: Geometry: Constructive Solid Geometry (CSG)
	Slide 43: Geometry: Constructive Solid Geometry (CSG)
	Slide 44: Constructive Solid Geometry (CSG) How to implement
	Slide 45: CSG
	Slide 46: Geometry: Blobs
	Slide 47: Blob example
	Slide 48: Geometry
	Slide 49: Fractals
	Slide 50: Perlin Noises in 1-D
	Slide 51: Perlin Noises in 1-D
	Slide 52: Perlin Noises in 2-D
	Slide 53: Simulating materials
	Slide 54
	Slide 55: Iñigo Quilez - Brave
	Slide 56: More fractal examples…
	Slide 57: Optics
	Slide 58: More effects
	Slide 59: Optics
	Slide 60: Soft shadows
	Slide 61: Soft shadows
	Slide 62: Example
	Slide 63: Glossy (blurry) reflections
	Slide 64: Speed-up techniques
	Slide 65: Typical Exam Questions – what you need to know
	Slide 66: Guardians of the Galaxy 2 – Ego’s Planet

