
Ray Tracing I: Switching gears…
Btw…You can now do Vulkan ray tracing in the advanced course LP4.

NVIDIA’s RTX real-time ray tracing demo, 2019.

Kursutvärderingar vid Chalmers

For your convenience

• Half-Time

Summary

Slides

Typical Exam Questions

⚫ Prev Lecture:

– Describe one intersection test for
⚫ ray/triangle – (e.g. analytically, Jordans Cross theorem or

summing angles)

⚫ Ray/box (slabs)

⚫ View Frustum Culling using spheres

– Culling – VFC, Portal, Detail,

 Backface, Occlusion

– What is LODs

– Describe how to build and use BVHs, AABSP-

tree, Polygon aligned BSP-tree.

– Describe the octree/quadtree.

min

xt

max

xt
min

yt

max

yt

What is ray tracing?

⚫ Another rendering algorithm
– Fundamentally different from polygon

rendering (using e.g., OpenGL)

– OpenGL
⚫ renders one triangle at a time

⚫ Z-buffer sees to it that triangles appear ”sorted” from
viewpoint

⚫ Local lighting --- per vertex

– Ray tracing
⚫Gives correct reflections!

⚫Renders one pixel at a time

⚫Sorts per pixel

⚫Global lighting equation (reflections, shadows)

History and terminology
⚫ Ray casting

– Means “shooting a ray”. (Arthur Appel, 1968, for shadow rays.)

⚫ Ray Tracing: recursive process of shooting rays

– Whitted Ray Tracing (or Whitted-style ray tracing):

⚫ Turner Whitted, “An improved illumination model for shaded display”,
ACM, Volume 23, Issue 6, June 1980 pp 343–349.

⚫ Shadow rays + pure reflection/refraction rays.

⚫ In general, ray tracing, means following rays, even when part of

more complicated methods, e.g., path tracing (next lecture).

5

Whitted ray tracing

Computer Graphics:
– two main principles…

…for computer-generating the appearance of a virtual 3D scene:

• Ray Tracing:

– Forward ray tracing: Tracing light beams

from light sources and how they reach the

virtual camera.

– Backward ray tracing: Tracing the light

beams backwards, i.e., from the camera

and all the way back to the light sources.

• Whitted-style ray tracing:

– recursively shoot pure reflection and refraction rays.

– No semi-glossy surfaces. No indirect illumination

(color bleeding) for diffuse surfaces.

• Rasterization:

– Draw the scene triangles one by one onto the pixels of the

screen and, for each pixel, compute the color (by regarding

light sources and perhaps also surrounding objects).

What is ray tracing?
⚫ Another rendering algorithm

– Fundamentally different from polygon
rendering (using e.g., OpenGL)

– OpenGL
⚫ renders one triangle at a time

⚫ Z-buffer sees to it that triangles appear
”sorted” from viewpoint

⚫ Fast. Often just local lighting

– Ray tracing
⚫ Gives correct reflections!

⚫ Renders one pixel at a time

– i.e., finds first visible triangle per pixel

⚫ Slow. More of Global lighting (reflections,
shadows)

7

O(n)

r O(log n)

What is the point of ray tracing?

⚫ Higher quality rendering
– Global lighting equation (more accurate

shadows, reflections, refraction)

⚫ Is the base for more advanced algorithms
– Global illumination, e.g., path tracing, photon

mapping

⚫ It is extremely simple to write a (naive)
ray tracer

⚫ A disadvantage: it is inherently slow!

8

Whitted ray tracing

9

10

Again: it is simple to write a ray tracer!
– A la Paul Heckbert:

typedef struct{double x,y,z}vec;vec U,black,amb={.02,.02,.02};struct sphere{

vec cen,color;double rad,kd,ks,kt,kl,ir}*s,*best,sph[]={0.,6.,.5,1.,1.,1.,.9,

.05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5,.2,1.,.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8,

1.,.3,.7,0.,0.,1.2,3.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1.,

1.,5.,0.,0.,0.,.5,1.5,};yx;double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A

,B;{return A.x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec A,B;{B.x+=a*

A.x;B.y+=a*A.y;B.z+=a*A.z;return B;}vec vunit(A)vec A;{return vcomb(1./sqrt(

vdot(A,A)),A,black);}struct sphere*intersect(P,D)vec P,D;{best=0;tmin=1e30;s=

sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),u=b*b-vdot(U,U)+s->rad*s

->rad,u=u>0?sqrt(u):1e31,u=b-u>1e-7?b-u:b+u,tmin=u>=1e-7&&u<tmin?best=s,u:

tmin;return best;}vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color;

struct sphere*s,*l;if(!level--)return black;if(s=intersect(P,D));else return

amb;color=amb;eta=s->ir;d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s->cen

)));if(d<0)N=vcomb(-1.,N,black),eta=1/eta,d= -d;l=sph+5;while(l-->sph)if((e=l

->kl*vdot(N,U=vunit(vcomb(-1.,P,l->cen))))>0&&intersect(P,U)==l)color=vcomb(e

,l->color,color);U=s->color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1-eta*

eta*(1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(eta*d-sqrt

(e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(2*d,N,D)),vcomb(s->kd,

color,vcomb(s->kl,U,black))));}main(){printf("%d %d\n",32,32);while(yx<32*32)

U.x=yx%32-32/2,U.z=32/2-yx++/32,U.y=32/2/tan(25/114.5915590261),U=vcomb(255.,

trace(3,black,vunit(U)),black),printf("%.0f %.0f %.0f\n",U);}/*minray!*/
11

Which rendering algorithm will win
at the end of the day?

⚫ Ray tracing or polygon rendering?

⚫ Ray tracing is:
– Slow

– Easier to code to get realistic results.

– Therefore, focus is on creating faster algorithms, and various
hardware acceleration NVIDIA RTX / Microsoft DXR, GPU,
(RPU)

⚫ Polygon rendering (OpenGL) is:
– Fast (simpler to hardware accelerate)

– Less realistic (harder to code to get realistic results)

– Therefore, focus is on creating more realism.

⚫ Answer: right now, it depends on what you want, but
for the future, no one really knows

– Maybe ray tracing will eventually win due to simplicity vs the high cost
of developing good-looking render engines?

12

13

Side by side comparison

rasterization

ray tracing

To be physically correct, follow
photons from light sources…

⚫ Not what we do for a simple ray tracer

– Though this is almost what we do for more

advanced techniques (photon mapping)

Light sourceImage plane

⚫ Not effective, not many rays will arrive at

the eye

This image was generated in 1991 by simulating

the motion of 29.8 Billion photons in a room.

The room is 2 meters cubed with a 30 cm

aperture in one wall. The opposite and adjacent

walls are mirrors, so this is a 'tunnel of mirrors'.

The depth of field is very shallow. In the

foreground is a prism, resting on the floor. A

beam of light emerges from the left wall, goes

through the prism and makes a spectrum on the

right wall. About 1 in 177 photons made it

through the aperture.

The image took 100 Sun SparcStation1s 1 month

to generate using background processing time.

This represents 10 CPU years of processing time.

If the lights are 25 watt bulbs this represents a

few picoseconds of time.

Photon Soup Image

29.8 Billion photons

http://www.cpjava.net/raytraces/DRUN.GIF

Same image but with 382 Billion
Photons

Follow photons backwards from
the eye: treat one pixel at a time

⚫ Rationale: find photons that arrive at each pixel

⚫ How do one find the visible object at a pixel?

⚫ With intersection testing
– Ray, r(t)=o+td, against geometrical objects

– Use object that is closest to camera!

– Valid intersections have t > 0

– t is a signed distance

Image plane

Closest intersection point

Finding closest point of
intersection

⚫ Naively: test all geometrical objects in the
scene against each ray and select closest point

– Very very slow!

⚫ Be smarter:
– Use spatial data structures, e.g.:

⚫ Bounding volume hierarchies (BVH): AABBH

⚫ Sparse Voxel Octrees – octrees storing colors, not triangles

⚫ (Octrees),

⚫ kd trees - i.e., AABSP-trees.

⚫ Grids

⚫ Neural BHV:s.

⚫ Or a combination (hierarchies) of those

⚫ We will return to this topic a little later

18

trace() and shade():
Recursion

⚫ First call trace() to find first intersection

⚫ trace() then calls shade() to compute
lighting

⚫ shade() then calls trace() for reflection and
refraction directions

trace()

shade()

Image plane
light

trace()

shade()

trace()

Point is in shadow

trace() in detail
Color trace(Ray R)

{

float t;

Object O; // typically a triangle

Color col;

bool hit=findClosestIntersection(R,&t,&O);

if(hit)

{

// Compute intersection point P

Vec3f P = R.origin() + t*R.direction();

// Compute normal at intersection point

Vec3f N = computeNormal(P,O);

// flip normal if pointing in wrong dir.

if(dot(N,R.direction()) > 0.0) N=-N;

col=shade(R,O,P,N);

}

else col=background_color;

return col;

}20

-n

n

In trace(), we need a function
findClosestIntersection()

⚫ Use intersection testing (from a previous
lecture) for rays against objects

⚫ Intersection testing returns signed distance(s),
t, to the object

⚫ Use the t that is smallest, but >0

⚫ Naive: test all objects against each ray
– Better: use spatial data structures (more later)

⚫ Precision problems (exaggerated):

point of intersection: p

eye ray

light
The point, p, can be incorrectly

self-shadowed, due to imprecision

Solution: after p has been computed,

update as: p’=p+n

(n is normal at p,  is small number >0)

n

Example of Surface Acne

Image from Joe Doliner

shade() in detail
Color shade(Ray R, Mtrl &m, Vector P,N)

{

Color col(0,0,0); // black

Vector refl,refr;

for each light L

{

if(not inShadow(L,P))

col+=DiffuseAndSpecular();

}

col+=AmbientTerm();

if(recursed_too_many_times()) return col;

refl=reflectionVector(R,N);

col+=m.specular_color()*trace(refl);

refr=computeRefractionVector(R,N,m);

col+=m.transmission_color()*trace(refr);

return col;

}

For more accurate shading, see https://pbr-book.org/3ed-

2018/Reflection_Models/Specular_Reflection_and_Transmission23

https://pbr-book.org/3ed-2018/Reflection_Models/Specular_Reflection_and_Transmission
https://pbr-book.org/3ed-2018/Reflection_Models/Specular_Reflection_and_Transmission

Who calls trace() or shade()?

⚫ Someone need to spawn rays

– One or more per pixel

– A simple routine, raytraceImage(), computes rays,

and calls trace()for each pixel.

⚫ Use camera parameters to compute rays

– Resolution, fov, camera direction & position & up

When does recursion stop?

⚫ Recurse until ray does not hit something?
– Does not work for closed scenes.

⚫ One solution is to allow for max N levels of recursion
– N=3 is often sufficient (sometimes 10 is sufficient)

⚫ Another is to look at material parameters.
– E.g., if specular material color is (0,0,0), then the object is not

reflective, and we don’t need to spawn a reflection ray.

– More systematic: for each bounce, light is attenuated
(physically by material’s brdf that depends on color, Fresnel,
angles, …)

⚫ So, send a weight, w, with recursion

⚫ Initially w=1, and after each bounce, w is attenuated by shading
model:

– E.g.: w = w * (brdf) 𝒏 ∙ 𝝎𝑖 ;

⚫ Terminate recursion when weight is too small (say <0.05).

– Or use a weight per rgb, w=(1,1,1) and stop when max(wr,
wg, wb) < 0.05 or when ||w|| < 0.05.25

Tomas Akenine-Mőller © 2002

When to stop recursion

27

28

29

Reflection vector (recap)

⚫ Reflecting the incoming

ray v around n:

⚫ Note that the incoming

ray is sometimes called

–v depending on the

direction of the vector.

⚫ r can be computed as

v+(2a). I.e.,

r = v-2(n ×v)n

n

vr

v

n × (-v)

a = (n ×(-v))n

^

Refraction:

Need a transmission direction vector, t

⚫ n, i, t are unit vectors

⚫  &  are refraction indices

⚫ Snell’s law says that:

⚫ sin(2)/sin(1)=  =  where  is

relative refraction index.

⚫ How can we compute the

refraction vector t ?

⚫ This would be easy in 2D:

– tx=-sin(2)

– ty=-cos(2)

– I.e.,

n

-i

t









K
n

o
w

n
 a

s
 H

e
c
k
b
e

rt
’s

 m
e

th
o

d

n

-i

t









2D

x

y

yxt ˆ)cos(ˆ)sin(22  −−=

Refraction:

⚫ But we are in 3D, not in 2D!

⚫ So, the solution will look like:

v2=n

v1 = normalize(−𝒊 + 𝒊 ∙ 𝒏 𝒏)

So we could concider us done. But let’s continue simplifying to avoid expensive

trigonometric functions (sin, cos, arcsin). Only use cheap cos 𝜃1 = −𝒊 ∙ 𝒏 .

1. We know v1’s length before normalization is sin(1):

– v1 = (−𝒊 + 𝒊 ∙ 𝒏 𝒏) / sin(1) This also allows trick using Snell’s law in step 3 below

2. Plugin v1 into t

 t = sin(2) (𝒊 − 𝒊 ∙ 𝒏 𝒏) / sin(1) - cos(2)n

3. Use Snell: sin(2)/sin(1) = 

 t = (𝒊 − 𝒊 ∙ 𝒏 𝒏) - cos(2)n

4. Simplify cos(2) using Trig1: cos(2)
2 = 1 - sin(2)

2 and Snell: sin(2) =  sin(1):

 cos(2)= Trig1 = 1 − sin(2)
2 =[Snell]= 1 −  sin(1)

2 =[Trig1]= 1 − 2 (−cos(1)
2

 t = (𝒊 − 𝒊 ∙ 𝒏 𝒏) - 1 − 2 (−cos(1)
2 n // replacing cos(2) with an expression of cos(1)

 t = (𝒊 − 𝒊 ∙ 𝒏 𝒏) - 1 − 2 (− −𝒊 ∙ 𝒏)2 n // which is fast to compute since cos(1) = −𝒊 ∙ 𝒏

n
i

t









3D

v1

v2

2212
ˆ)cos(ˆ)sin(vvt  −−=

yxt ˆ)cos(ˆ)sin(22  −−=

32

𝒊 ∙ 𝒏 𝒏 =
−cos 𝜃1 𝒏

length = sin(1)

−𝒊 + 𝒊 ∙ 𝒏 𝒏

K
n
o

w
n

a
s
 H

e
c
k
b
e
rt

’s
m

e
th

o
d

Image with a refractive object

Some refraction indices, 

⚫ Measured with respect to vacuum
– Air: 1.0003

– Water: 1.33

– Glass: around 1.45 – 1.65

– Diamond: 2.42

– Salt: 1.54

⚫ Note 1: the refraction index varies with
wavelength for metals, i.e., one index per color
channel, RGB.

⚫ Note 2: can get Total Internal Reflection (TIR)
– Means no transmission, only reflection

– TIR occurs when the square root has an imaginary solution.
⚫ Or put differently:

− 2 = arcsin( sin(1))

– TIR occurs when | sin(1)| > 1, i.e., arcsin() undefined

n

it


34

Tomas Akenine-Mőller © 2002

Supersampling

⚫ Evenly distribute ray samples over pixel

⚫ Use box (or tent filter) to find pixel color

⚫ More samples gives better quality

– Costs more time to render

⚫ Example of 4x4 samples against 1

sample:

Be a bit smarter, make it cheaper:
Adaptive supersampling (1)

⚫ Quincunx sampling pattern to start with
– 2 samples per pixel, 1 in center,

1 in upper-left

– Note: adaptive sampling is not feasible in
graphics hardware, but simple in a ray tracer

⚫ Colors of AE, DE are quite similar,

so don’t waste more time on those.

⚫ The colors of B & E are different, so

add more samples there with the same

sampling pattern
⚫ Same thing again, check FG, BG, HG, EG:

only EG needs more sampling

⚫ So, add rays for J, K, and L

Adaptive supersampling
(2)

⚫ C & E were different too

⚫ Add N & M

⚫ Compare EM, HM, CM, NM

⚫ C & M are too different

⚫ So add rays at P, Q, and R

⚫ At this point, we consider the entire

pixel to be sufficiently sampled

⚫ Time to weigh (filter) the colors of

all rays

Tomas Akenine-Mőller © 2002

Adaptive supersampling (3)

⚫ Final sample pattern for pixel:

⚫How filter the colors of the

rays?

⚫Think of the pattern differently:

⚫And use the area of each ray

sample as its weight:

Adaptive Supersampling

Pseudo code:

Color AdaptiveSuperSampling() {

– Make sure all 5 samples exist

⚫ (Shoot new rays along diagonal if necessary)

– Color col = black;

– For each quad i

⚫ If the colors of the 2 samples are fairly similar

– col += (1/4)*(average of the two colors)

⚫ Else

– col +=(1/4)*

adaptiveSuperSampling(quad[i])

– return col;

}

Caveats with adaptive
supersampling (4)

⚫ May miss really small objects anyway

⚫ It’s still supersampling, but smart

supersampling

– Cannot fool Nyquist!

– Only reduce aliasing – does not eliminate it

Antialiasing - example

Moire example

Noise + gaussian blur

(no moire patterns)

Moire patterns

Why

“Moiré effects occur whenever tiny image structures (like the

pattern on a shirt) can not be resolved sufficiently by the

resolution of the image sensor. According to the Nyquist

theorem, each period of an image structure must be covered

with at least two pixels. When this is not the case, Moiré

effects are the consequence. To avoid Moiré Effects the

manufacturers of CCD camera systems use a filter that

diffuses the light hitting the sensor area in such a way that it

corresponds to the resolution of the ccd. “

Ulf Assarsson © 2008

Tomas Akenine-Mőller © 2002

Tomas Akenine-Mőller © 2002

Jittered sampling

⚫ Works as before
– Replaces aliasing with noise

– Our visual system likes that better

⚫ This is often a preferred solution

⚫ Can use adaptive strategies as well

Better use even more randomness

⚫ More professionally – use noise patterns or quasi-
random sequences

– E.g., (spatio-temporal) blue noise to position the

supersamples.

– Halton, Sobol, and Hammersley sequences…

48

Blue noise

Typical Exam Questions

⚫ Describe the basic ray tracing algorithm (see next slide)

⚫ Compute the reflection + refraction vector
– You do not need to use Heckbert’s method

⚫ Describe an adaptive super sampling scheme
– Including recursively computing weights

⚫ What is jittering?

Ulf Assarsson © 2008

Pseudo code:

Color AdaptiveSuperSampling() {

– Make sure all 5 samples exist

⚫ (Shoot new rays along diagonal if necessary)

– Color col = black;

– For each quad i

⚫ If the colors of the 2 samples are fairly similar

– col += (1/4)*(average of the two colors)

⚫ Else

– col +=(1/4)* adaptiveSuperSampling(quad[i])

– return col;

}

Tomas Akenine-Mőller © 2002

Summary of the Ray tracing-

algorithm:

⚫ main()-calls trace() for each pixel
⚫ trace(): should return color of closest hit point along ray.

1. calls findClosestIntersection()

2. If any object intersected → call shade().

⚫ Shade(): should compute color at hit point
1. For each light source, shoot shadow ray to determine if light source is visible

If not in shadow, compute diffuse + specular contribution.

2. Compute ambient contribution

3. Call trace() recursively for the reflection- and refraction ray.

trace()

shade()

Image plane
light

trace()

shade()

trace()

Point is in shadow

07 + 08. Ray Tracing

Real-Time Ray Tracing

⚫ Hardware:

– CPU: SIMD/SSE/AVX/APX – 4/8/16/32 registers doing same

instruction.

– GPU – has thousands of cores. Each group of typically 32 cores do

same instruction.

– NVIDIA RTX - GPU accelerated ray tracing:

⚫ Ray vs AABBH, ray/triangle intersections

⚫ Use perhaps 1 ray/pixel for shadows + reflections for 2 ray bounces. And then denoise with AI.

⚫ AABB-hierarchy construction:

– Ploctree: A fast, high-quality hardware BVH builder. Viitanen et al. 2018.

– Ploc++ parallel locally-ordered clustering for bounding volume hierarchy
construction revisited. Benthin et al. 2022.

⚫ Low level optimizations
– Precomputation of constants per frame, e.q., ray-AABB test.

⚫ Rasterize primary rays – in particular for RTX
– Else often not worth it, since primary rays are few compared to all secondary rays.

⚫ Adaptive sub sampling

⚫ Frameless rendering (motion blur)

⚫ Temporal Reprojection – can be used for rasterization and ray tracing.51

Ray-AABB hierarchy test, optimized

⚫ Keep max of tmin:s and min of tmax:s

⚫ If tmin < tmax then intersection

⚫ Special case when ray parallell to

slab

min

xt

max

xt
min

yt

max

yt

t= (- 𝒏 ∙ 𝒐 -d) / 𝒏 ∙ 𝒅
Compute constants per ray and slab

axis (x,y, or z). With o, d and n

constant, we can precompute:

a = - 𝒏 ∙ 𝒐 / 𝒏 ∙ 𝒅
b = -1/ 𝒏 ∙ 𝒅
 t = a + d*b // just 1 madd instr.

 per plane

Per AABB:

• 6 ray/plane computations à 1 madd.

• ~5 max instr.

+ a few comparison instructions.

 VERY FAST

d1 d2

d3 d4

o

n

Adaptive Sub Sampling

53

Many versions exist. E.g., quincunx again:

• Start by sampling every 4x4 pixel corners and in the

middle. Gives on average 2 samples per 16 pixels.

• If a quadrant’s 2 samples are fairly similar,

• fill in pixel colors by interpolation.

• Else, supersample recursively.

54Frameless Rendering – updating e.g. only10% of all pixels each frame

Frameless rendering

Temporal Reprojection
Store (r,g,b) color and world space (x,y,z) per pixel

Reproject samples from

frame n to frame n+1. Then:

• For pixel with <1 sample
➢ trace new ray

• For pixel with >=1 sample
➢ use closest (smallest z)

• Does not work as well

 for spec. mtrl. 55

frame n

frame n+1

frame n frame n+1

	Slide 1: Ray Tracing I: Switching gears…
	Slide 2: For your convenience
	Slide 3: Typical Exam Questions
	Slide 4: What is ray tracing?
	Slide 5: History and terminology
	Slide 6: Computer Graphics: – two main principles…
	Slide 7: What is ray tracing?
	Slide 8: What is the point of ray tracing?
	Slide 9: Whitted ray tracing
	Slide 10
	Slide 11: Again: it is simple to write a ray tracer! – A la Paul Heckbert:
	Slide 12: Which rendering algorithm will win at the end of the day?
	Slide 13: Side by side comparison
	Slide 14: To be physically correct, follow photons from light sources…
	Slide 15
	Slide 16: Same image but with 382 Billion Photons
	Slide 17: Follow photons backwards from the eye: treat one pixel at a time
	Slide 18: Finding closest point of intersection
	Slide 19: trace() and shade(): Recursion
	Slide 20: trace() in detail
	Slide 21: In trace(), we need a function findClosestIntersection()
	Slide 22: Example of Surface Acne
	Slide 23: shade() in detail
	Slide 24: Who calls trace() or shade()?
	Slide 25: When does recursion stop?
	Slide 26: When to stop recursion
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Reflection vector (recap)
	Slide 31: Refraction: Need a transmission direction vector, t
	Slide 32: Refraction:
	Slide 33: Image with a refractive object
	Slide 34: Some refraction indices, h
	Slide 35
	Slide 36: Supersampling
	Slide 37: Be a bit smarter, make it cheaper: Adaptive supersampling (1)
	Slide 38: Adaptive supersampling (2)
	Slide 39: Adaptive supersampling (3)
	Slide 40: Adaptive Supersampling
	Slide 41: Caveats with adaptive supersampling (4)
	Slide 42: Antialiasing - example
	Slide 43: Moire example
	Slide 44: Why
	Slide 45
	Slide 46
	Slide 47: Jittered sampling
	Slide 48: Better use even more randomness
	Slide 49: Typical Exam Questions
	Slide 50: Summary of the Ray tracing-algorithm:
	Slide 51: Real-Time Ray Tracing
	Slide 52: Ray-AABB hierarchy test, optimized
	Slide 53: Adaptive Sub Sampling
	Slide 54: Frameless rendering
	Slide 55: Temporal Reprojection

